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Abstract

The main aim of this dissertation is to depict the most significant model-
theoretic results related to the Mordell-Lang’s conjecture and, in particular,
to the Hrushovski’s proof of this.

Therefore, after introducing the basic concepts of sorted languages, monster
models and imaginaries, we study Morley’s rank and the theory of groups with
Morley’s rank. Then, we apply these abstract results to algebraically closed
fields and abelian varieties. Once this is done, we will study the Mordell-Lang
conjecture and give a sketch of the Hrushovski’s proof for the characteristic 0
case.

Resumen

El objetivo principal de este Trabajo de Fin de Grado es mostrar los resultados
mas importantes de teoria de modelos relacionados con la conjetura de Mordell-
Lang y, en particular, con la demostraciéon de Hrushovski de esta.

Por tanto, tras una introduccién a los conceptos basicos de lenguages de
varias clases, modelos monstruo e imaginarios, estudiaremos el rango de Morley
y la teoria de grupos con rango de Morley. Entonces, aplicamos estos resultados
abstractos a cuerpos algebraicamente cerrados y variedades abelianas. Una vez
hecho esto, estudiaremos la conjetura de Mordell-Lang y daremos un esquema
de la demostracién de Hrushovski para el caso de caracteristica 0.
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Introduction

Model theory is a branch of mathematical logic which studies abstract mathematical
objects (e.g., groups, rings, fields, vector spaces) as structures interpreting
formal languages. Therefore, all in all model theory is considered an absolutely
pure area with an almost insignificant number of useful applications by the
whole of the mathematical community. However, it is far to be true. In the
recent years, some relevant open problems from other areas have been solved
with model theory. This memoir presents one of these cases: the Mordell-Lang’s
conjecture.

The Mordell-Lang’s conjecture, made by Serge Lang, is a generalization of
the Mordell’s conjecture. The Mordell’s conjecture, which was questioned by
Louis Joel Mordell in 1922, states that a curve of genus greater than 1 over
the field of rational numbers has only finitely many rational points. In 1983
and 1984, Gerd Faltings proved the Mordell’s conjecture, which is now known
as Faltings’s theorem, using complex algebraic techniques. Faltings’s theorem
can be reformulated as a statement about the intersection of a curve with a
finitely generated subgroup of an abelian variety. Generalizing by replacing
the curve by an arbitrary subvariety and the finitely generated subgroup by
an arbitrary finite-rank subgroup leads to the Mordell-Lang conjecture, which
was also proved in the characteristic 0 case by Faltings (1991, 1994). Finally,
the relative Mordell-Lang’s conjecture is a generalization of this one to number
fields of arbitrary characteristic. In 1996, Ehud Hrushovski proved the relative
Mordell-Lang’s conjecture using model theory. Thus, giving also a new proof
for the characteristic 0 case.

The main aim of this dissertation is to study the model-theoretic content
of Mordell-Lang’s Conjecture and the model theoric background used in the
Hrushovski’s proof. The actual proof given by Hrushovski, of which we present
only a sketch in the characteristic 0 case, goes beyond this project.

This document is divided into five sections, wherein we study the concepts
of monster model, imaginaries, stable theories, Morley’s rank and groups with
Morley’s rank. Finally, we apply them to the conjecture in the theorem and
in the sketch [£.3] at the end.

We end this introduction briefly mentioning the content of each chapter, for a
more detailed description see the introduction in each chapter. The first chapter
is a short introduction of notation and concepts. Actually, it is a generalization
of the theory studied in the course Curso Avanzado de Algebra of this Master’s
degree to sorted-languages. Also, at the end of the chapter, we introduce the
concepts of monster model and imaginaries, and we prove some basic results
about them. The second chapter is the main one of this dissertation. In it,
we study the concept of Morley’s rank, its relation with stable theories and the
most fundamental results about it. The third chapter studies definable groups
with Morley’s rank, which are a good example of the utility of model theory in
other areas. We apply the abstract theory studied in the memoir to algebraically
closed fields in the forth chapter. The last one is dedicated to the conjecture.
The majority of this dissertation is based on [?]. Theorem is from [9], and



lemma [5.6] of theorem is from [10]. For the Hrushovski’s proof, see [12].
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1 Basic concepts and notations

In this chapter we introduce the notation and basic concepts we are going to use
in the rest of the dissertation. Also, we state some fundamental results. The
most significant concepts we are going to study are the following

1. Sorted-languages and structures: they are a straightforward generalization
of first order languages and structures adding sorts for the symbols and
elements. A standard example is the language of groups actions which has
two sorts: one for the group and one for the set.

2. Monster models: they are an asymptotic way to obtain saturated structures.
Monster models are models of a theory such that every model is an
elementary substructure of the monster model.

3. Imaginaries: we consider expansions of the languages and the structures
adding element for the definable equivalence classes. Therefore, imaginaries
allow us to define and work with quotient definable sets.

The most significant results are the Compacteness theorem [Theorem [1.11],
Ryll-Nardzewski’s theorem [Theorem [1.27], theorem which we apply for
monster models and theorem [1.32]

1.1 Many-sorted languages and structures

We work with many-sorted languages. Given a non-empty set S, a many-sorted
language L with sorts S, shortened as S-language, is a set Cs of constants
of sort s for each s € S, a set F(,, . s, s of function symbols of sort s for
each (sy,...,s5,8) € S**! and a set Ry, .5, of relation symbols for each
($1,---,8m) € S™. Thus, a (non-sorted) first order language is a sorted language
with just one sort. The set of variables for each sort is infinitely countable.
Terms and formulas are defined in many-sorted languages as it is usual for non-
sorted languages, but with coherence between the sorts. We write Ter L for
the set of terms of L and For L for the set of formulas of L. Given T an n-
tuple of variables, n € N*, we denote Forz L for the set of L-formulas with free
variables in Z. In ForzL we also fix the order of the variables. If we do not
fix the variables, we denote ForzL for the set of formulas with at most n free
variables of sorts 5 € S™ and For, (L) for the set of formulas with at most n
free variables. We write ForgL for the set of sentences. Given n € Ter L or
n € For L, we write n(x1,...,2,) to indicate that the free variables of 7 are in
T and we write n(t1,...,t,) to indicate that x1,...,z, have been replaced by
t1,...,tn simultaneously. If L = {C, Rs, F5 s }ses,5eyr s>

card(L) = sup{card(S), card(Cs), card(R3), card(F55) : s € 5,5 € U”S}

Note that card(For L) = max{®y, card(L)}.

Notation. In the rest of this memoir and except otherwise stated, L will denote
an S-language.



Definition 1.1. Structures.- An L-structure 2 is a pair (A7 (ZQ[)Z of L) such
that A = {A,}ses is a family of non-empty sets and

z constant of sort s 2% e A,
z function s. frs, . s 2 Ay x e x Ag, — Ag
z relation s. R, . 2 C A, XX A, .

*75771)

A is the universe of 2 and z* is the interpretation of z in 2. For many-
sorted languages, a sorted subset is a family of subsets for each sort and a
sorted function is a family of functions for each sort. A sorted subset is finite if
both there are only finitely many non-empty sorts and there are finitely many
elements of each sort. A sorted subset is infinite if there are infinitely many
elements of each sort. We do a small abuse of notation by using the standard
symbols for sets and functions for sorted sets and sorted functions, e.g., a € B
for a € B; where s € S is the sort of a, f(a) for fs(a) where s € S is the sort
of a, B C C for B, C C; for each s € S, card(A4) < & for card(A,) < & for
each s € S and card(A) > k for card(As) > «k for each s € S. We write ¢
to indicate an expansion of the L-structure 2 by adding constants (or function
or relation symbols) to the language L for a sorted subset C (or a sorted set
of functions or relations). In that case, we write L(C) for the corresponding
expansion of the language. We say that 2 is the L-reduct of ¢.

Definition 1.2. Homomorphism.- An homomorphism v : 24 — B between
two L-structures is a sorted function from A to B such that:

¢ constant P(c*) =P

f function's.  (f%(a,...,ar)) = fB(W(ar), ..., P(ax))
Rrelation s.  R¥*(ay,...,am) = RE(WY(a1),...,¥(am))-

We define embeddings, isomorphisms and automorphisms in analogy to the
non-sorted languages case. We write Aut(2) for the set of automorphisms and
Aut(2(/B) for the set of automorphisms fixing the sorted subset B.

An evaluation in an L-structure 2 is a family of functions ¢ = {J, }scs such
that ¥4 : Vy, — A, for each s € S, where V' is the set of variables. Given an
element a € Ay, a variable z € V; and an evaluation 9, we write ¥, a/x for the
evaluation defined by ¥, a/z(z) = a and 9, a/z(y) = ¥(y) for y # .

Given an evaluation 1 in an L-structure %, we define the interpretation of
terms ¢ in 2 by 9 and the satisfaction of formulas ¢ in 2 by ¥ in analogy to the
non-sorted languages case, and denote them by #*[9] and 2 |= ¢[J] respectively.

Note that interpretations and satisfactions are independent from non-free
variables, so we can write a finite tuple instead of ©J. In particular, sentences are
satisfied by one evaluation if and only if they are satisfied by every evaluation.
Therefore, it make sense to say that an L-structure does or does not satisfy a
sentence. Also, we have the following straightforward result:

Lemma 1.3. (Substitution lemma) Let L be an S-language, A be an L-
structure, ¥ be an evaluation and ty,...,t, € Ter L and ¢ € ForL. Then,

AE oty t)W] ©AE @ [FW],... 2]



Definition 1.4. Definable sets.- Let 2l be an L-structure and B be a sorted
subset. A B-definable set is a set of tuples satisfying an L(B)-formula. A
definable set is a B-definable set for some B. Given ¢ € ForzL(B), we write

plA/z] :={ae€ A, x---x A, : Ap = p[a/7]}.

We indicate the variables to fix an order, so we abbreviate ¢[2(] when the
order of the variables is clear from the context. Given a definable set D, we
usually write D to indicate a formula defining D. Given a tuple s € S", we
write Def?(B) for the boolean algebra of B-definable sets of Ay, x --- x A, .
An element a is definable over a sorted set B if {a} € Def?(B), where s is the
sort of a. We write dcl™(B) for the sorted set of definable elements. An element
a is algebraic over a sorted set B if there is a finite definable set D € Def?(B)
with a € D, where s is the sort of a. We write acl®(B) for the sorted set of
algebraic elements.

If V is a set of tuples from A, its algebraic closure acl(V) and its definable
closure dcl(V') are respectively the algebraic closure and the definable closure of
the sorted set of coordinates of the elements of V.

1.2 Theories

An L-theory is a set of sentences of L. A model of an L-theory T (2 E T) is
an L-structure 2 which satisfies every sentence of T'. A satisfiable L-theory is
an L-theory with models and a finitely satisfiable L-theory is an L-theory such
that any finite subset is satisfiable. A sentence ¢ € Forg(L) is a consequence of
a theory T if every model of T satisfies p. FEquivalent theories are theories with
the same models. The theory Teo(2() of an L-structure 2 is the set of all L-
sentences satisfied by 2. Equivalent L-structures are L-structures with the same
theory. Note that isomorphic L-structures are equivalent. A complete theory
is a theory such that all its models are equivalent. In particular, the theory of
an L-structure is complete. The atomic diagram Diag(2l) of an L-structure 2
is the set of atomic or negations of atomic L(A)-sentences satisfied by 2.

Next we state a series of basic results for many-sorted languages whose proofs
are analogous to the corresponding ones for non-sorted languages.

Lemma 1.5. (Models of the atomic diagram) Let 2 be an L-structure
and B an L(A)-structure with L-reduct B’. Then, B = Diag(2l) if and only if
Y A — B defined as (a) = a® is an embedding.

An elementary map f : C — D is a sorted function between two sorted
subsets C' and D of two L-structures 20 and B which preserves satisfactions,
ie.,

Ak @] & B ¢lf o]
for any evaluation ¢ in C.

An elementary embedding f : A — 9B is an embedding of L-structures which

is an elementary map. An elementary substructure B of an L-structure 2l is a



substructure such that the inclusion ¢ : B — 2 is an elementary embedding,
and then write 2B < 2L.

Lemma 1.6. (Models of the theory) Let 2 be an L-structure and B an
L(A)-structure with L-reduct B’. Then, B is model of Teo(24) if and only if
Y A — B defined as (a) = a® is an elementary embedding of L-structures.

Theorem 1.7. (Tarski’s test) Let 2 be an L-structure and B a sorted subset
of A. Then, B is the universe of an elementary substructure of A if and only if
for any s € S and any formula ¢(z) € For,L(B)

Ap = Jzp(x) & there exists b€ By Ap = ¢(b).

Theorem 1.8. (Tarski’s Chain Lemma) Let {;};c; be an elementary
directed family of L-structures. Then, UjEJQlj is an L-structure and A;, =
UjEJ A; for each jo € J. Moreover, if B is an L-structure such that A; < B
for every j € J, then | J2; < B.

Let C = {Cs}scs be a family of pairwise disjoint sets which are disjoint
from L and let g : (J,.g Fors(L(C)) — C be a one-to-one function. A Henkin’s
L(C)-theory with witnesses C (by g) is an L(C)-theory containing the set

{Gzp (@) = ¢(9(p(2))) : w(z) € For (L(C))} .

Lemma 1.9. (Henkin’s lemma) Let T be a finitely satisfiable L-theory. Then,
there exists a family C = {Cs}scs and a finitely satisfiable Henkin’s L(C)-theory
TH with witnesses C such that T C TH.

Lemma 1.10. (Lindembaum’s lemma) Let T be a finitely satisfiable L-
theory. Then, there exists T a finitely satisfiable L-theory such that T C T and
for every sentence ¢ of L either ¢ € T or ~p € T. In particular, if A C T is
finite and A = ¢ for ¢ sentence, then o € T.

Proof. Apply the Zorn’s lemma to the set of finitely satisfiable theories extending
T. O

Theorem 1.11. (Compactness theorem) Let T be a finitely satisfiable L-
theory. Then, T is satisfiable.

Proof. Apply lemmas and in this order and let TH be the L(C)-theory
obtained. TH is a finitely satisfiable Henkin’s L(C)-theory with witnesses C
such that T C TH and, for any ¢ € ForgL(C), either ¢ € TH or ~p € TH.
Define, for each s € S, the relation ~ in Cs as ¢ ~5 ¢ < c=¢ € TH. It is
clear that ~g is an equivalence relation. Consider the L(C)-structure 2 with
universe A = {A, = ©s/._ }scs and interpretation

constant ¢ A = o
function s. f  f2([e1],- ., [ck]) = [co] & flcty- -, ck)=co € TH
relation s. R R*([c1],...[em]) & Rlci,...,cm) € TH.

20 is well defined and Teo() = TH. Hence, the L-reduct of 2 is a model of
T. O



Corollary 1.12. Let T be an L-theory and ¢ € ForgL. Then, T | ¢ if and
only if there is A C T finite such that A = .

Theorem 1.13. (Lowenheim-Skolem-Tarski Theorems) Let « be a cardinal,
2 be an L-structure and C be a sorted subset of A:

1. (Downward) If max{card(C),card(L),Ro} < x < card(A), then there
exists B, elementary substructure of A, such that card(B) = k and C C B.

2. (Upward) If Xy < card(A) < max{card(A),card(L)} < k, then there

exists B, elementary extension of A, such that card(B) = k.

Corollary 1.14. Let T be a satisfiable L-theory which has an infinite model.
Then, there exists a model B of T for every cardinal k > max{card(L),Ro}
such that card(B) = k.

Theorem 1.15. (Vaught test) Let k > card(L) be an infinite cardinal and T
a satisfiable L-theory such that there is an isomorphism between any pair 2 and
B of models of T with card(A) = card(B) = k. Then, the infinite models of T
are equivalent.

Definition 1.16. x-categorical theories.- Let x > card(L) be an infinite
cardinal and T a complete satisfiable L-theory. T is k-categorical if T has
models with infinitely many elements of each sort and there is an isomorphism
between any two models of T" with cardinal  for every sort.

1.3 Saturation and types

Let 24 be an L-structure, ¥ C ForL and ¢ be an evaluation in 2. We say that
¥ realizes or satisfies ¥ if A |= p[d] for every ¢ € ¥, and then write A = X[0].

Definition 1.17. Types.- Let T be an n-tuple of variables, n € N*, T an L-
theory, 2l an L-structure and B a sorted subset of 2. A T-type with parameters
B in 2 is a subset ¥ C Forz L(B) which is finitely satisfiable in 5. An Z-type
of T is a subset ¥ C Forz(L) such that T'U ¥ is finitely satisfiable. A type
p(T) is complete if it is maximal, i.e., either ¢ € p(T) or ¢ € p(T) for every
¢ € Forz L(B). A type is global if it is complete and its class of parameters is
the whole universe. A strong type is a complete type with an acl-closed set of
parameters.

We write S2(B) for the space of complete T-types with parameters B in 2
and Sz(T) for the space of complete Z-types of T. We fix the variables for
technical reasons, so when the variables are clear from the context we do not
indicate these ones and write only S2(B) or S*(B). Also, given ¢ € Forz L(B),
write S?al(B) C S%(B) for the z-types with parameters B in ¢, i.e., the types
in which ¢ is.

By the Zorn’s lemma, given an L-theory T, for any type 3(Z) C ForzL of T
there is a complete type p(T) of T such that 3(Z) C p(T).



Also, for any tuple @ from %, the type of @ over B in 2 is

tp (@/B) := {¢(7) € Forz(L(B)) : A = p[a/7]}.

It is clear that tp2(a/B) is a complete type. When the variables and the
structure are clear from the context we write tp(a/B). Also, if V is a set
of tuples, write tp(a/V') := tp(a/B) where B is the sorted set of coordinates of
elements of V.

If we substitute the variables of ¥ C ForL by new constants, we can apply
the Compactness Theorem [Theorem and conclude that ¥ is satisfiable
if and only if it is finitely satisfiable. Thus, given an L-theory, X(Z) C ForzL
is a type of T if and only if T'U X(Z) is satisfiable. Then, since ¥ is finitely
satisfiable in 2( if and only if ¥ UTeo(2(4) is finitely satisfiable, we conclude that
3 is finitely satisfiable if and only if there is an elementary extension of 2 where
3 is realized. Note that by Lowenheim-Skolem-Tarski theorems we can fix the
cardinal of this elementary extension as k > max{card(L),Ro} for every sort if
card(A) > No.

Consequently, S¥(B) = Sz(Teo(2p)). In particular, if Az = Aj, then
S2(B) = S¥(B). Also, if T is a complete L-theory, then Sz(T) = S%(0) for
any A =T.

We have a bijection
F: S%B) — {F C DefX(B) : F ultrafilter in Def‘;_"(B)}
p(T) {o[2/7] : ¢(T) € p(T)} .

Thus, we define the topology of SZ(B) via F by the Stone’s topology of the
boolean algebra Def?(B). This topology is defined by the base {(¢) : ¢ €
For;L(B)} where () := {p € S¥(B) : ¢ € p} for every ¢ € For;L(B). Note
that for any ¥ C Forz L(B), the set (X) = [, cx(p) is a closed sets of S2(B).

1

Proposition 1.18. Let 2 be an L-structure and B a sorted subset. Then,
S2(B) is a compact Hausdorff’s space.

Proposition 1.19. Let M and M’ be L-structures, A C B sorted subsets of M
and h : M — M an elementary embedding. Let
r: ST(B) — ST (A) h: ST(A) — ST (h(A))

P > plai=pNForgL(A) and P — h(p).

Then, r and h are continuous. Moreover, r is also an onto closed map.

Proof. It is clear that r and h are continuous. It is also clear that r is onto. Let
us prove that r is a closed map. We have that the closed sets are of the form (%)
where ¥ C Forz L(B). Then, it suffices to prove that r((X)gmp)) = (X')gm (4
where ¥/ = {¢’ € ForzL(A) : thereis ¢ € ¥ M = VZ(p « ¢')}. The latter
is clear. O



By definition, any basic set (¢) is open and closed. Since boolean combinations
of basic sets are basic sets, we conclude that an open and closed set is a basic
set by compactness of S2(B).

Definition 1.20. Saturation.- Let 2 be an L-structure and x > card(L) an
infinite cardinal. We say that 2 is x-saturated if any complete type p € S®(B)
is realized in %A, for every sorted subset B of 2 with card(B) < k. We say
that an L-structure 2 is saturated if there is a cardinal x > card(L) such that
card(A) = x and 2 is k-saturated.

Note that definable sets in k-saturated structures are finite or of cardinal
greater or equal than k.

Remark. If 2 is k-saturated, every p € S2(B) is realized, for every sorted
subset B with card(B) < k and every n-tuple of variables T. We prove it by
induction on n. Consider the type p = {3xa ... Iz, o(21,. .., 20) : p(z1,...,2,) €
p}, then p is realized, since 2 is k-saturated. Let a; € Ay, be a realization of
p and consider the type p' = {¢(a1,z2,...,2,) : @(z1,...,2,) € p}. By
hypothesis of induction there are as, ..., a, such that 2 = p[a/z].

Definition 1.21. Homogeneity.- Let 2 be an L-structure and x > card(L) an
infinite cardinal. We say that 2 is x-homogeneous if for every elementary map
f: B — A there is an elementary extension f: BU {a} — A, for any sorted
subset B with card(B) < k and for any a € A. We say that an L-structure 2 is
homaogeneous if there is a cardinal x > card(L) such that card(A4) = xk and A is
k-homogeneous.

Remark. A k-saturated structure is k-homogeneous. Indeed, let B be a sorted
subset with card(B) < k and a be an element. For any elementary map f :
B — A, p = f(tp,(a/B)) is a type over f(B) and card(f(B)) < k, so there
is an element o’ realizing p. The extension to B U {a} defined as a — a’ is an
elementary map.

For k < card(L), saying that an L-structure is x-saturated or k-homogeneous
we mean that there is a A > card(L) > & such that it is A-saturated or A-
homogeneous. Therefore, Rg-saturated or Np-homogeneous do not mean that
the language is countable.

Lemma 1.22. Let k be an infinite cardinal such that k > card(L) and 2 an
infinite L-structure such that card(A) < 2". Then, there exists an elementary
extension B of A such that card(B) < 2" and realizing every 1-type of A with
at most k parameters of each sort.

Proof. For every so € S, fix a variable z of sort s and let Py, = {p¢(z)}¢can,
be the set of complete xz-types with at most x parameters for each sort. Note
that Py, = U{S2(D) : D, € P=F(A,) for each s € S}, so card(Py,) < 2.
Indeed, the cardinal of the set of sorted subsets with at most x elements for
every sort is [, g card(As)" = 2" and, for any sorted set D with card(D) < &,
we know that

card (S¥(D)) < card (For, L(B)) = max{Ro, s, card(L)} = k.



Let C = {Cs}secs be a sorted set of new constants such that Cs = {c¢}ecan,-
Then, 7" = Teo(Aa) U U,e5 Urea, Pe(ce) is a finitely satisfiable L(C)-theory
because the pg’s are types. Since card(Cs) < 2%, by the Léwenheim-Skolem-
Tarski theorems [Theorem there exists a model B’ with card(B) < 2% —
note that the models of Teo(2(4) has infinitely many elements of each sort. Let
B be the L-reduct, hence A < B [Lemma and ‘B realizes the 1-types of 2
with at most x parameters of each sort. O

Theorem 1.23. Let x > card(L) be an infinite cardinal and 2 an infinite L-
structure such that card(A) < 2%. Then, there exists a k™ -saturated elementary
extension B of A such that card(B) < 2",

Proof. By the lemma[1.22] there exists an elementary sequence (A*),ec2+ such
that 2 = 2%, AT realizes every 1-type of A with at most x parameters of each
sort, AY = Ugea 2A¢ for o € 2% a limit ordinal, which is an elementary extension
by the Tarski’s Chain Lemma [Theorem [1.8], and card(A®) < 2~ for each o € 2*.
Consider B’ = (J,co- A%, which is an elementary extension by the Tarski’s
Chain Lemma, and 9B its L-reduct. Then, 2 < 9B and card(B) < 2%. I claim
that B is xT-saturated. Indeed, let D be a sorted subset with card(D) < k.
Then, for every s € S, we have that D, C (J,cor A5 with card(D,) < &
and card(A%) < 2%, so Dy C A% for some oy € 2" since cf(2%) > k. Also,
card(S) < k < cf(2") so there is a global a € 2% such that D is a sorted subset
of A%, Then, any type with parameters D is realized in 2A**!, and in B. O

Let T be an L-theory. A formula ¢(%) € Forz(L) isolates a type X(T) C
ForzL in T if ¢(%) U T is satisfiable and for any ¢'(%) € X(%)

T EVry.. Vo, ((z1,. .. 2n) = @' (21, .., 20)) .

Note that an isolated complete type is an isolated point of the space of types in
the Stone’s topology. Also, note that isolated types are always realized.

Theorem 1.24. (Omitting types) Let L be a countable S-language, T a
satisfiable L-theory and X*(z%) C Forzx L non-isolated types of T for each k € w.
Then, there is a model A =T such that card(A) = R and, for every k € w, A
does not satisfy XF ().

Lemma 1.25. Let k > card(L) be an infinite cardinal, A and B two equivalent
L-structures such that card(A) < k and B is k-saturated. Then, there is an
elementary embedding f: A — *B.

Proof. Let (a¢)cex be an enumeration of the disjoint union of {A,}scg, where
A < k — note that card(S) < card(L) < k. We define by recursion a sequence
(be)een such that

tp™ (be/{by : m € €}) = tp™(ag/{ay = n €}

and f¢ : a, — b, for n < ¢ is an elementary map — note that we are not
indicating the sorts, but every a, has a sort, so f¢ is a sorted function and



{ae}eer and {be}ecn are sorted sets. Since A =B and B is k-saturated, there
exists by such that tp®(by) = tp®(ap) and fy is an elementary map. The limit
case is clear. Assume that for £ € A we know that f¢ is an elementary map and
that tp® (b, /{b, : v €n}) = tp*(a,/{a, : v €n}) for every n < . Since f is
an elementary map, tp®(agt1/{a, : n < &}) € S*({a” : n < €}) = ST({b, :
n < &}). Since card({b, of sort s},c¢) < k for each sort and B is k-saturated,
there exists bey1 such that

tp® (beg1/by : 1 < &) =tp%(ags1/ay : < E).

It is clear that feyq: an > by forn < E4+11s fer1 = feU{(agr1,beq1)}, so it is
an elementary map. Hence, f: a¢ +— b for £ € A is an elementary embedding
from 2 to B. O

Lemma 1.26. Two equivalent saturated L-structures are isomorphic.

Proof. Let k > card(L). Let 2 = B be two k-saturated L-structures with
card(A) = card(B) = k. As in the lemma let {ac}ecr and {be}lec be
enumerations of the disjoint unions of the A’s and By’s for s € S. Define by
recursion a sequence (f¢)eer of elementary maps such that a¢ € Dom fe and
be € Im fe. Hence, it is clear that f =] f¢ is an isomorphism. O

Theorem 1.27. (Ryll-Nardzewski) Let L be a countable S-language and T
a complete L-theory whose models are infinite. Then, T is Ng-categorical if and
only if S5(T) is finite for any 5 € |J("S).

Proof. (=) Let 5 be such that S3(7) is infinite. Since S3(7T) is a compact
space [Proposition [L.18], there is a non isolated point. Let p(Z) € Ss(T) be
non-isolated. By the Omitting Types Theorem [Theorem , there exists a
model 2 of T' which does not realize p and such that card(4) = Ry. On the
other hand, by the Compactness Theorem [Theorem together with the
Lowenheim-Skolem-Tarski Theorems [Theorem [L.13], 7' U p(¢) has a model B’
such that card(B) = Ng. Of course, 2 and the L-reduct 8 are not isomorphic,
so T is not Ny-categorical.

(<) Let 2 be a model of T with card(A) = Ng. If Sz(T)) is finite, S¥(B) is finite
for any finite sorted subset B and any s € S. Thus, every 1-type of 2 with a
finite number of parameters is isolated since the space of types is a Hausdorff’s
space [Proposition . Since 2 realizes every isolated type, 2 is Np-saturated.
By the lemma we conclude that 7" is Ny-categorical. O

Lemma 1.28. Let k > card(L) be an infinite cardinal, 2 a homogeneous L-
structure, B a sorted subset with card(B) < card(A) and ¢,d tuples from 2.
Then, tp(c/B) = tp(d/B) if and only if there is f € Aut(2/B) such that
f@) —d.

Proof. The "if" part is clear, let us prove the "only if" part. Let {a¢}ecw
be an enumeration of the disjoint union of {As}scs. Note that k = card(A).
Define by recursion a sequence (fe)ee,, of elementary maps satisfying, for each
neen, that f, C fe, fo: BU{cr,...,cn} = BU{di,...,d,} with



fojp = idp and fo(¢) = d, {a, : n € £ C Dom fe, {a, = n € {} C
Im fe and max{card(Dom f¢),card(Im f¢)} < . Indeed, given an f¢, by the
homogeneous property, since Dom f has less than x elements for each sort,
there is an elementary map extension fg with a¢gy1 € Dom fg Now, consider
fg , since Im fg has less than x elements of each sort, there is an elementary
map extension fg_+11 with bey1 € Im fei1. Thus, (fe)eex is well defined. Hence,

f =U fe is an automorphism such that f(¢) = d and f € Aut(2/B). O

Theorem 1.29. (Parameters of definable sets).- Let xk > card(L) be an
infinite cardinal, Aa saturated L-structure such that card(A) = k, D a definable
set and B C A a sorted subset with less than r elements of each sort. Then, D
is B-definable if and only if every f € Aut(2/B) leaves D invariant.

Proof. The "only if" part is clear, let us prove the "if" part. Let ¢ € For L(C)
define D where C is a finite sorted set of parameters and B = B U C. Then,
D is B’-definable, B C B’ and B’ has less than x elements of each sort. Let
r: S*(B') — S2%(B) defined as 7(p) = p N ForzL(B). It suffices to show
that r({(¢)) = {tp(c/B) : ¢ € D} is closed and open. Since r is a closed map
[Proposition [[.19] and () is closed and open, it suffices to prove that r({¢)¢) =
r({¢))¢. Indeed, let g € r({p))Nr({(—)), then ¢ = pNForz L(B) = p’NForz L(B)
with ¢ € pand - € p'. Since p, p’ € S(B’) and A is x-saturated, there are ¢, d
such that ¢ € D and d ¢ D and tp(¢/B) = tp(d/B) = q. By lemmal[1.28] exists
an automorphism f € Aut(/B) such that f(¢) = d, a contradiction since f
leaves D invariant. O

1.4 Monster models

We usually need saturated structures but they do not always exist. To solve this
problem we define monster models, which are an "asymptotic" way to obtain
saturated "structures".

Let 2 be an infinite L-structure. A monster extension € of 2 is a long
sequence (2Ay)acon of L-structures such that

1. A= Q[o;
2. Ag <A, for any 5 € o € On;
3. and A,y 1 is |A,|T-saturated for any a € On.

Let T be a complete L-theory whose models are infinite. A monster model €
of T' is a monster extension of a model of T. The universe of € is the family
of classes {Cs}scs defined as Cs = U,con Aas- A sorted subclass of € is a
family of subclasses {B;}scs for each s € S. In particular, a sorted subset B
is a sorted subclass such that, for each s € S, B is a set. Note that a sorted
subset of € is a sorted subset of 2, for some o € On. A sorted function-class
f : B — B’ is a family of function-classes {f;}scs for each s € S. We use
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the notation used for L-structures to monster models but we use bold letters to
mark a different between classes and sets.

An homomorphism between monster models 1) : € — €' is a sorted function-
class such that ¥4 : 2, — Im ¢,  is an homomorphism for every oo € On.
An isomorphism between monster models 9 : C — C’ is an homomorphism
with an inverse. An automorphism in a monster model € is an isomorphism
from € to itself.

Let € = (24)acon be a monster model of an L-theory. An evaluation ¢ in
€ is an evaluation in some A, with o« € On. Thus, if t € Ter L and ¢ € For L,
te[] = t"[9] and € = o[V] & Aa = ¢[J].

Let B be a sorted subset of € and ¢ € ForzL(B). The B-definable class
defined by ¢ is

ple/z] ={aeCy x---xC,, : Clpla/a]} = [ ol

a>aq

where B is a sorted subset of 2.
We define
SE(B) = [ J S¥(BNnA,).
acOn
Note that € is "set"-saturated, i.e., every type with a sorted set of parameters
is realized in €. In particular, definable classes are finite or proper classes.

Remark. The Zermelo-Frainkel set theory with choice, ZFC, is too naive to
define a monster model. Indeed, a careful reading of the proofs and
shows that we are using the axiom of choice two define sequences of saturated
structures. However, in the case of the monster model, since a long sequence
is a proper class, we can not use the axiom of choice. To solve this technical
problem, we work with the Bernay-Godel set theory with global choice, BGC
(The axioms of ZFC and BGC are given in the appendix. Global choice solves
this problem and ensures that monster models exists. Moreover, if we choose a
well order on every 2(, by using the axiom of global choice, we will obtain a well
order (class relation) on the whole monster model € = (2, )acon. Therefore,
since € is a saturated model, the results studied about saturated structures can
be applied. In particular, the lemma [1.26| means that there exists just one, up
to isomorphism, monster model, so we say the monster model. The lemma [T.25]
implies that any model of a complete theory whose models have infinitely many
elements of each sort is embedded into its monster model. Also, we can apply
the theorem [[.29] in monster models for definable classes.

1.5 Imaginaries

On the whole, a definable set D is definable with a finite tuple of parameters ¢,
so the parameters ¢ determine D, but D may be defined with other parameters
with not relation with ¢. For example, D could be 0-definable. We want a tuple
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of parameters that represents appropriately the definable set. By theorem [1.29
we can define this special type of parameters as follows:

Definition 1.30. Canonical parameters.- Let 2 be a saturated L-structure,
D a definable set and p a global type. A canonical parameter (cb(D)) of D is
a finite tuple ¢ such that an automorphism of 2 leaves D invariant if it fixes
¢. Let p be a global type. A canonical base (cb(p)) of p is a sorted set B with
card(B) < card(A) such that an automorphism of A leaves p invariant if it fixes
B. We have analogous definitions for monster models.

It is clear that there is at most one tuple of canonical parameters (or canonical
bases) up to interdefinability. That is a consequence of the theorem The
problem is that we can not ensure the existence of these ones. We say that
a complete theory whose models are infinite has elimination of imaginaries if
every definable class in the monster model has a canonical parameter.

Let 2 be a saturated L-structure. A way to build a canonical base of a
definable set D = ¢(Z,¢)[2] is to consider the definable equivalence relation

E(7,9) = Vz(p(z,7) © ¢(z,7))-

Thus, the equivalence class of ¢ with respect to F is a canonical parameter of D.
Indeed, by definition, f([¢]g) = [¢]g if and only if D = ¢(Z, f(2))[2] = f(D).
The problem is that [¢]g is not an element of 2. To solve this problem we
add these elements to the structures, they called imaginaries. So, we define the
S¢-language L°? and the L°I-expansion 9.
St ={FE;5 : E5 € Fors ;L defines a equiv. rel. with infinitely many classes}
L* = LU {m g, function s. : Es € S}
={[clg. : c€ A5, X+ x As, }

e
Ap, =
T gyt € B,

We define €°1 = (2¢%) for monster models €. On the other hand, given an
L-theory T', we define L°4 and T°9 as follows

5S¢ = {F; € For; ;L : T |= E; defines a equiv. rel. with infinite classes}
L*9 = LU {m; g, function s. : Es € S}
T =TU {V@Hy 7TE( ) - 37) Vy1Vy2(7rE(y1) E(yZ) A E(?h??))}ﬁeseq .

Remark. The sorts of S corresponds to the equality relation on this sort, so
S C 5°4. Moreover, every tuplea € A, x---x A, is associated to the imaginary
[@]= where = is the equality relation between tuples. Hence, with imaginaries,
there are not significant differences between tuples and elements

Lemma 1.31. Let k > card(L) be an infinite cardinal and T a k-categorical
L-theory. Then, T°Y is k-categorical.
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Proof. It is clear since 2 = T < A°1 |= T°9 and any isomorphism between two
L-structures 2l and B extends to an isomorphism between 2(°? and B°4. O

Theorem 1.32. Let T be an L-theory, A a model of T and o(T,91,...,Yn) €
For LY be such that T are of sorts in S and y; is of sort E; € S for each
i € {1,...,N}. Then, there is ©*(%,%,...,Yyn) € ForL such that, for any
a7bly"'ab1\77

A = E,W%jq(gl) ﬂ'EN (bN)] = A= ¢*[a,by,...,bN].

Proof. For formulas ¢ of L we know that 2°¢ |= ¢[v] if and only if A = ¢[] —
note that satisfaction is independent from evaluations of variables of sorts from
S5°4) s0 ¥ may be an evaluation in 2. First, note that a term of L°Y is either a
term of L, or wg(t1,...,t,) for some tq,...,t, € Ter L, or a variable of sort in
S¢4. We prove the theorem by induction over the complexity of ¢.

If p = R(t1,...,tn), since Risin L, ¢ € ForL, so o* = ¢. If o = t=t'
there are three cases. If t,¢' € TerL, ¢ € ForL, so ¢* = . If t (or ') is a
variable 7 of sort E € S°I, we know that A°4 |= y=t'[9, 7% (b)/y] if and only
if A4 = 75(y)=t'[9,b/y]. So, we reduce the problem to the following case. If
t=ng(ty,...,tn) and ¢’ = wg(t],...,t,) we have that 2°? |= t=¢'[¢}] if and only
if A= Etr, ... tn, th, ..., th)[9], where o* = E(t1,...,tn,t},...,t,) € For L.

If o = =1 or p = 1 V e, we conclude that ¢* = —¢7 and gp* =] V5
by induction hypothesis. We have to prove the case ¢ = Jyp;. There are
two cases. If y is of sort in 9, by induction hypothesis, ¢* = Jyp]. Assume
g is of sort & € S°4. Let 9°9 = a/f,ﬂ'%zq(gl)/@'l,...,W%;?(BN)/:le and ¥ =
a/T,b1/Yy,--.,bn/Uy- We know that A% = [9°9] if and only if there is
c € A% such that A9 | ,[9°9,¢/g]. Since A% = {r% (b) : bfrom A},
there are b such that ¢ = w%eq (b). Thus, we can apply the induction hypothesis
to get ¢} € For L such that A% = ¢[¥°9] if and only if there is b such that
2 = pi(y)[0¥,b]. Hence, ¢* = Ty} is such that A = p[9e9] if and only if
A E o*[V]. O
Remark. The last theorem implies that a definable set of 9t°? included in
M is definable in 9. Therefore, a complete type p in 9 has a unique extension
p°? to a complete type in 9! with the same parameters. Then, we define
cb(p) := cb(p°?) and the comments just made imply it is well defined.

Corollary 1.33. Let T be a complete L-theory whose models are infinite. Then,
T°Y has elimination of imaginaries.

Proof. Let D be a definable class, then D = ¢(w,¢)[€]. By the substitution
lemma assume that ¢ is from C. Now, by the theorem there is ¢* €
For L such that

D = {(@rE B0, 78 (b)) : €@ @ Tre Tn D)@ brs b}
Let

T R ey )
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E € For L and defines the equivalence relation F(¢,d) < ¢(€°%,¢) = (€%, d).
If F has infinite equivalence classes, cb(D) = 7& (). If not, choose a tuple @

of elements of each class of F, then a = cb(D). O

Corollary 1.34. Let k > card(L) be an infinite cardinal and 2 an L-structure.
Then, A is k-saturated if and only if A°Y is k-saturated. In particular, A is
saturated if and only if A°Y is saturated.

Proof. Since 2A°? is an expansion of 2, the "if" part is clear. We prove the
"only if" part. Firstly, note that, if card(A4) > k, every 0-definable equivalence
relation with infinite classes E' € S°? has at least x classes. Thus, card(A%?) > &
for each s € SUS®1. Hence, card(A) = x implies card(A°?) = . Now, let B be
a sorted subset of A°? such that card(B) < &, and let B* be a sorted subset of
2 such that card(B*) < x and every imaginary element of B is the equivalence
class of a tuple from B*. Let p € S¥*™(B) with z of sort E € ForgsL, and
consider

" ={0*@,b) : p(x,b) € p where b are the classes of b from B*}.

Thus, by the theorem [1.32] p* is a type. Since 2 is k-saturated, there is tuple
@ realizing p*. Hence, by the theorem [a] g realizes p. O

Lemma 1.35. Let T be a complete L-theory whose models are infinite and with
at least a 0-definable element of each sort and two 0-definable elements of one
sort. Then, T has elimination of imaginaries if and only if, for every 0-definable
class D of €%, there exists a 0-definable one-to-one function class £ from D to
C™ for some m.

Proof. (<) Given a definable class D of €, let ch(D) = ¢ € C%, and let f
be a 0-definable one-to-one function class from C%' to €. Thus, f(c) and ¢ are
interdefinable, so f(c) is a canonical base of D in €. Therefore, 7" has elimination
of imaginaries.

(=) Let D C C%' x --- x Cgl be O-definable. We want to find an 5 € SV
and a 0-definable one-to-one function class f: D — C, X -+ x C,n. Since T
has elimination of imaginaries, every element of €°? is O-interdefinable with a
tuple of elements of €. Indeed, given [c] € C%, let @ from € be the canonical
base of E(€,c), then [c] and @ are O-interdefinable. Therefore, for each i <,
for each ¢ € CE , there is an a. from € of sorts 5. € S™ such that ¢ and @,
are O-interdefinable. Let f.(z,7) € Forg, sL° be the formula which states the
interdefinitions of ¢ and a@.. Let D, C Ceol be the maximal 0-definable class
such that f_ is a 0-definable one-to-one functlon from D, to €. Now, for each

c=(c',...,d)eD,let D; = (Da x --- x D) ND. Since ¢ € Dg, it is clear
that D = UéeD D:. Thus, (D) = U, eD< z). Since SC i, is a Hausdorfl’s
compact space and (D) is closed, there exists a finite hst C1,...,cn such that

D =Dz U---UDg,. Let s € For,L°? define an element b, for each s € 5,
and v, ¥, define two elements by, and b . Define f as follows

N
f@yt N = ( D.,(@) A \ -Dg, (@)

i=1 J<i
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t<l w<i i<w<N

Where 3% are of sorts Set, Z are of sorts sop and T are of sorts Fy,..., E;. It
is clear that f is a O-definable one-to-one function class from D to €. Indeed,
{D¢, \ U;<,; D¢, }i<w is a partition and, for d € Dg, \ U;<i De;, we have that

£(d) = (bs,s--sbs,ysen B (@)oo £ (D), bags o by VL b)),

el S$01Ysgr 1 Ysg

i N—i
where bs = (bs,,...,bs, ). O

Lemma 1.36. Let 2 be a saturated L-structure, D a definable set, cb(D) in
A°Y and B a sorted subset of A°Y with card(B) < card(A®Y). Then, the following
are equivalent:

(1) cb(D) € acl®Y(B).

(2) D is acl®}(B)-definable.

(3) D has a finite number of conjugates over B.

(4) D is a union of classes of a B-definable equivalence relation which has a
finite number of classes.

Proof. Remember that 21°? is saturated by the corollary

(1)<(2) We apply the theorem of parameters of definable sets [Theorem [L.29].
D is acl®d(B)-definable if and only if it is left invariant by every automorphism
fixing acl®d(B). Therefore, D is acl®d(B)-definable if and only if cb(D) is
left invariant by every automorphism fixing acl®(B), if and only if cb(D) €
dcl®(acl®d(B)). Since acl®d(B) C dcl®(acl®d(B)) C acl®d(acl®d(B)), it suffices
to prove that acl®(acl®d(B)) C acl®(B). That will be proved in the theorem
248

(1)<(3) Let f, f' € Aut(°1/B), then f(D) = f/(D) if and only if f(cb(D)) =
f'(cb(D)). Thus, there are as many conjugates of D over B as many conjugates
of cb(D) over B. Since the number of conjugates of cb(D) over B is finite if
and only if ¢b(D) € acl®(B).

(3)=(4) Suppose that Dy, ..., D, are the conjugates of D over B. Let ©(T,y) €
For L% be such that ¢(Z,cb(D))[A%] = D. Then, D; = (T, fi(cb(D))) for
some f; € Aut(2°¢/B). Consider

E@ )= |\ (¢(@ fi(cb(D))) « ¢, fi(cb(D)))).

i<n

It is clear that F = E[2°1] is a definable equivalence relation. Since every
automorphism fixing B leaves it invariant, E is B-definable by the theorem of
parameters of definable sets [Theorem [1.29]. Finally, the equivalence classes are
Uier Di \ (U;gr D), so there are at most 2” equivalence classes, that is a finite
number.

(4)=(3) Let D = U, E(%,d;)[2°] for some dy,...,d, € D where E is a
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B-definable equivalence relation with n equivalence classes. Thence, for any
[ € Aut(/B), we have that f(D) =, E(z, f(d;))[2°9]. There are at most
(%) unions of k equivalence classes of E, so D has at most (}) conjugates over

O

Corollary 1.37. Let 2 be a saturated L-structure, a an element of A°Y and B a
sorted subset of A°Y with card(B) < card(A®?). Then, stp(a/B) is axiomatized
by the set of acl®d(B)-formulas X defining the elements of

Y ={E(x,a)2%] : E an equiv. rel. B-def. with a finite number of classes}.

Proof. First of all, every E(z,a)[A%] € ¥ is acl®)(B)-definable by the last
lemmal[L.36] Let p € (X) and ¢ € p. We want to prove that p = stp(a/B). Since
¢ € For,L*(acl®!(B)), by the lemma there is a B-definable equivalence
relation E with a finite number of classes such that o[A%] = (J;_, E(x, d;)[A%9]
for some di,...,d,. Now, E(z,a)[2] € %, so {p(z),E(z,a)} is satisfiable.
Hence, @[] = E(z,a)[2°Y]. So, in particular, A°? = plal. O

Remark. The results[[.34 and [[.37 are also true for monster models. Note that
if Teo(2() has elimination of imaginaries the use of °® is not necessary.

A complete theory whose models are infinite eliminates finite imaginaries if
every finite set of n-tuples of the monster model € has a canonical parameter
in €. A complete theory whose models are infinite has weak elimination of
imaginaries if for every element ¢ of €°? there is a finite tuple d from € such
that ¢ € dcl®d(d) and d is from acl®d(c).

Lemma 1.38. Let T be a complete L-theory whose models are infinite. Then,
T has elimination of imaginaries if and only if it has weak elimination of
imaginaries and eliminates finite imaginaries.

Proof. The "only if" part is clear. Let us prove the "if" part. Given a definable
class D, let ¢ = cb(D) in €Y, let d from acl®d(c) be such that ¢ € dcl(d) and let
d = cb({dy,...,d,}) be in € where dy,...,d, are the conjugates of d over c. I
claim that c and d are interdefinable so cb(D) = d. Indeed, by corollary[1.34]and
the theorem [1.29] it suffices to prove that an automorphism f fixes c if and only
if it fixes d. If f(c) = ¢, then f takes the conjugates of d over ¢ to conjugates.
Thus, f fixes d, i.e., d € dcl®)(c). On the other hand, if f(d) = d, f(d) = d; for
some i. Let g be an automorphism fixing ¢ such that g(d) = d;. Then, g~ of
fixes d, so it fixes c. Since g fixes ¢, f fixes c. Hence, ¢ € dcl®(d). O

Theorem 1.39. Let T be a complete L-theory whose models are infinite. Then,
T has weak elimination of imaginaries, provided acl(() is infinite and every
definable class D C C of € is either finite or cofinite.

Proof. Let [¢]p € C%, it suffices to prove that D = E(7,¢)[€] and acl®d([c]g)
are not disjoint. So, it suffices to prove that in every definable class D C C™
there is an element of acl®d(cb(D)). We prove it by induction on n. For n =1,
either D is finite or cofinite. If D is finite, D is a subset of acl®*(cb(D)). If
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D is cofinite, since acl®*(f)) C acl®d(cb(D)) is infinite, there is an element of
acl®d(P) in D. Assume the case n — 1, consider D’ = 3z1D(z1,...,x,)[€].
There is a; € D’ in acl®d(cb(D’)). By the theorem cb(D’) € dcl®(ch(D)),
so acl®d(chb(D’)) C acl®d(cb(D’)). Let D” = D(a1,z3,...,7,). By induction
hypothesis there are as,...,a, € acl®l(cb(D”)) such that @ € D. By the
theorem [1.29] since a; € acl®d(cb(D)), we conclude that cb(D”) € acl®(cb(D)).
Hence, @ € D is from acl®(cb(D)). O
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2 DMorley’s rank

In this chapter we study the fundamental concept of Morley’s rank which is a
general version of dimension for structures.

Firstly, we define the stable theories and characterize these ones by the order
property [Theorem [2.7].

Next, in the second section, we define Morley’s rank and study its most
basic properties [Propositions and . In particular, the lemma m
describes the case of definable sets without Morley’s rank and implies that
w-stable theories are totally transcendental, i.e., that every definable set has
Morley’s rank [Theorem [2.1§].

In the third section we define Morley’s rank for types and study its most basic
properties [Proposition and Theorem m The main result of this section
is the definability of types with Morley’s rank [Theorem and Corollary
2.29].

A concept of dimension involves a concept of independence. We study the
forking independence (the independence associated to Morley’s rank) in the
section four. Its basic properties are transitivity, monotonicity, finiteness and
symmetry [Proposition and Theorem [2.33]. Also, we study the relation of
forking and canonical bases [Theorem the characterization of forking
as heirs and coheirs [Theorem

We study the pregeometries of strongly minimal definables sets (classes) in
the section five. In this particular case, forking independence is the same that
algebraic independence [Theorem [2.51]. Also, we study almost strongly minimal
definable sets (classes) [Theorems and [2.56]. The most significant result is
the characterization of locally modular pregeometries [Theorem [2.60].

We end this chapter with the definition of orthogonality.

Notation. In the rest of this memoir and except otherwise stated, 9t will be
an Ng-saturated L-structure and T will be a complete L-theory whose models
are infinite.

2.1 Stable theories

Let x > card(L) be an infinite cardinal. We say that a theory T is k-stable if
card (ST'(A)) < & for every model 9 of T', any tuple of variables Z and every
sorted subset A such that card(A) < k. A theory T is stable if is k-stable for
some cardinal .

We first prove that to study k-stability we only need to consider types in
one single variable.

Proposition 2.1. Let k > card(L) be an infinite cardinal. Then, T is k-stable
if and only if card (ST'(A)) < k for every M =T, every sorted subset A with
card(A) < k and every single variable x.

Proof. By induction on n. Let € be the monster model of T. For n = 1 by
hypothesis. Let n > 1 and Z = (1, ...,,) variables and consider SE(A) with
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card(A) < k. By induction hypothesis card (SC (A)) < K, so there is a set

r2...Tn

B’ = {ba}acx in € of realizations of the types of S, , (A). For every a € &,
let A, be the result of adding b, to A, then card (Sg (Aq)) < k. So, there
is a set By = {b2}ge, in € of realizations of the type of SE (A,). Consider

the set B = {(b2,ba) : o, € k}. Since k* = k, we have that card(B) = k.
For every type p € S$(A), let by € B’ be such that € |= Jz1¢[b,] for each
¢ € p, and let b2 € B, be such that € = ¢[b2,b,] for each ¢ € p. Thus,

SE(A) C {tp(b3,ba/A) : a,B € k}. Therefore, card (SE(A)) < k. O

Theorem 2.2. Let card(L) < A < k be cardinals such that X\ is regqular and T
a k-stable theory. Then, T has a A-saturated model O such that card(M) =
k. In particular, if K is reqular, there is a saturated model M of T such that
card(M) = k.

Proof. We adapt the proofs of and Define by recursion a continuous
sequence (My)aecr of models of T such that M < M, for £ € a, every type of
M, is realized in M1 and card(M,+1) < kK — note that this is possible since
card(S¥) < k. Then, M = [J,c, Ma is a model of T such that card(M;) < .
Since A is regular, 9 is A-saturated. Also, if card(9My) = k, then M has
cardinality k. O

Let 9t be an L-structure, B a sorted subset and ¢ € Forg s L where 5 =
(51,---,5y). The p-code of a type p over B is the set of tuples V' C By x---xX By,
such that

beV & p(z,b) € p.

We write S?an(B) for the set of p-codes of types over B.

Let T be an L-theory and ¢(Z,7) € Fors 7 L. We say that ¢ has the order
property in T if there are a model M |= T and sequences (a;)ice, and (b;)jcw
such that

T = ¢la;/T,b;/y] i < j.
Let T be an L-theory and ¢(%,y) € Fors 7 L. We say that ¢ has the binary

tree property in T if there are a model M = T and a sequence (b;);e<wo such
that for all o € “2 the set

("™ (g, Eg‘n) :n€w}
is a type, where ¥ := ¢ and ¢! := .

Lemma 2.3. Let T be an L-theory, ¢(%,y) € Fors s L with the order property
and (I,<5) be a linear order. Then, there are a model M = T and sequences
(@:)icr and (b;)jer such that M = pla;, b;] & i <; j.

Proof. Add constants C = {¢;,d; : i € I} to the language. Consider the
L(C)-theory T" = T U{p(¢;,d;) A ~p(¢j,d;) = i <y j}+. Then, T” is satisfiable
by the Compactness Theorem [I.11] since ¢ has the order property. Thus, there
is a model M’ of T”, and its L-reduct 9 is a model of T such that M E

@{Eim,d

5 j}@i<j. O
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Lemma 2.4. Let T be an L-theory, ¢(T,y) € Fors s L with the binary tree
property and > w be an ordinal. Then, there are a model M =T and a
sequence (by)ne<uo such that, for all o € “2, the set

{(po(a)(f,ga‘a) T aE /1,}
is a type — where ©¥ := ¢ and P = —p.

Proof. Add constants C = {¢, : o € #2} and B = {b, : n € <H2} to the
language. Consider the L(C, B)-theory T" = T U {¢(¢s,bs,) : @ € pand o €
#2}. By the Compactness Theorem since ¢ has the binary tree property,
T’ is satisfiable. Indeed, any finite collection By C B could be completed to be
embedded in a binary tree: complete every chain appropiately alternating the 0’s
and 1’s to paste the disjoint chains forming a unique tree. Thus, there is a model

M’ of T’, and its L-reduct 9 is a model of T such that {¢7(*)(z o ) a€p}t

)0

is a type realized by ¢V for each o € #2. O

Lemma 2.5. (Erdés-Makkai) Let B be an infinite set and S be a set of
subsets of B with card(B) < card(S). Then, there are sequences (b;)ic. from B
and (S;)jew from S such that Vi,j b, € S; < i<jorVi,j b €8, j<i.

Proof. Let &’ C S be such that card(S’') = card(B) and every pair of disjoint
finite subsets of B separated by an element of S are also separated by an element
of §'. Since card(S’) < card(S), there is an element S* € S which is not a
boolean combination of elements of S’. We define sequences (b});c., from S*,
(0 )icw from B\ S* and (S;)je, from S’ such that, for every j, S; separates
{bgs - -+, 05} and {bg,...,b}}, and b; € S; & b € S; for any j < i. Indeed,
assume that there are constructed the sequences (b;)i<n, (b))i<n and (S;);<n.
I claim that there exist b/, and b/, such that b}, € S; < bl € S; for any j < n.
In other case, we have that

s = N s\ U s

beS* \j<n:beS; j<n:b¢S;

which means that S* is a boolean combination — note that the union is finite.
Chosen b/, and b/, since S* separates {b}},<, and {b/}i<,, there is an S,, € S’
separating these sets. The latter concludes by recursion the construction of
these sequences. Note that by € S; = j < i and b; € S; = i < j. It suffice to
prove that there is a subset I C N such that b; € S; for every j < i of I or that
b; ¢ S, for every j < i of I, because then, in the fist case, (b);cr and (S;);er
satisfy 0] € S; < j < ¢ and, in the second case, (V});cr and (S;) ecr satisfy
b, € Sj < i < j. Let us prove the existence of I. Consider {(i,7) € N? : i < j}.
We define a strict creasing sequence (ix )k, with ig = 0 and a strict decreasing
sequence (Ij)re, with Iy = N of infinite subsets such that, for every k € w,
it € I, Inyn € {j € N : iy < j} and either b € S; for every j € Iy
or b; ¢ S; for every j € Ixy1. Indeed, given (ix)r<x and (Ix)r<rk, by the
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pigeonhole principle, we have that {j € Ix : j > iy and b;, € S;} is infinite or
{j €Ik :j>irandb; ¢S;}isinfinite. Choose the infinite one and let I 1
be this and ix 41 € Ix41 be any element. Now, by the pigeonhole principle,
{kew : Vje Iy b, €8;}isinfinite or {k € w : Vi € I1 b ¢ S;}is
infinite. Choose the infinite one and let K be this. Let I = {i), : k€ K}. O

Theorem 2.6. Let T be an L-theory that has infinite models and o(T,y) €
Fors L. The following are equivalent:

(1) There is an infinite cardinal A such that card(S2'(A)) < A for every M |= T
and every A sorted subset with card(A4) < A.

(2) card (S2*(A)) < sup{card(A,),card(S) : s € S} for every M |= T and every
sorted subset A with infinitely many elements of each sort.

(3) ¢ does not have the order property.

(4) ¢ does not have the binary tree property.

Proof. (1)=-(4) Suppose that ¢ has the binary tree property. Given A >
card(L) infinite cardinal, let 4 be minimal such that 2# > A\. By the lemma|2.4}
we know that there is a model 9t and a sequence (b;);c<no such that, for each
o € P2,

Jo = {‘Pa(a) (T» bcf\a) Tac N}

is a type. Then, §2'(B) has cardinal 2* > X\. But B = {b;};c<n2 has cardinal
less or equal than A by minimality of . The latter negates (1).

(4)=(3) Let I = =*2 and choose a linear order <; in I such that, for every
oce€“andn € w o <5 o0, & odn) =1 By lemma if ¢ has the
order property there are a model 9t and sequences (a;);cr and (b;);cr such that
@lai, bj] < i <; j. Thus, MM and (b;);c<w2 satisfies the tree property.

(3)=(2) Let M = T and A be a sorted subset of infinitely many elements of
each sort with card(SY*(A)) > sup{card(A,), card(S) : s € S}. Applying the
Erdos-Makkai’s theorem [lemma [2.5] we obtain sequences (@;);c., from A and
(Si)icw from S2F(A) such that either Vi,j @; € S; < i <jorVi,j a;€5; &
j < i. Consider M’ an elementary extension enough saturated [theorem [1.23]
and (b;)jew such that 9 = p[b;, @] for every @ € S;. Thus, M’ = T and either
M = pbj,a;] & i < jor M = ¢lbj,a;] & j <i. In the second case, ¢ has the
order property. In the first case, by lemma o has the order property.
(2)=(1) It is clear. O

Theorem 2.7. (Characterization of stable theories) Let T be a complete
L-theory whose models are infinite. Then, T is stable if and only if there is no
formula ¢ € Fors s L with the order property. Moreover, T is stable if and only
if T is \-stable for every \ such that \**4(F) = ),

Proof. (=) If T is A-stable, it is clear that card(S}'(A)) < A for any ¢, any
M =T and any sorted subset A with card(A) < A. Thus, by the theorem [2.6}
o does not have the order property.

(<) A type p € SP(A) is determined by the family {S,(p) € ST'(A) : ¢ €
Forz 5L}, since ¢(T,a) € p < @ € S,(p). Thus, if there is not a formula with
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the order property,

card(S¥'(A)) = H card(Szﬁ(A)) < sup{card(4,), card(S) : s € SyeardL),
w€eFor L

Hence, T is A-stable for any A such that \°@rd(E) = ), O

Theorem 2.8. Let A\ > card(L) be an infinite cardinal and T a complete L-
theory whose models are infinite. Then, T is A-stable if and only if T°Y is
A-stable. In particular, T is stable if and only if T is stable.

Proof. The "if" part is clear. We prove the "only if" part. Let 91°? = T°% and
A be a sorted subset of 9i°? with card(A) < A. Let A* be a sorted subset of
M such that card(A*) < X and every element of A is the equivalence class of a
tuple from A*. By theorem we have that for any type p € S (A) there
is a unique p € S¥*(A*) such that an element [a] realizes p in an elementary
extension if and only if @ realizes p. Since T is A-stable, card(ST'(A*)) < A, so
card(S¥*(A)) < . Therefore, T°1 is \-stable.

2.2 Morley’s rank

Let 9 be an Ny-saturated L-structure and D a definable subset in 99t. We define
by induction MR(D), the Morley’s rank of D, as follows:

MR(D) = -1  if D = 0;

MR(D) >0 if D # 0;

MR(D) > a+1 if there is {D;};e,, a family of pairwise disjoint definable
subsets of D such that MR(D;) > « for each ¢, and

MR(D) > A if A limit and if MR(D) > £ for every £ € A.

It can be that MR(D) > « for every @ € On, then we say that D has not
Morley’s rank and we write MR(D) = oo. Given ¢ an L(M)-formula, we define
MR(¢p) := MR(p[9)).

Example. Let D be definable:

1.- MR(D) = 0 if and only if D is finite and non-empty,

2.- MR(D) =1 if and only if D is infinite but there is not an infinite collection
of pairwise disjoint infinite definable subsets.

Morley’s rank is a general concept of dimension. It is a generalization of
Krull’s dimension of algebraic closed fields. This generalization is natural since,
in any context, dimension of a "space” is the "longest chain" of subspaces that
you can give inside the space. In this general situation, the "spaces" are the
definable sets and the "chains" are given as we have said.

The condition of Ng-saturation is given to have invariance of MR under
elementary maps and elementary extensions, as the following results show:
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Lemma 2.9. Let M be an No-saturated L-structure and ¢(Z,y) an L-formula,
let m and M’ be tuples with the same type in M. Then, MR(p(T,m)) =
MR (¢(@,m')).

Proof. By symmetry, it suffices to prove by induction on « that MR(p (%, m)) >
a = MR(e(z,m')) > a. It is clear for « = 0 and « limit. So, it suffices
to prove that MR(¢(Z,m)) > « + 1 implies that MR(p(Z,m')) > a + 1.
Let (;(ZT,m;))icw be a sequence of pairwise disjoint formulas such that each
wi(T,m;) implies (T, m) and MR (p;(Z,m;)) > . Now, I being Ny-saturated
is also Wp-homogeneous, so, since tp(m) = tp(m’), we can choose (T});c. such
that tp(m, mo, . .. ,my) = tp(m’, My, . .., m},) as follows: given (m});cy, consider
the elementary map f,_1 : m; — m, for i € n and f,_1(m) =m'. Let f, be
an elementary map extending f,_1 to m,. Thus, m, = f,(M,).

Hence, (p;(T,M}))icw i8 a sequence of pairwise disjoint formulas such that
each one implies ¢(T,m'), and also, by hypothesis of induction, for every i € w,
MR(p;(Z,m})) > . O

Lemma 2.10. Let 9t and N be Ny-saturated L-structures with 9T < N and let
@ be an L(M)-formula. Then, MR(p[N]) = MR(p[9N]).

Proof. It is clear that MR(¢[0]) > MR(p[MM]). We prove that MR(¢[N]) >
a = MR(p[M]) > a by induction on a. It is clear for & = 0 and « limit. Let
m be the parameters of p. Let (v;(Z,7;)):cw be a sequence of pairwise disjoint
formulas such that each ¢;(Z,7;) implies o(Z,m) and has MR(p;(Z,7;)) > «a,
where (7;);c. is from N.

Now, 9 and 91 being Ng-saturated are also Ng-homogeneous, so we can
choose (T;)ie,, such that tp(mo,...,nx/m) = tp(Mo,...,mi/m) as follows:
given (M;)icn, consider the elementary map f,—1 : n; — m,; for i € n and
fn—1(m) =m. Let g be an elementary map extending f,_1 to 71,, and let 7, be
from 9 such that tp(m, /M, M1, ..., Mn-1) = tp(g9(Tn) /M, g(71), . . ., g(Tr—1))-

Then, a = MR(p;(Z,7;)[NM]) = MR(p;(z,m;)[MN]) for every i € w by the
lemma By induction hypothesis, MR(p;(Z,m;)[M]) > « for every i € w.
We conclude by noting that (y;(Z,m;)):c. is a sequence of pairwise disjoint
formulas such that each o;(Z, ;) implies p(Z,m). O

This results allows us to work with Morley’s ranks in monster models. If 9t
is any infinite L-structure (not necessarily Ro-saturated), we define MR(y) as
MR(¢[€]) where € is its monster extension, which is well defined by the above
result. Note that, in this case, MR(p) = MR(¢[N]) for M an Ry-saturated
elementary extension.

We say that a complete theory whose models are infinite is totally transcendental
if every definable class of its monster model has Morley’s rank.

Remark. Note that the theorem implies MR™ (D) = MR™" (D) for definable
sets D of M.

Now, we are going to prove some basic properties of the Morley’s rank.
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Proposition 2.11. (Fundamental property of Morley’s rank) Let D and
E be definable subsets in 9. Then,

MR(D U E) = max{MR(D), MR(E)}.

Proof. Of course, MR(D U E) > max{MR(D), MR(E)}. We prove the other
inequality by induction on a« = MR(D U E). For «a limit or a = 0 it is clear.
For o + 1, given F definable subset of D U E with MR(F') > «, we have by
induction hypothesis that MR(F N D) > « or MR(F N E) > «. Therefore, by
the pigeonhole principle, if (F});c. is a sequence of pairwise disjoint definable
subsets of D U E such that MR(F;) > «, either (F; N D);c., or (F; N E);e,, has
a infinite subsequence of pairwise disjoint definable subsets with Morley’s rank
greater or equal than «. O

Proposition 2.12. (Morley’s degree) Let D be a definable subset in I of
Morley’s rank «. Then, there are a natural number d € N* and a definable
partition Ey,...,Eq of D such that MR(E;) = « and, for every F C FE;
definable, either MR(F) < o or MR(E; \ F) < a.

Moreover, such d is independent of the partition of D, and it is called the
Morley’s degree of D and denoted by Md(D).

Proof. By contradiction, we define by recursion two sequences of definable
subsets (E;)icw and (F};);c. such that F;y; is disjoint of Ey, ..., Eiy1, (Ei)icw
are pairwise disjoint, MR(E;) = MR(F;) = a, E;41 UF;41 = F; and F; does not
satisfy the theorem for each i. Since D does not satisfy the theorem, there is
a definable subset Ey C D such that MR(Ey) = MR(D \ Ey) = MR(D). Since
D does not satisfy the theorem, Fy or Fy = D \ Ey do not satisfy the theorem.
Assume Fy does not satisfy it. Given (E;)i<, and (F;)i<p, since F,, does not
satisfy the theorem, there are disjoint definable subsets F,; and F, ;1 such
that Fp11 U Fp1 = Fny, MR(Ept1) = MR(Fo41) = MR(F,) = a and F,41
does not satisfy the theorem. Of course, E,, 41 is disjoint of Ey, ..., E, and Fj, 1
is disjoint of Ey,..., E,.

Therefore, (E;);c. is a sequence of disjoint definable subsets of D with
MR(E;) = a. The latter implies that MR (D) > « + 1, a contradiction.

To prove that d is constant, suppose two partitions D = X; U---U Xy =
Y1 U---UYy with d < d'. Then, for each j < d’, since Y; satisfies the property
of the statement, by the proposition 211} there is just one i < d such that
MR(Y; N X;) = a. That gives us a contradiction by the pigeonhole principle
whenever d’ > d, since the Y}’s are pairwise disjoint and the X;’s satisfy the
property given in the statement. O

We define Md, (D) as Md(D) when MR(D) = a, as 0 when MR(D) < « and
as oo when MR(D) > a. Also, given an L(M)-formula ¢, we define Md, (¢) :=
Mda (p(M)) and Md(p) := Md(p(9M)).

Corollary 2.13. Let a be a cardinal and D and E two disjoint definable subsets
in M. Then, Md,(D U E) = Md,(D) + Md,(E).
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Lemma 2.14. (Maximal Morley’s rank) Let € be a monster model over L.
Then, there exists an ordinal o € On such that, for every definable class D of
¢, MR(D) = oo if and only if MR(D) > «.

Proof. It suffices to prove that X = {MR(D) : D is definable} is a set,
because then, v = sup(X N On). We have that X = {MR(p(Z,¢)) : ¢ €
For L and ¢ from €}. Now, if tp(¢) = tp(d), then MR (p(%,¢)) = MR(p(T,d))
by the lemma Choose a set {¢, : p € Usccwg SE(0)} such that € |= p[c,)
for each p type. Then,

X = {MR((,D({L‘7CP)) i pE U SE(0) and ¢ € ForL},

se<ws
so it is a set. O

Corollary 2.15. Let D be a definable set of M with MR(D) = co. Then, there
is a definable subset D' C D such that MR(D’) = co and MR(D \ D) = oc.
Moreover, the same is true for definable classes in monster models.

Corollary 2.16. (Binary tree property in definable sets without Morley’s
rank) Let D be a definable set of M with MR(D) = oo. Then, there is a binary
tree (Dy)we<wa of definable subsets of D such that MR(D,,) = oo for each
w € <W2. Moreover, the same is true for definable classes in monster models.

Corollary 2.17. Let T be an L-theory. Then, T is totally transcendental if
and only if T does not have a binary tree.

Proof. The "if" part is clear. On the other hand, if 7" has a binary tree
(Dw)we<w2, let @ = min{MR(D,,) : w € <¥2} and let d = min{Md, (D) :
w € <“2}. Let D, be such that Md (Dy) = d. Then, 2d > Mda (D yug(n,0)}) +
Mdo (Do (nyy) = d- O

Theorem 2.18. Let T be an w-stable L-theory. Then, T is totally transcendental.

Proof. Let € be the monster model of T'. If T is not totally transcendental, by
the corollary [2.16] we have that there is a tree (D, ), c<«2 such that MR(D,,) =
00, for each w € <¥2. Let A, be finite sorted set such that D,, is A, -definable.
Let A = U, c<wg Aw- Then, card(A) < ¥y. For each o € “2, let p, be a complete
type over A such that {Dy : n € w} C py. Then, {ps}oew2 € SE(A). Since

Po # Do if 0 # o', we conclude that S€(A) is uncountable. Therefore, T is not
w-stable. O

Theorem 2.19. (The order property in definable sets with Morley’s
rank) Let D be a definable class with Morley’s rank in a monster model €.
Then, there is no formula ¢ € Fors s L and sequences (@;)ic. and (b;)ic,, with
a; € D, for each i € w, such that

In particular, totally transcendental theories are stable.
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Proof. By lemmai if there is such formula ¢ and such sequences, there are
also (@;)icq and (b;)icq such that € = p[a;, b;] < i < j. Let A = {@;}ieq and
B = {b;}icq. If MR(D) € On, there exists

a =min{MR(¢) : ¢ € ForzL(A, B), ¢[€] C D and I, open interval}, and
d = min{Md,(¢) : ¢ € ForzL(A, B), ¢[€] C D and I, open interval},

where Iy, = {i € Q : € |= ¢[a;]}. Let ¢ € ForzL(A, B) be such that MR(¢) = «
and Md(¢) = d. Let j € Iy, then ¢' = ¢(Z) Ap(T,b;) and ¢” = ¢(T) A —~p(z, bj)
are such that MR(¢') = MR(¢"”) = « by minimality of o and d = Md(¢) =
Md(¢') + Md(¢"”) > 2d, a contradiction. O

2.3 Morley’s rank of types

Let A C M be a sorted set of parameters and () a type. The Morley’s rank of
the type ¥(T) is MR(X) := min {MR(p) : ¢ € X(%)} and the Morley’s degree of
the type ¥(7) is Md(X) := Mdygr(s) () where Md, (X) := min {Md,(p) : ¢ € X}
for any o € On. We will work only with complete types in this section.

We also define the Morley’s rank of a tuple @ over a sorted set A C M
as MR(a/A) := MR(tp(a/A)), and in the same way we define Md(a/A) and
Md, (a/A). We have analogous definitions for monster models, even for types
over classes.

Proposition 2.20. (Description of a type with Morley’s rank) Let p €
ST (A) and ¢ € p such that MR(¢) = MR(p) and Md(¢) = Md(p). Then,

p={¢ € For L(A) : MR(¢ A ) < MR(p)}.

Proof. Let a = MR(p), let ¥ = {¢ € ForL(A) : MR(¢p A=) < a} and let ¢ be
an L(A)-formula. First, if ¢ ¢ p, then = € p and A € p, so MR(pA—)) >
a and ¢ ¢ ¥. On the other hand, when ¢ ¢ ¥, if ¢ € p, then MR(¢ A ~9)) > «
and MR(¢ A ¢) > a. Therefore, MR(¢) = max{MR(¢ A =), MR(¢ A )} = «,
so MR(¢ A —1p) = MR(¢ A¢) = a and 2Md(¢) < Mda (¢ A=) +Mda (o A¢) =
Md(¢), a contradiction. O

Proposition 2.21. Let ¢ € For L(A) be consistent and such that there is
not a non-trivial finite A-definable partition of ¢ in formulas with the same
Morley’s rank. Then, p = {¢b € For L(A) : MR(¢p A —9) < a} is a complete
type satisfying MR(p) = MR(¢) and Md(p) = Md(9).

Proof. Of course, ¢ € p, and ¢ € p implies ¥[M] # (. On the other hand, since
MR(¢ A (—t)1 V —1p2)) = max{MR(¢ A —)1), MR(¢ A —1)2)}, we have that p is
closed under A. So, p is a partial type. To prove that p is a complete type, it
suffices to see that, for any ¢ € For L(A), either ) € p or ) € p. However, the
latter is clear since ¢ A =) and ¢ A ¢ together form an A-definable partition of
¢, so one has Morley’s rank less than a or both ones have Morley’s degree less
than Md(¢). Finally, given ¢ € p, MR(¢) A ¢) = MR(¢) and MR(—) A ¢) < a.
So, Md(¢) = Md(¥) A ¢) + Mdyr(g) (6 A =) = Md(i) A ¢). Thus, MR() =
MR() A ¢) < MR() and, if MR(%) = o, Md(¢) = Md() A ¢) < Md(¢). O
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Let D be an A-definable set in 9t with Morley’s rank. A generic type over
Ain D is a type p over A in 9 such that D € p and MR(D) = MR(p). A
generic element of D over A is an element a € D which realizes a generic type
of D over A.

Note that if D has Morley’s rank and is A-definable, there are always generic

types over A by the propositions and S0

MR(D) = max{MR(p) : p € S™(A) generic in D}.
Moreover, it is clear that

Md(D) = Z {Md(p) : p € S™(A) generic of D} .

So, in particular, the number of generic types is always less or equal than Md(D).
To have generic elements we need enough saturation.

Theorem 2.22. Let T be a totally transcendental L-theory. Then, T is \-stable
for every A > card(L).

Proof. Let € be the monster model. If T is totally transcendental, we have that
every p € S&(A) is given by a formula ¢ € For,L(A) as p = {1y € For,L(A) :
MR(¢ A —tp) < MR(p)} [proposition 2.20]. Thus, by the axiom of choice, we
have an one-to-one function from S¢(A) to For,L(A). If card(4) < X and
card(L) < A, then there must be card (SE(A)) < A. Therefore, T'is A-stable. [

Theorem 2.23. (Morley’s rank of algebraic elements) Let A be a sorted
subset and b and @ from M. Then, if b is algebraic over A,a, MR(b/A) <
MR(a/A).

Proof. Let € be the monster extension of 9. To simplify the notation, add
A to the language and assume that there are not parameters. We prove that

MR(b) > a = MR(a) > «a by induction on a. For o = 0 or « limit, it is

clear. Let & = 8+ 1. Assume that MR(b) > S + 1 and MR(@) < § to aim
for a contradiction. Since MR(b) > B, by induction hypothesis, MR(a) = S.
Let D be a definable class such that @ € D and MR(a) = MR(D) = 5. Let
¢ € Forz; L(A) be such that b € ¢(a,y)[€], ¢(a,y)[€] is finite of cardinal k and
¢(a@,7)[€] has cardinal k for every @’. Consider E(y) = Iz(D(Z) A ¢(T,7)).
Then, b € E, so E € tp(b). Thus, MR(E) > $+ 1. Let (E});c., be a sequence
of pairwise disjoint definable subclasses of E such that MR(E}) > 3. For each

E;, consider a subclass E; with same Morley’s rank and with Morley’s degree

1 [proposition . Let
D;(z) = 3y (D(@) A Ei(7) A 6(7,7))

and consider the sequence (D;);e,, of definable subclasses of D. I claim that
MR(D;) = 3. Indeed, let (b;)ic € [I;c., Ei be a sequence generic elements
in €. Since (b;)ic., € “E, there is a sequence (@;)ic, € “D such that € =
@la;, b;] for each i. Then, note that @; € D; and b; is algebraic over a; for
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each i. By induction hypothesis, MR(@;) > 3, so MR(D;) > 8 for each i. Let
D = D' U---UD? be a partition of D in definable classes of Morley’s rank
MR(D) and Morley’s degree 1 [proposition [2.12]. For every ¢ € w, there is a
k € {1,...,d} such that MR(D* \ D) < 3. By the pigeonhole principle, there
isa k € {1,...,d} and an infinite set I C w such that (D;);cy, satisfy that
MR(D*\D;) < 8 = MR(D¥). Consider ¢ = {t € For,L(A) : MR(D*\[€]) <
3} where A is a sorted set such that D* is A-definable and D, is an A-formula
for each i € I;. By the lemma [2.21} since MR(D*) = 8 and Md(D*) = 1, ¢
is a type. By saturation of €, there is an element realizing ¢. Since D; € ¢
for each i € Iy, we conclude that mz‘elk D, # 0. Let @ € ﬂielk D;. Thus,

there is a sequence (E;)igk € [lies, Ei such that € = zj)[ﬁ’,gi] for each i € Ij.

Since (E;);ers, are pairwise disjoint, {B;}ielk C ¢(@,y)[€] has cardinal Ry, a
contradiction since ¢(a’,7)[€] is finite. O

Corollary 2.24. (Morley’s rank and definable functions) Let D and E
be definable subsets in 9 and f : D — E a definable onto function in IN.
Then, MR(E) < MR(D).

Proof. We may assume Md(D) = 1, otherwise take its partition. Let A C M
be a finite sorted set such that D, E and f are A-definable. Then, MR(D) =
max{MR(d/A) : d € D} and

MR(FE) = max{MR(e/A) : e € E} = max{MR(f(d)/A) : d € D}.

Since f is an A-definable, f(d) € dcl(d, A). By the theorem[2.23] MR(f(d)/A) <
MR(d/A). O

Corollary 2.25. Let D and E be definable subsets in MM and f: D — E a
definable bijection in M. Then, MR(E) = MR(D) and Md(F) = Md(D).

Corollary 2.26. Let T be a totally transcendental L-theory. Then, T°Y is
totally transcendental.

Proof. Apply the last corollary to the projections

CS% X---Csl

¢ea ¢ea C,nx-Cyn
TE, X XTg ,CS%X-”XCSn ml/E1><~-~>< ! m"/En'

n mp

O

Lemma 2.27. Let € be the monster extension of MM and D a definable class
such that MR(D) = « € On. Then, there is an element of D from M, provided
there is an M-definable class D’ such that D C D’ and MR(D) = MR(D’).

Proof. We may assume that Md(D) = MR(D’) = 1. Indeed, by the theorem
there are two partitions D = D; U---UD; and D’ = D} U --- U D},
such that Md, (D;) = Md, (D)) = 1 and D} is M-definable, for each 4, j. Since
D, = (D;nD})U---uU(D;ND)) and Md(D;) = 1, by the propositions
and there is just one j < k such that MR(D; N D}) = MR(Dy). Then,

29



we may consider D’ instead of D’ and Dy N D, instead of D. So assume that
Md(D) = Md(D’) = 1. We prove the lemma by induction on «. For a = 0,
since Md(D) = 1 = Md(D’) = 1, we have that D = {d} and D’ = {d}, so d
is from M since D’ is M-definable. Now, if MR(D) = MR(D’) = a > 0, since
Md(D’) = 1, it is clear that MR(D’\ D) < a. Let MR(D'\ D) = 3. If 8 = —1,
then D’ = D and the lemma follows. If § > 0, because MR(D’) = a > 3, there

is a sequence (D’);e., of pairwise disjoint M-definable subclasses of D" such

that 8 < MR(D)) < a. But, for some j € w, MR((D} \ D)) < 8 because D'\ D
has Morley’s rank 3. Since MR(Dj} \ D) < g < MR(DY),
MR(D N D)) = max{MR(D N D/), MR(D/, \ D)} = MR(D/) < a

and DND’ C D. By induction hypothesis, there is an element of DND’, C D
from 9. O

Theorem 2.28. Let D be a definable subset in 9 with Morley’s rank o € On
and ¢(Z,y) an L-formula. Then,

X ={b: MR(D\ ¢(z,b)M)) < a}
is definable with the parameters of D.
Proof. Let € be the monster extension of 9t and D = D[€]. Let
X ={bin € : MR(D\ ¢(z,b)[€]) < a}.

We may assume that Md(D) = 1, because if D = D; U--- U Dy is a partition
of D with Md,(D;) =1 for each 4, then

{6 : MR (D\ ¢(7,b)[€]) < a} = ﬂ {6 : MR (D; \ ¢(z,0)[€]) < a}.

So assume that Md(D) = 1. I claim that for any formula ¢(Z,7) and for every
¢ such that MR(D \ ¢(7,¢)[€]) < a, there exists a finite set A C D N(7,c)[€]
from 90 such that for every b

A C (7, b)[€] = MR(D \ %(z,b)[€]) < a.

Indeed, for any v, suppose that for some ¢ there is not such A. Thus, we can

define by recursion two sequences (@;)ic. from D and (b;);e. such that

¢ = yla;,b] & i < g,

as follows: by the lemma there is an a_; € D N (7, ¢)[€] from M. Since
we are supposing that A_; = {@_;} does not satisfy the claim, there is an
element by such that by € ¢ (a_1,7)[€] and MR(D \ 1 (%, b)[€]) = a. Now, Let
(@i)icg-1,..,n—1y and (Bj)jgn be already defined. Since Md, (D) =1,

Vi <n MR(D\ 9(T,5;)[€]) < a & Vj < n MR(D N (T, b;)[€]) = o =
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MR(D | %(@,0))[€]) =a < MR | D\ |J v(@.b))[€] | <a.

Jj<n i<n

By the lemmal2.27] there is an @, € (D \Ujen (@, Ej)[e:]) N4 (7, )[€] from M.
Since we are supposing that A,, = {a_1,do,...,a,} does not satisfy the claim,
there is a b, 41 such that MR(D \ ¥(%, b,+1)[€]) < @ and A,, C Y(T, bys1)[€]-
Therefore, (@;)ic., from D and (b;);e,, are such that € = ¢[a;,b;] i < j, a
contradiction because of lemma

Let Wy C P(Mjg, x---x M, ) be the set of all the finite A C D from 9t which
satisfy A C (7, 0)[€] = MR(D\ ¢(7,b)[€]) < a. Let Wy C P(M,, x---x M, )
be the similar set for —p. For each A € Wy, let xa(y) € ForyL(M) be the
formula XA (7) = Agea ©(@ 7). Let x'»,(7) be the similar formula for —¢ and
A’ € Wy. Then, (xa) C {tp(b/M) : b € X} and, for each b € X, there is a

A € Wy such that xa(b). Therefore,

{tp(b/M) : beX} = |J (xa).

AeW,

Since Md(D) = 1, b ¢ X if and only if MR(D \ —¢(Z, b)[€]) < a. Then,

{tp(®/M) : D¢ X} = (] (ar)-
A€W
Thus,
ss(M)= | (xa)u J (Xan)-

AeW, A'eW,

By compactness of Sy(M) [proposition , there are finite subsets W, C W,
and Wy C W5 such that

ssm) = U talu U (X

Aewl A,EWZ

Now, (V acq, Xa) € {tp(b/M) = be X} and (V 57, xa) € {tp(b/M) : b ¢
X}, so
X ="\ xalel
AEWI
Note that X is an M-formula and remember that MR is invariant for elementary
substructures, so X = X["M]. Finally, to show that X is definable with the
parameters of D, it suffices to apply the theorem [1.29|in the monster model. [

Corollary 2.29. (Definability of types with Morley’s rank) Let A C M
be a sorted subset and p(T) € S™(A) a type with Morley’s rank. Then, p is
definable over A in the sense of types, i.e., for every o(Z,y) € ForL there is
d,Tp(y) € ForL(A) such that, for any @ from A,

p(z,a) € p & M dpTp(y)[a/y].
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Moreover, let ¢ € p be such that MR(p) = MR(¢) and Md(p) = Md(¢), and Ay
the finite sorted set of parameters of ¢. Then, p is Ag-definable.

Proof. Let ¢ € p be such that MR(p) = MR(¢) = o and Md(p) = Md(¢).
Write by proposition [2.20

p = {p € Forz L(A) : MR (4[] \ ¢[M]) < a}.

Thus, for any ¢(Z,7), dpTe is the Ap-formula defining the set {@ : MR(¢[D] \
©[M]) < a}, given by theorem [2.28 O

Note that this result is also true for global types in monster models. Also,
note that a global type p with Morley’s rank is definable over a sorted subset A if
and only if cb(p) C dcl®(A). Indeed, if p is definable over A, any automorphism
fixing A leaves p invariant, so fixes cb(p). On the other hand, if cb(p) C
dcl®d(A), any automorphism fixing A fixes cb(p), so it leaves p invariant and
leaves dpZ¢[€] invariant, for every ¢ € Forz zL. Therefore, every dpZTp[€] is
A-definable.

Finally, note that the corollary implies that the set {cb(dpZd (7)) : ¢ €
For L} is a canonical base of the global type p. Thus, every global type with
Morley’s rank has a canonical base.

Corollary 2.30. Let € be the monster model of a totally transcendental L-
theory, A C C a sorted subset and D an A-definable class. Then, every definable
subclass of D is definable with parameters from AU D.

Proof. Let ¢(%,¢)[€] C D. Then, by the corollary [2.29] we conclude that

Y(T,0)[€] ={aecD : Y(@7y) €tp(c/D)} = DN dipe/pyTY[€].

Therefore, 1 (T, ¢)[€] is definable with the parameters of D and ¢. Hence, it is
A U D-definable. O

2.4 Forking and independence

Let A C M and B C M be sorted subsets such that A C B and p € Sm(B) a
type with Morley’s rank. We say that p forks over A when MR(p) < MR(p4)
and does not fork if MR(p) = MR(pa). Let ¢ € S™(A), p is a non-fork
extension of ¢ when p does not forks over A and ¢ C p, i.e., pja = q. We say
that p is stationary when there is just one global non-forking extension in an Ng-
saturated elementary extension. For a stationary type p, write cb(p) := cb(q)
where ¢ is the global non-forking extension of p.

Note that, for any p € S¥*(A) with Morley’s rank and any B D A, there is
a non-forking extension of p to B. Indeed, by proposition [2.20}

p={¢ eForL(A) : MR(¢ A —¢) < MR(p)}
with ¢ € p such that MR(p) = MR(¢) and Md(p) = Md(¢). Then, apply
propositions and The same is also true for a sorted class in a monster
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model. Moreover, we know that
Md(p) = Z {Md(q) : q € S™(B) non-forking extension of p} .

Consequently, we know that a type is stationary if and only if it has Morley’s
degree 1.

Proposition 2.31.

(1) Transitivity and Monotonicity: Let A, B,C C M be sorted sets
such that A C B C C and p € S™(A), ¢ € S™(B) and r € S™(C) types
such that p C ¢ C r and MR(p) € On. Then, p C r is a non-forking
extension if and only if p C g and ¢ C r are non-forking extensions.

(2) Finiteness: Let A C M and p € S™(A) with MR(p) € On. Then,
there is a finite sorted subset Ag C A such that p does not fork over Ay.
Moreover, there is a finite Ag C A such that p is the unique non-forking
extension of p4,.

Proof.

(1) This properties are clear since MR(p) > MR(q) > MR(r) by definition.

(2) Let ¢ € p be such MR(¢) = MR(p) and Md(¢) = Md(p) and Ay the
parameters of ¢. O

Let A, B C M and @ from 9t be such that @ has Morley’s rank over A. We
say that @ is independent from B over A if tp(a/A U B) does not fork over A.
Let A, B, C be sorted subsets such that every tuple from A has Morley’s rank
over C, we say that A is independent from B over C' if every finite tuple from
A is independent from B over C. We writea | , Band A |, B.

Remark. With this notation, the last properties of forking could be re-written
in a more visual way. Let A C M be a sorted subset and @ a tuple from 9% such
that MR(a/A) € On.

Transitivity and Monotonicity: Let B,C C M be such that A C B C
C. Then,
a] BuC<«a | Canda | B.
A AUB A
Finiteness: There is a finite A9 C A such that @ J/AO A. Moreover, by
transitivity, there is a finite Ay C A such that, for any sorted subset B,

a| Bea B.
A Ao

!

Lemma 2.32. Leta,b,a’,b be from M such that MR(a/A) € On and A C M.
Then, tp(a,b/A) = tp(a@, b /A) implies MR(@/A,b) = MR(@ /A,b).
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Proof. Let € be the monster extension of 9. We prove the lemma by contradiction.
Suppose that MR(a/A,b) < MR(&'/A,E/) = a € On. Let ¢ € tp(@,b/A) be
such that MR(¢(%,0)) < a = MR(¢(Z,b)). Let v € tp(a/A) be such that
MR(¢)) = MR(@/A) > a. By the theorem let

¢l€] = {d : MR(¢ A ¢(T,d)) < a}.

Now, € = ¢[b] and € }~ ¢[b] where ¢ € For L(A), a contradiction since
,, o
tp(b /A) = tp(b/A). O

Theorem 2.33. (Symmetry) Let N be an infinite L-structure, A C N a sorted
set and @ and b tuples with Morley’s rank over A. Then, EJ/A b if and only if

bl ,a

Proof. Let € be the monster extension of 91. It suffices to prove that @ JJAE
implies b | 4@ Let M be an Ny-saturated elementary substructure such that
A C M. Let b from € be such that tp(b/A) C tp(B//M) is a non-forking
extension. Let ¢ be from € such that tp(a, b/A) = tp(¢, b /A) and let @ be from
¢ such that tp(E/A,B/) C tp(@'/M, 5/) is a non-forking extension. Then, since
tp(a@, b/A) = tp(ﬁ’,B//A), by the lemma we have that

MR(@/A,b) = MR(@ /A,b) = MR(a@ /M, b)),
MR(b/A,a) = MR(b /A, @).

So, @ | ,bimplies that @’ | b and b L ,, @ implies

MR(b/A,a@) =MR(b /A, @) > MR(b /M, @) =
=MR(b /M) = MR(b/A) > MR(b/A, a),

ie, b | ,a Soit suffices to prove that @ \I/MEI implies b L, @ Let €
tpy(@ /M) and ¢ € tp, (b /M) be such that @ = MR(p) = MR(@ /M), 3 =
MR() = MR(b/M), Md(p) = Md(a' /M) and Md() = Md(b /M). Ifb [ , @
There is x' € tpi,y(ﬁ/,g//M) such that MR(x/(@’,7)) = MR(B//M,E’) < B.
Consider xy = x’ A ¢ A 9. By the theorem let

¢[€] = {d : MR(x(d,7)) < B} = {d : MR(s A x(d. 7)) < f}.

Then, x(Z.7) A (x) € tp(@,b /M), so x(T,b) A ¢(T) € tp(@/M,b). Since
@ |, b, MR(x(z.b) A 6(7)) = MR(@'/M,b) = MR(@/M) = MR(yp) and
x(z, 5/) A ¢(T)[€] C p[€]. Since M is Rp-saturated, by the lemma there is
ap from 9 such thjt CE x/\gb[a{),g/}. Hg);vever, in that case, MR(x(ap,y)) < 8
and x(ag,y) € tp(b /M) where 8 = MR(b /M), a contradiction. O
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Corollary 2.34. Let A C M be a sorted subset and p € S™ (acl(A)) such that
pja has Morley’s rank. Then, p does not fork over A.

Proof. Consider an Ng-saturated elementary extension 9 realizing p and take
@, a realization of p. Thus, p does not fork over A if and only if @ | N acl(A).

By finiteness [proposition , let b be a finite tuple of acl(A) such that
a | ,acl(A) if and only if @ |, b. By symmetry [theorem , a | ,bifand
only if b | , @ And the last one is trivial since 0 < MR(b/A,@) < MR(b/A) =0
because b is algebraic. O

Corollary 2.35. Let A,B C M be sorted subsets and @,b from M such that
MR(a,b/A) € On. Then,

a,b| Bea | Bandb | B.
A A Aa

Proof. Note that @ J/A B if and only if @ J/A b for every b finite from B. Now,
for every ¢ from B,

a,b | cee | abese | aande
A A A

So, the corollary follows. O

Now, we are going to prove the theorem [2.37, which states a fundamental
relation between forking and canonical bases.

Lemma 2.36. Let € be the monster extension of M and p € SE(M) with
Morley’s rank. Then, p has a unique global extension which is definable over
M.

Proof. By corollary we have
p={p(T,b) : ¢ € For L(M) and b € d,z¢[€]}.

Of course, p C p and p is M-definable. Since d,Zp(y) A dpZT¢’'(¥) = dp@(@ A
©")(7), it suffices to show that for any ¢ € For L(M),

¢ = Vy(dpZe(y) — ITe(T,7))-

That is clear since 9t < € and 91 satisfy that. Finally, to prove that p is a global
type, note that —d,Zp(y) = d,T-¢(¥), so either ¢(F,b) € p or —¢(T,b) € p
for any ¢ € For L(M) and b from C. Let us prove that p is the unique global
extension definable over M. Let q be another one. Then, for any ¢ € For L(M),
we have that dgTe[IN] = d,Te[M] = dpTe[M]. Since M < €, we conclude

(T, b) € q & b€ dgTyp[€] = dpTp[€] & ¢(T,b) € p.
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Theorem 2.37. (Canonical base and forking) Let € be the monster model
of a totally transcendental L-theory, p a global type and A a sorted subset.
Then, p does not fork over A if and only if p is definable over acl(A), i.e.,
cb(p) C acl®l(A).

Proof. (=) By the proposition we know that p = pj4 = {¢ € ForzL(A) :
MR(¢p A=) < MR(p)} where ¢ € p, MR(¢) = MR(p) and Md(¢) = Md(p). By
the proposition [2.12] let ¢ = ¢' v --- Vv ¢? be a partition of ¢ with MR(¢?) =
MR(¢) and Md(¢?) = 1 for each i. We may assume that ¢! € p. Then,
p = {¢ € ForzL(C) : MR(¢' A —¢) < MR(p)}. An automorphism f which
fixes A leaves ¢ invariant, so f(p) must have one of the ¢'. In that case, since
MR($) = MR(@) = MR(p) = MR(p) = MR(£(p)) and Md(¢) = 1 = Md(p) —
Md(f(p)), it is clear that f(p) = {¢ € ForzL(C) : MR(¢* A ~¢)) < MR(p)}.
Therefore, there are at most d different conjugates of p over A. Since p is
definable [corollary [2.29], by the theorem p is definable over acl(A).

(<) We want to prove that pja C p|p is a non-forking extension for any
sorted subset B extending A. Let 9 be an elementary substructure of € such
that A C M. We may assume that M | , B. Indeed, let {m¢}¢cq be the

disjoint union of a {M;}secs. We define the sorted set M, whose elements are
{me¢}eca, by recursion such way that tp(me/B U {m¢},ce) does not fork over
AU {metpee and f : M — M given by f : mg +— mg is an elementary
map fixing A, for each £ € a. To do that, choose an element realizing a
non-forking extension to B of tp(mg/A) as mg and, given {my}ec, and fe :
my, +— my, let g be an elementary map extending f: to m¢, which exists
by homogeneity of €, and let m¢ be an element in € realizing a non-forking
extension to B of tp(g(me¢)/A U {my},ce), which exists by saturation of €.
Since tp(me/AU{m,}) = tp(g(me)/AU{m,},ee) and g is an elementary map,
it is clear that feyq @ my — m,, for n < £ is an elementary map. Now, since

by the Tarski’s test [Theorem \ such that A C M. Also, note that M | 4B
Indeed, we prove that by induction. We want to show that {m,},<¢ | , B
when {1, },<¢ | , B- We know that

f is an elementary map ﬁxinj A, M defines an elementary substructure of €

m€7mnl"'7mnn\LB<:>m€ J/ Bandm"]l""’mnnLB
A A

Ay oMy,

by the corollary [2.35l But m \LAu{fh boce B by construction of M and by
nine

induction hypothesis {m,, }ee J_/A B. So assume that M is already independent
from B over A. Since p is definable over acl(A), it is definable over M. Also, p|y
is definable over M. Thus, p is the unique extension of p|; which is definable
over M [lemma. On the other hand, a global non-forking extension of p|ys
is definable over M since it does not fork over M [corollary 2-29]. Thus, p is the
unique non-forking extension of p|;. Now, let @ realize p|pun- Then, @ \LM B.

Now, for any b from B, we have by finiteness, transitivity and monotonicity
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[proposition [2.31] that
albeal band My | b=a | b,My=a | b,
M Mo A A A
where My C M is the finite sorted subset given by the property of finiteness

and we use M J/AB. Therefore, EJ/AB, $0 Pja € Pjaus is a non-forking
extension. O

Note that We have not used that the theory is totally transcendental to prove
(=). Remember that p is definable over acl(A) if and only if cb(p) C acl®d(A4),
noted just after the corollary

Theorem 2.38. Let € be the monster model of a totally transcendental L-
theory. Then, any strong type in €°Y is stationary.

Proof. Let A C C° be a sorted subset acl®-closed and p € SE"(A). Let
q1,q2 € ST(B) be two non-forking extensions of p to some A C B. Thus,
by proposition 2.20, ¢; = {¢ € ForzL*4(B) : MR(¢1 A ") < a} and ¢z =
{¢ € Forz L*4(B) : MR(¢2 A ) < a} where a = MR(p) = MR(q1) = MR(g2),
Md, (¢1) = Mda(g1) and Mde (¢2) = Mda(ge2)- Note that if ¢; € g2 and ¢2 € g1,
then ¢ = q2. So, let b be the finite tuple of parameters of ¢; and ¢s, then
q1 = ¢o if and only if Q1jap = 42(ap Let @; realize a1jap and @ realize a non-
forking extension of G245 tO A, b, @1, SO G2 \LAygal. Since p C g1 and p C ¢o
are non-forking extensions, @ | ,b and @ | ,b. Then, by transitivity and

monotonicity, a | Ag b [proposition . By the corollary , ay,as | AE.
By symmetry [theorem , we conclude that r = tp(b/A, @y, as) does not fork
over A. Let r be a global non-forking extension of r. By the theorem [2.37] since
A C dcl®(A) C acl®(A) = A, we conclude that, for every ¢ € Forz 53 L°I(A),
there is a formula d,7p(Z) € Forz L*4(A) such that

p(a,y) €r Cr &€ dypla /7] <
& dYp(T) € tp(a1/A) = p = tp(az/A) &
€ = diyplaz /7] < ¢(az,y) €r Cr.

Thus, €9 = pfar,b] & €4 & ¢la, b] for every ¢ € Forg ;L°4(A). Hence,
Qa5 = 4245 50 1 = q2- O
Corollary 2.39. Let € be the monster model of totally transcendental L-theory,

A a sorted subset and p € SE(A) with Morley’s rank. Then, all the global non-
forking extensions of p are conjugate over A.

Proof. Let qi,q2 be two global non-forking extensions of p. Then, ¢i* =
A1 perea(a) A0d @5" = A3, ea( 4) aT€ two stationary non-forking extensions of p°d
[theorem . Let @ and @y realize ¢i* and ¢5%. Since tp(a;/A) = tp(az/A),
by the lemma there is an automorphism f fixing A such that f(a;) = a@».
Consider f°9 the natural extension of f to €°4. Then, £*4(¢j?) = ¢5%. Now,
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MR(f*U(q7")) = MR(q}") = MR(p*?) = MR(g5") = MR(gz), so £*4(q;) is the
global non-forking extension of g5, which is stationary by the theorem m
Hence, £°4(qj?) = q5%, so f(q1) = qq. O

Corollary 2.40. Let € be the monster model of a totally transcendental L-
theory, p a global type and A a sorted subset. Then, p does not fork over A and
P4 is stationary if and only if cb(p) C dcl®!(A).

Proof. Since p does not fork over A if and only if cb(p) € acl®*(A) [theorem
, it suffices to prove that, when p does not fork over A, p 4 is stationary
if and only if cb(p) € dcl®d(A). By the corollary p is the unique non-
forking extension of p| 4 if and only if p is invariant for automorphism fixing A.
Therefore, cb(p) C dcl®l(A). O

Corollary 2.41. (Finiteness of canonical bases) Let € be the monster
model of a totally transcendental L-theory and p a global type with Morley’s
rank. Then, there is a ¢ € p such that cb(¢) is a canonical base of p.

Proof. Let cb(p) be a canonical base of p. Since cb(p) C dcl®d(cb(p)), p is the
unique non-forking extension of pjch(p). Then, piehp) = {¢ € ForzL(cb(p)) :
MR(¢ A —p) < MR(¢)} where ¢ € pjeb(p) is such that MR(¢) = MR(p) and
Md(¢) = 1 — we may assume that ¢ € ForzL(cb(p)) and not in ForL*d(cb(p)).
Thus, cb(¢) € dcl®l(ch(p)). On the other hand, MR(pjcn()) = MR(¢) =
MR(p) and Md(pjch(¢)) = Md(¢) = 1. That implies that p is the unique non-
forking extension of p|ch(4), S0 cb(p) € dcl*d(ch(¢)). Hence, cb(¢) is a canonical
base of p. O

Let € be the monster extension of M, p € SE(M), B a sorted set such that
M C B and q € S¢(B) such that p C q. We say that ¢ is a heir of p if, for every
tuple b and every M-formula ¢ such that o(%,b) € ¢, there is a tuple m from
M such that ¢(Z,m) € p. We say that ¢ is a coheir of p if, for every ¢(Z,b) € q,
there is a tuple m from M which realizes ¢ (7, b).

By a straightforward use of the Zorn’s lemma, we can prove there are always
heirs and coheirs for any complete theory whose models are infinite.

Theorem 2.42. (Heirs and Coheirs) Let T be a totally transcendental L-
theory, M |= T, € the monster model of T, p € SE(M), B a sorted set such
that M C B and q € SE(B) such that p C q. Then, the following are equivalent:
(1) g is a heir of p.

(2) g is a coheir of p.

(3) ¢ is the non-forking extension of p.

Proof. (3)=(1) By the theorem [2.37} ¢ is definable over M = acl(M). So, for
every M-formula ¢(Z,y) and every tuple b, there is an M-formula d,Z¢(7) such
that
p(T,) € ¢ &€ = dTp[b] = € = Iy d,Te(7) ©
M =7dyTe(y) < there is m from M € = d,Zp[m]| <
< there is m from M (T, m) € q.
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So g is a heir of p.

(1)=(3) By the theorem [2.37 and the lemma[2.36], it is clear that p is stationary.
Indeed, given two global non-forking extensions of p, both are M-definable, so
these ones are equal. Suppose that ¢ is not a non-forking extension of p and let p
be the global non-forking extension of p and ¢’ = p|s- Let —¢(T, b) € ¢ be such
that ¢(7,b) € ¢’. Then, we have that € = dpT¢[b] with dpZ¢ € Fory L(M). So
dpZp(b) € g. But —¢(T,b) € g, so ~¢(T,b) A dpTé(b) € ¢. Since g is a heir of
p, there is T from M such that —¢(Z,m) A dpZé(m) € p. Then, —¢(Z,m) € p
and ¢(Z,m) € p, a contradiction.

(1)=(2) Let @ be such that ¢ = tp(a/B). Assume that tp(a/B) is a heir
of tp(@/M). Let b be a finite tuple from B. Let ¢(Z,b) € q, we want to
prove that ¢(Z,b) is realized in M. Since (1)=(3), we know that @ J/MB. By
symmetry [theorem , b | ,, @ Therefore, since (3)=(1), tp(b/M,a) is a
heir of tp(b/M). Now, ¢(a,y) € tp(b/M, @), so there is an m from M such that
#(m,7) € tp(b, M). So, there is an 7 from M which realizes ¢ (7, b).

(2)=-(1) Let @ be such that ¢ = tp(a/B). Assume that tp(a/B) is a coheir
of tp(@/M). Let b be a finite tuple from B. Consider tp(b/M,@). Then, for
every ¢(a@,7y) € tp(b/M,a), there is an ™ from M such that € = ¢(,b)[m).
So, there is an m from M such that ¢(m,y) € tp(b/M). Thus, tp(b/M,a)
is a heir of tp(b/M). Since (1)=(2), tp(b/M,a) is a coheir of tp(b/M). Let
#(7,b) € tp(a/M,b), then ¢(a,7) € tp(b/M,b). Hence, there is an m from M
realizing ¢(a,7y), i.e., there is an m from M such that ¢(Z,m) € tp(a/M). O

Theorem 2.43. (Closedness) Let € be the monster model of a totally transcendental
L-theory, A a sorted subsets and B be a sorted subclass such that A C B. Then,
the set NF(B/A) C S&(B) of types which does not fork over A is closed.

Proof. Let q € S¥(B) \ NF(B/A). Since q forks, there are b finite from
B and @ such that tp(a/A,b) = q,5 and @ £ ,b. By symmetry [Theorem
, b L ,a. Letri,....rq be the global non-forking extensions of tp(a/A).
Since tp(b/A,@) # rijag for each i, there are formulas ¢;(7,y) € tp(a,b/A)
such that € (& d,,y¢[a) where dy,7¢ € ForzL(A) [theorem [2.37]. Then,
AL, ¢:(Z,7) € tp(a,b/A) and € = AL, —d,,7¢i[a. Consider the formula
O(T,7) = Ny 6:(T,7) A —dp, 7i(T). Tt is clear that (T, b) € tp(a/A,b) C q.
Also, for every q' € SE(B) such that ¢ (Z,b) € q, let @ be such that qllA’B =
tp(a’'/A,b). Then, € |= ¢[a’, ], so we have that tp(b/A,@") # rija 4 for each i.
Thus, b / , @, s0 q forks over A. Therefore, q € (4(7,b)) C S§(B)\NF(B/A),
so NF(B/A) is closed. O

Theorem 2.44. (Open mapping) Let € be the monster model of a totally
transcendental L-theory and A and B sorted subsets such that A C B. Then,
rg/a : NF(B/A) — SE(A) defined as TB/A ¢ P > DA is open and rc/a :
NF(C/A) — SE(A) is also open.

Proof. Let rc/p, 7c/a and rp/a. It is clear that rc 4 = rpja orc/p- Let us
prove that rc/4 is an open map. Let U C NF(C/A) be an open set and V =

39



ré}A(rc/A(U)). By corollary V is the union of all the conjugates of U over
A, s0 V is open. But SE(A)\ rc/a(U) = rc/a(NF(C/A) \ V) because ¢4 is
an onto function. Since NF(C/A) is closed [Theorem [2.43], 75,4 is a closed map
[proposition . Since ¢4 is closed, Im 7¢/4(U) is open. Hence, r¢ 4 is an
open map. Finally, let U C NF(B/A) be open, then Tc/A(Ta}B(U)) =rp/a(U),
S0 7,4 is also open since r¢/4 is open and r¢,p is a continuous function. [

2.5 Strongly minimal sets

A pregeometry is a pair (X, cl) such that X is a set, cl : P(X) — P(X) is a
function and every V € P(X) satisfies the following properties

1. V Ccl(V),

2. cl(cl(V)) = cl(V), and

3. (Finiteness character) cl(V) = [J{cl(Vh) : Vo C V finite},

4. (Exchange)u € cl(VU{w})\cl(V) = w € cl(VU{u}), for every u,w € X.
Note that, by the second property, cl(U) C cl(V) if U C V.

Example. The standard examples are the algebraic closed fields with the algebraic
closure and the vector spaces with the linear closure.

Let (X, cl) be a pregeometry and V' C X. We say that V is an independent
set if there is not a proper subset U C V such that cl(U) = V; that V is a
generating set if cl(V') = X, and that V is a basis of X if V is an independent
and generating set. Note that V is independent if and only if v ¢ cl(V'\ {v})
for every v € V.

The following lemmas are fundamental for pregeometries. Their proofs are
analogous to the case of vector spaces:

Lemma 2.45. (Basis theorem) Let (X,cl) be a pregeometry and V,W C X
subsets such that V C W, W is a generating set and V is an independent set.
Then, there is a basis B C X such that V C B C W.

Proof. Consider 2 = {U C W : V C U and U independent} C P(W). It is
clear that V € Q, so Q # 0, and that (Q,C) is a partial order. Let T' C Q be
a chain and consider [T, then T € . Indeed, for any element x € |JT', we
want to prove that « ¢ cl((JT'\ {z}). Assume that z € cl((JT'\ {z}). Therefore,
there is a finite subset A C |JT such that = € cl(A\ {z}). Since A is finite,
there is U € T" such that AU{z} CU. If x € cl(A\ {z}), then = € cl(U \ {z}),
a contradiction since U is independent. Then, we apply the Zorn’s lemma. Let
B € Q be maximal. Then, V' C B C W and B is independent. Let us prove
that B generates X. Let w € V \ cl(B), then BU {w} ¢ Q since B is maximal.
Thus, BU {w} is not an independent set. Then, there exists e € B such that
e € c((B\ {e}) U{w}). However, e ¢ cl(B\ {e}) since B is an independent
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set. So, by the exchange property, w € cl(B). Therefore, W C cl(B), so
X = cl(W) C cl(cl(B)) = cl(B). O

Lemma 2.46. (Dimension theorem) Let (X, cl) be a pregeometry and B, B’ C
X be bases. Then, card(B) = card(B’). We say that card(B) is the dimension
of X and we write dim X := card(B).

Proof. Assume that card(B) < card(B’). There are two cases, card(B) > Rg or
card(B) € N.

Let card(B) > Ng. Since B’ is a basis, for every e € BB there is a finite subset
V. C B’ such that e € cl(V;). Then, (J,cz Ve € B’ is such that B C cl({J.cz Ve),
s0 cl(J.ep Ve) = X. Hence, .3 Ve = B'. Now, card(B’) = max{card(B),No},
so card(B’) = card(B).

Let card(B) € N. If B = (), then B’ = (. Assume B = {ey,...,e,}. Let
Ey,...,E, C B’ be finite such that e; € cl(F;) for each i € {1,...,n}. Then,
B Cc(EiU---UE,),s0o B = E;U---UE,. Therefore, card(B’) € N. Let
B ={e},...,el,}. Since {es,...,e,} is not a basis, thereis j; € {1,...,m} such
that e ¢ cl({e2,...,en}), so e1 € cl({€] ,e2,...,e,}). Then, {e} ,ea,...,en}
is a basis. Iterate this process and obtain a basis {e} ,...,¢} } C B’. Hence,
B'={ej,...,€j },s0m=n. O

Let (X,cl) be a pregeometry and ¥ C X be a subset. The restricted
pregeometry to Y is (Y,cly) where cly (V) = cl(V)NY for every V C Y. The
locallized pregeometry by Y is (X, clx/y) where clx/y (V) = cl(V UY') for every
V C X, and write dim(X/Y') := dimg, ,, X.

It is a straightforward checkup that (Y, cly) and (X, clx/y ) are pregeometries.

Lemma 2.47. Let (X,cl) be a pregeometry and Y C X be a subset. Then,
dim(X) = dim(X/Y) + dim(Y").

Moreover, if Bx/y is a basis of (X,clx/y) and By is a basis of (Y,cly), then
Bx/y UBy is a basis of (X,cl).

Proof. Let B = Bx/y UBy. First of all, I claim that By,y N By = (. Indeed,
if e € Bx/y N By, then e € cl(By) = cl(Y) and e € cl((Bx;y \ {e}) UY);
a contradiction since B,y is a basis of (X,clx/y). Now, we prove that B is
independent. Let e € B, then either e € Bx,y or e € By. In the first case, if
e € Bxyy, e cl((Bx/y \{e})UY),s0 e & cl((Bx,y \ {e}) UBy) = cl(B\ {e}).
In the second case, if e € By CY and e € cl(B\ {e}), there is a finite subset
W C B such that e € cl(W). We may assume that e ¢ cl(WW’) for every
W' CcW. If W C By, then e € cl(By \ {e}) NY, which is a contradiction since
By is a basis of (Y,cly). Let x € W N Bx/y, then e € cI(W) \ cl(W \ {z}), so
z € cl(W\ {z})U{e}) Ccl((Bx/y \ {z}) UY), which is a contradiction since
Bx/y is a basis of (X,clx/y). Finally, we prove that B generates X. Indeed,
since Y C cl(By), then Bx,y UY C cl(Bx/y UBy), so X = cl(B). O

A class pregeometry (X, cl) is a pair such that X is a class, cl: {V C X :
Vset} - {V C X : V set} is a class function and for every V C X set
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1.V Cd(V),

2. cl(cl(V)) = cl(V) and,

3. (Finiteness character) cl(V) = [J{cl(Vy) : Vo C V finite},

4. (Exchange) u € cl(VU{w})\cl(V) = w € cl(VU{u}) for every u,w € X.

Note that (X, cl) is a class pregeometry if and only if (Y, cly) is a pregeometry
for every subset Y C X. A class pregeometry does not have a basis, but for
every subset there is a basis and a dimension.

A strongly minimal definable set D of 9 is a definable set such that MR(D) =
1 and Md(D) = 1, i.e., such that every definable subset of it is either finite or
cofinite. We have analogous definitions for infinite models (not necessarily Rg-
saturated) and for definable classes of monster models.

Notation. Let D be a definable set of M. For V.C D C M,, x --- x M,
we write acl” (V) for the set of elements of D which are tuples from acl(V').
When D is clear from the context, abusing of notation, we write acl(V') instead
of acl” (V). We use the same notation for definable classes in monster models.

Theorem 2.48. Let A be a sorted subset and D be a strongly minimal 0-
definable set. Then, (D,acly)) is a pregeometry.

Proof. Adding A to the language, assume that A is empty. 1. and 3. are clear.
For 2., it suffices to prove that acl(acl(V)) C acl(V'). Given ¢ € acl(acl(V)), let
o from V and ¢(x,7) € For L be such that ¢(z,7)[9] is a finite set containing
c. We may assume that ¢(x, b)[90] is finite for every b — with cardinal at most
the number of conjugates of ¢ over b. On the other hand, let ¢(y) € For L(B)
be such that b € ¢[90] and ¢[9M] is finite. Thus, ¥(x) = I(¢(z,7) A (7)) is an
L(B)-formula such that ¢[90] is finite and ¢ € ¥[IMN)].

Finally, we prove 4., the exchange property. Let v € acl®(B U {u}) \ acl®(B).
Let B be the sorted of coordinates of elements of B. Then, MR(v/B,u) = 0 and
MR(v/B) # 0. Note that MR(v/B) < MR(D) =1. Sov [ ,uand v [ ,u by
symmetry [Theorem [2.33]. Then, 0 < MR(u/B,v) < MR(u/B) < MR(D) = 1
because D is strongly minimal. Hence, u € acl” (B U {v}). O

Corollary 2.49. Let A be a sorted subset and D a strongly minimal 0-definable
class. Then, (D,acl?) is a class pregeometry.

If V;U C D are subsets and A is a sorted subset, we write dim(V/U, A)
for the dimension of V over U in (D,acl}). We say that dim(V/U, A) is the
dimension of V' over U and A.

Lemma 2.50. Let D be a strongly minimal 0-definable class, A a sorted subset
and U,w € D™ be tuples such that MR(v/A) = MR(w/A) = n. Then, tp(v/A) =
tp(w/A).

Proof. By induction on n. For n = 1, by the proposition [2.20}
tp(v1/A) = {¢ € ForsL(A) : MR(D \ ¢[€]) < 1} = tp(us/A).
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Let the case n — 1 be proved. Since tp(vi/A) = tp(ui/A), by the lemma
1.28] there is an automorphism f fixing A such that f(v1) = u;. By induction
hypothesis, tp(f(ve), ..., f(vn)/A, f(v1)) = tp(ug, ..., un/A, u1), so

tp(vlv B vn/A) = tp(f(vl)a EERE) f(vn)/A) = tp(ula s ,’U,n/A)
O

Theorem 2.51. (Dimension in strongly minimal classes) Let D be a
strongly minimal 0-definable class, U C D a subset, A be a sorted subset and
V1,...,0n € D be tuples. Then, MR(v/U, A) = dim(v/U, A).

Proof. Suppose that dim(v/U, A) = k. Rename and let {v1,...,v;} be a basis
of {v1,...,v,} over U and A. By theorem we have that

MR(v1,...,v,/U, A) = MR(vy,...,v/U, A).

So, we may assume that dim(v/U, A) = n. We prove that MR(v/AU B) = n
by induction on n. For n = 1, since v; ¢ acly(U) and v; € D, we have
that MR(v;/U, A) = 1. Let the cases 1,...,n — 1 be proved. By induction
hypothesis, MR(va, ..., v,/A,U,v1) =n — 1, so MR(vy,...,v, /A, Uv1) =n —
1 because of theorem Since vy j/A’U@, by symmetry [Theorem ,
MR(v/A,U) > n — 1. Suppose that MR(v/A,U) > n. Then, there are two
disjoint subclasses E, F of D™ of rank n. Let C be a finite sorted subset such
that E and F are C-definable. Let € € E and f € F be generic elements over
AUC,U. Then, tp(e/AUC,U) = tp(f/U, AUC) by the lemma [2.50, However,
E € tp(e/U, AUC), F € tp(f/U,AUC) and ENF = (), a contradiction. Hence,
MR(T/A,U) = n. O

Note that, as a consequence of the last theorem, we have that geometric
independence is the same that forking independence in strongly minimal definable
sets (classes).

Corollary 2.52. (Definability of the Morley’s rank) Let B C C be a
sorted subset, D a strongly minimal 0-definable class and ¢(T,y) € For L(B)
such that, for every v € D, ¢(z,v)[€] C D™. Then, for every k € {1,...,n},

the class
{veD : MR(¢(z,v)) =k}

is definable.

Proof. Since MR(¢(Z,v)) < n, it is enough to prove that X = {v € D

MR(¢(Z,v)) > k} is definable for each k. We know that v € X if and only
if there are uq,...,u, € D tuples such that € = ¢[u,v] and wu;,,...,u; for
some 1i1,...,1; are independent over B,v. So, we have to show that, for any
J1,--sJn—k, the class X' = {v € D : MR(3zj, ...z, ,¢(Z,v)) > k} is
definable. Let p”* be the global type in D* of Morley’s rank k, which is unique
by lemma Then, ¥(x;, ... 2;,,v) = Iz, ... x5, ,¢(T,v) has rank greater
or equal than % if and only if 1) € p*. Since p* is definable |corollary [2.29], there
is d,xZy(y) € For L(C) such that ¢ (z,v) € p* if and only if € = dyxTy[v].
Hence, X’ = d,«71[€] N D. O

43



An almost strongly minimal 0-definable set H is a 0-definable set such that
there is an strongly minimal O-definable set D such that H C acl(D). Then,
we say that H is almost strongly minimal respect to D. We have analogous
definitions for monster models.

Lemma 2.53. Let D be a strongly minimal 0-definable class, H an almost
stronly minimal 0-definable class respect to D and h € H. Then, there is
@ SEqUENCE Ui, ..., Um, V1, ..,V € D such that {u1,..., Um,v1,...,0n} is an
independent set, h and U are interalgebraic over u, {uy,...,uy,} is independent
over h and MR(h/0) = n.

Proof. Since h € H, there is a finite subset V' C D such that & is algebraic from

the coordinates of V.. Let {vy,..., v} be abasis of (V, aclf) and {v1,...,vn,uq,...
be a basis of V. Let us prove that h and U are interalgebraic over u and that
n = MR(h/0).

Since {u1,...,u,} is a basis of V over h, it is independent over h. Also, we

know that dim(@) = dim(u/h) = m, so MR(u) = MR(u/h) = m by the theorem
Thus, @ | h and, by symmetry [theorem [2.33], h | u. Note that we can
apply symmetry since MR(h/0) < MR(u,v/0) = n + m.

Since {u1,...,un,} is a basis of V over h and T is from V, we know that
v1,...,0, € acl(@,h). On the other hand, since {ui,...,um,v1,...,0,} is a
basis of V, V C acl(u,v). So h is algebraic from the coordinates of @, v.

Finally, by the theorem [2.23

MR(h/0) = MR(h/u) = MR(v/%) = dim(v/u) = n.
O

Corollary 2.54. Let D be a strongly minimal 0-definable class, H an almost
stronly minimal 0-definable class respect to D. Then, MR(H) € N.

Proof. Let h be generic in H, by the lemma[2.53] MR(H) = MR(h/0) € N. O

Theorem 2.55. (Almost strongly minimal) Let D be a strongly minimal 0-
definable class, H an almost strongly minimal O-definable class respect to D and
I C D an infinite independent set. Then, for every h € H, there is a finite set
Iy C I and finitely many elements uy, ..., Uy, € I\ Iy and vy,...,v, € D such
that h J/IO w, {ug,...,un} is independent over h, h and T are interalgebraic
over u and n = MR(h/0). In particular, every element of H is interalgebraic
over I with a tuple from D.

Proof. By finiteness [proposition , let Iy C I be a finite subset such that
h J/IO I.Soh J/IO I\ Iy. Let w € T\ Iy, then a ¢ acl((I \ {a}) U{h}). Indeed,

h | I I implies h | Iy U by monotonicity [proposition . By symmetry

[Theorem , u J/I\{u} h. Now, MR(u/I\ {u}) = dim(u/I \ {u}) by theorem
Since T is an independent set, MR(u/I \ {u}) = 1. So MR(u/(I \ {u}) U
{h}) =1, ie., u ¢ acl((I \ {u}) U{h}). Therefore, I\ Ij is an independent

set over h. Let uf,...,ul,,v],...,v), € D be the sequence given by the lemma

» Y'mo

44

s Um}



m Since v} is algebraic over @', h, let ¢;(z, @, h), for each i, be such that
¢ = pi(z, @, h)[v;] and card(p;(x, @, h)[€]) = k; € N. For each 4, let @;(u’, h)
be the sentence which states that card(y;(z,u’, h)[€]) = k;. Since h is algebraic
from the coordinates of @', v’, let ¥(z,u’,v’) be the formula such that €
W(z,w,v')[h] and card(¢(z, @ ,v')[€]) = N € N. Let o(h,w,v") be the sentence
which states that € = ¢(z,@,7")[h] and card(v(z, @ ,v")[€]) = N. Let

i=1

Let uy, ...,y € I'\ Iy, then {us,...,u} is an independent set over h. By the

lemma [2.50} tp(u/h) = tp(@' /h). Since ¢ € tp(@'/h), we have that ¢ € tp(u/h).
So there are vy, ...,v, € D such that A and v are interalgebraic over . O

Corollary 2.56. (Lascar’s equation) Let D be a strongly minimal 0-definable
class, H an almost strongly minimal 0-definable class, F a sorted subset and
g,h € H. Then,

MR(g, h/F) = MR(g/F, h) + MR(h/F).

Proof. By finiteness [proposition [2.31], let Fj be a finite sorted subset such
that g, h J/FO F,g J/FO F and h LF F. Let V C D be an infinite independent
set over g,h,Fy. By the theorem [2.55| let @ € D™ and w € D™ be such
that g,u are interalgebraic over V and h,w are interalgebraic over V. Since
v | g,h, Fy for every tuple ¥ from V, by monotonicity |proposition ‘2.31I, we
know that v J/FO g,h, T J/Fg,h gand T \LFO h for every tuple T from V. Then,
by symmetry [Theorem , we have that g, h J/FO V,g J/Fo’h Vand h LFO V.
Since g, u are interalgebraic over V' and h,w are interalgebraic over V', by the
theorem [2.23]

MR(g, h/Fo) = MR(g,h/Fy UV) = MR(u,w/Fy, V),
MR(g/Fo, h) = MR(g/Fy,V,h) = MR(u/Fy, V,h), and
MR(h/Fy) = MR(h/Fy, V) = MR(w/Fp, V).
Add Fjy and the coordinates of V' to the language. Thus, it suffices to prove that
MR(w,w) = MR(u/h) + MR(w).
By the theorem [2.51] we want to prove that
dim(uz, w) = dim(u/h) + dim(w).
Since the tuples of D from acl(h) are from acl(w), that is the same that
dim(w, w) = dim(u/w) + dim(w),

which is a particular case of the lemma O
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A pregeometry or class pregeometry is modular if, for every cl-closed sets V'
and U,
dim(VUU) +dim(VNU) = dim(V) + dim(U).

A pregeometry or class pregeometry is locally modular if the locallized pregeometry
by w is modular for any w ¢ cl(().

Remark. Let (X, cl) be a pregeometry and V,U C X be cl-closed such that
dim(U),dim(V) € N. Then, by the lemma [2.47]

dim(VUU) +dim(VNU) = dim(V) 4+ dim(U) <
< dim(VUU) —dim(V) =dim(V) —dim(U NV) <
& dim(U/V) =dim(U/V NU).

Lemma 2.57. Let (X,cl) be a pregeometry. Then, (X, cl) is modular if and
only if dim(V/U) = dim(V/U N'V) for any cl-closed V,U C X such that
dim(V),dim(U) € N and dim(V/UNV) = 2.

Proof. The "only if" part is a particular case. Let us prove the "if" part.
Suppose that (X, cl) is not modular. Let

n:min{dim(V/VﬂU) : dim(V) 4 dim(U) # dim(V N U) + dim(V U U)

Note that n € N since the equality is elemental when dim(V) ¢ N or dim(U)
N. Let V,U C X be cl-closed such that dim(V') 4+ dim(U) # dim(V N U)
dim(V UU) and dim(V/V NU) = n € N. Since dim(V),dim(U) € N,

V,U C X cl-closed and }
¢
_l’_

dim(V U U) + dim(V N U) # dim(V) + dim(U) < dim(V/U) # dim(V/V N U).

By hypothesis, n > 2. Let {e1,...,em,Em+1,-..,6€n} be basis of V over VN U
such that {ey,...,en} be basis of V over U.

First, we prove that m =n — 1. Let V' = cl((VNU) U {e1,...,en—1}). Note
that VN U = V' NU since VNU C V' C V. Since n is minimum, then
dim(V'/U N V') = n — 1 implies that dim(V'/U) = n — 1. Now, n —1 =
dim(V'/U) < dim(V/U) < n, so m = dim(V/U) =n — 1.

Let U = cl(U U {e1,...,en—2}). I claim that {e,_1} is basis of V' over U’
and {e,_1,e,} is basis of V over VN U’'. It is clear that V C cly/(en_1)
and e,_1 ¢ cl(U’). Also, it is clear that clyny(en—1,e,) = V. Let us prove
that {e,—1,e,} is independent over U’ NV It suffices to prove that U' NV =
cd((UNV)U{e1,...,en—2})since {ey,...,e,} is a basis over UNV. It is clear that
d((UnV)u{er,...,en—2}) CU' NV. Let us prove that U'NV C cl((UNV)U
{e1,...,en—2}). Let w €e VAU and W = cl(ey, ..., en_2,w). Then, dim(W/UN
W) < dim(W) =n — 1, so dim(W/U) = dim(W/U NW). Now, dim(W/U) =
n—2 implies dim(W/UNW) =n—2 and W C V. Therefore, dim(W/V NU) <
dim(W/V NW)=n—2. Hence, w € cl((UNV)U{e1,...,en—2}).

So {e,—1} is abasis of V over U’ and {e,,—1,€e,—2} is abasisof V over VNU'. O
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Lemma 2.58. Let D be a strongly minimal 0-definable class such that (D, acl)
is modular, B an algebraically closed sorted subset and v be a tuple from D.

Then,
v | B.
acl(v)NB

Proof. Let U C D be the tuples from B. By definition, acl(U) = U. By the
theorem [2.51] since D is modular, we have that

MR(v/B) =dim(vy, ..., v, /U) = dim(vy, ..., vx/U Nacl(v)) =
=MR(v/B N acl(v)).

So v J-’acl(i)ﬁB B. L

Let € be the monster model of a totally transcendental L-theory and D be
a 0-definable class of €%, We say that D is one-based if

v L B

acl®d(v)Nacl®d(B)
for any tuple v from D and any sorted subset B.

Lemma 2.59. Let € be the monster model of a totally transcendental L-theory
and D be a 0-definable class of €°1. Then, D is one-based if and only if
cb(T/B) C acl®d(v) for any sorted subset B and any tuple © from D such that
tp(v/B) is stationary.

Proof. (<) Let U be a tuple from D with coordinates, B be a sorted subset and
p be the global non-forking extension of stp(v/B). Since p does not fork over
acl®d(B), by theorem [2.37] cb(p) C acl®d(B). Since cb(p) C acl®*(v), we have
that cb(p) C acl®d(v)Nacl®d(B). By the theorem 2.37|, v J—’acleq(i)r‘lacleq(B) acl®d(B).
(=) Since v | acl®d(B), by the theorem , we have that

acl®d(v)Nacl®d(B)
cb(v/B) C acl®Y(v) Nacl®(B) C acl®(v).
O

Theorem 2.60. Let € be the monster model of a totally transcendental L-theory
and D be a strongly minimal 0-definable class of €. Then, the following are
equivalent:

(1) (D, acl®) is a locally modular pregeometry.

(2) D is one-based.

(3) For any acl®-closed sorted subset A and any v, u € D such that MR (v, u/A) =
1, MR(cb(v,u/A)) < 1.

Proof. (1)=(2) Let ¥ be a tuple from D and B be a finite sorted subset such
that tp(v/B) is stationary, and let p be its non-forking global extension. Let
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w € D\ acl(() be generic over 7 and B, which exists since MR(D) = 1. Since
(D, acly,) is modular, we know that

v L acly (B).

acly, (v)Nacly, (B)

Therefore, T | a5 w)nactea(5.0) B> - S0, by the theorem cb(v/B,w) €
acl®d(v,w). Sincew | B,v,thenv | W by monotonicity and symmetry [proposition
.31 and theorem [2.33]. So cb(v/B) = ¢b(v/B, w). Since p does not fork over
B, by the theorem cb(w/B) C acl®d(v,w) N acl®¥(B). Since w is generic
over B,a, we conclude that acl®(7,w) N acl®(B) = acl®(v). Indeed, if d €
acl™(v, w)\acl®(v) and d € acl®!(B), then d / _w and, by symmetry [Theorem
, w f _d. Since D is a strongly minimal class, w is from acl®(7,d) C
acl™ (v, B), which is a contradiction since w is generic over T, B.

(2)=(3) Let d = cb(v,u/A). Since MR(v,u/A) = 1, then MR(v,u/d) = 1.
If v,u | d, then d € acl®(§) and MR(d) = O [Theorem [2.37]. If v,u / d,
by symmetry [Theorem Eﬁ, d f v,u. Since D is one-based, by lemma
d € acl®(v,u). Thus, MR(v,u,d) < 2. By the Lascar’s equation [Theorem
2.56], MR (v, u, d) = MR(d) + MR(v, u/d). So MR(d) < 1.

(3)=(1) Let w ¢ acl® (). By lemma [2.57} it suffices to prove that any acl--
closed sets V,U C D such that dim(V/UNV) =2 and dim(V/w),dim(U/w) €
N satisfy dim(V/U) = dim(V/V N U). Let V,;U C D be sets with these
properties and {ej, es} be a basis of V over VN U. Then, if dim(ey,e2/U) # 2,
dim(ey,es/U) < 2. Firstly, consider that dim(ej,es/U) = 0, then ey,es €
ach(U) =U,soep,ea € VNU and {eq, ez} is not a basis over VNU. Secondly,
consider that dim(e;,e2/U) = 1 and assume that {e;} is a basis of V' over
U. By theorem MR(e1,e2/U) = 1. Assume without lose of generality
that U is acljy-closed [corollary 2.34]. Thus, tp(e1,e2/B) is a stationary type
by corollary Let d = cb(er,ea/B), by hypothesis, MR(d) = 1. Since
e1,e2 [ d, by symmetry [Theorem [2.33], d [ e, e2. Thus, d is algebraic over
the coordinates of ey, es. Since w ¢ aclP(ey,es), w is not from acl(d). So
w is a generic element of D over d. On the other hand, by theorem
d € acl®d(B). Since e; is not from acl®d(B), e; is not from acl®d(d). Soe; | d
by theorem [2.51] i.e., e; is a generic element of D over d. Since w and e
are generic elements of D over d and D is strongly minimal, by lemma, [2.50]
tp(w/d) = tp(e1/d). Let w’ € D be such that tp(w,w’/d) = tp(e1, e2/d). Since
MR(e1,e2/d) = 1, MR(w,w’/d) = 1. So, by theorem dim(w, w’/d) = 1.
Therefore, w’ € acl®(w,d) C acl®(ey, ez, w) Nacl®(U) = V N U. On the other
hand, since d is algebraic from the coordinates of e, es, it is algebraic from
the coordinates of w,w’. So, we have that MR(ey,e2/w,w’) = 1. Hence, by
theorem 1 =dim(ey, ez/w,w’) > dim(V/V NU) = 2, a contradiction. O

We have a criterion to distinguish strongly minimal sets (classes) looking
whether its pregeometry is locally modular. Also, we have two examples of
strongly minimal sets: vector spaces, which are locally modular, and algebraically
closed fields, which are not. Another type of strongly minimal sets (classes)
are the trivial ones. A strongly minimal set (class) D is trivial if (D,acl”)
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is a trivial (class) pregeometry, and a (class) pregeometry (X, cl) is trivial if
cl(AUB) = cl(A)Ucl(B) for any pair of subsets A, B. The standard examples of
trivial strongly minimal sets are the infinite sets with no structure or the integers
with the successor function (Z,. + 1). Note that strongly minimal groups are
not trivial. Indeed, a - b € acl(a,b) \ (acl(a) U acl(b)) provided b ¢ acl(a).

It is a natural query whether there is an essentially different example. Actually,
it is a well-known fact that any non trivial locally modular strongly minimal
set (class) arises from vector spaces over a division ring. On the other hand,
the case of non locally modular ones, known as Zilber’s Conjecture, remained
open for a long time: a non locally modular strongly minimal definable set
D interprets an algebraically closed field (i.e. an algebraically closed field is
definable from D with imaginaries). This conjecture was refuted by Hrushovski
who constructed a non locally modular strongly minimal set which does not
interpret a group. However, a strong version of the Zilber’s conjecture does
hold for Zariski geometries.

2.6 Orthogonality

Let D and E be definable sets in 9t with Morley’s rank. We say that D and
E are orthogonal (DLE) if d \LAE for any d € D, any € € E and any sorted
subset A such that D and E are A-definable. We have analogous definitions for
monster models.

Lemma 2.61. Let € be the monster model of a totally transcendental L-theory
and D, E be two definable classes with Morley’s rank. Then, D_LE if and only
if tpf’g(a, €/A) is the unique complete type extending the partial type tp,(d/A)U
tp;(e/A) for every d € D, e € E and every acl®-closed sorted subset A such
that D and E are A-definable.

Proof. (<) Let d € D, e € D and A be a sorted subset such that D and E are
A-definable. Let A’ = acl®d(A) and d € D realize a non-forking extension
of tp(d/A") to A’;e. Thus, tp,(d/A’) U tp,(e/A’) C tpig(g/j/A’), so, by
hypothesis, tp(g/E/A’) = tp(d,e/A") and tp(d/A’,€) = tp(a//A’,E). So, d L€
since d J/A/ e. Now, by corollary , EJ/AA’, S0 EJ_,Aé by transitivity

[proposition [2.31].

(=) Let d € D, e € D and A be an acl®®-closed sorted subset such that D and
E are A-definable. Let d’, ¢’ be such that tp,(d/A) Utp,(e/A) C tpjg(g/,é’/A).
Since tp(g/A) = tp(€'/A), by lemma[1.2§] we may assume that € = &'. It suffices
to prove that tp(d /A,€) = tp(d/A,e). Since DLE, tp(d/A,e) and tp(d /A, e)
do not fork over A. There is just one non forking extension of tp(d/A) to A,e,
by theorem Hence, tp(d/A,e) = tp(E,/A,E). O

Lemma 2.62. Let D be a strongly minimal definable class and E be a definable
class with Morley’s rank. Then, D LE if and only if there is a sorted set A
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such that D C acl(A, E). Moreover, if D JE, then there is a finite sorted set A
such that D C acl(4, E).
-

Proof. (<) If D C acl(A,E) for some sorted set A, let d € D be generic

over A. Let ey,...,e, € E be minimal such that dc acl(A €1,...,€,). Then,
dj/ €1...€e, and d\J,A€1,.--,6n—1- By transitivity [propos1tion , we
conclude that d La €n. So, D JE.

71: cs€n—1

(=) If D LE, there are a sorted set A such that D and E is A-definable and
d € D and € € E such that EJLAE. By finiteness [proposition , we may
assume that A is finite. Since d J/ ,€ and D is a strongly minimal definable
class, 0 < MR(d/A,e) < MR(d/A) < 1. So d is algebraic over A,e. Now, for any
d € D, either MR(EI/A) =0or MR(EI/A) = 1. Since D is strongly minimal,
by lemma if MR(&I/A) =1, tp(ﬁl/A) = tp(d/A). By lemma there
is an automorphism f fixing A which maps d to d. Then, MR(E//A, f(e)) = 0.
So, for every d € D, there is an element € € E such that d is algebraic over A, ¢,
ie, D Cacl(A4E). O

Corollary 2.63. Non-orthogonality is an equivalence relation for strongly minimal

classes.

Corollary 2.64. Let D be a strongly minimal definable class, H an almost
strongly minimal definable class respect to D and E a definable class with
Morley’s rank. Then, H AE if and only if D AE. Moreover, if H AE,
then there is a finite sorted set A such that H C acl(4, E).

Proof. Assume that H, D and E are A-definable.

(<) Let A be a finite sorted subset such that every element of D is algebraic
over A and a finite tuple of E. Let h € H, d from D and & from E such that A is
not algebraic over A, h is algebraic over d and d is algebraic over €, A. Thus, h is
algebraic over €, A and is not algebraic over A. Hence, h J et We may assume
that h J/A e1,...,en_1. Indeed, it suffices to consider the minimal £ < n such
that h J’/Ael,..wek. Then, h \LA»elguwenfl en. Therefore, H L E.

(=) Let A be a finite sorted subset and » € H and e € E such that h [ ,e.

By theorem 2.55[, there are d and @ from D such that h | , @ and h and d
are interalgeoralc over a, A. Since h 46D L Az [proposition . Then,

by theorem [2.23 d J//A €, S0 € j/A,d by symmetry [theorem [2. . We may
assume that e dl,...,d 1andej/A,d1,.. d,. Thence, e AT drsdis
so E AD. By lemma [2.62] there is a finite sorted subset A such that every
element of D is algebraic over a finite tuple from E and A. Thus, every element
of H is algebraic over a finite number of elements of E and A. O
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3 Groups with Morley’s rank

A definable group is a pair formed by a definable set (or class) and a definable
function such that the pair is a group. The parameters of a definable group are
the parameters of the set (class) together with the parameters of the operation.
The Morley’s rank of a definable group (G, -) is MR(G), and its Morley’s degree
is Md(G).

The aim of this chapter is to study the special case of definable groups
with Morley’s rank. The most significant results studied are the descending
chain condition [Theorem, the characterization of the connected component
[Theorem, Zilber’s indecomposability theorem [Theorem, the properties
of one bases groups [Theorem and its characterization [Theorem, and
the characterization of orthogonality for groups [theorem .

Notation. In the rest of the this chapter and except otherwise stated, (G, -) or
(G, ) will denote definable groups with Morley’s rank.

3.1 The Descending Chain Condition

Lemma 3.1. Let H < G be a definable subgroup and a € G. Then, MR(H) =
MR(aH) = MR(Ha) and Md(H) = Md(a«H) = Md(Ha).

Proof. It is a particular case of the corollary which implies that definable
bijections leave the Morley’s rank and degree invariant. O

Lemma 3.2. Let H < G be a definable subgroup. Then, [G : H] is finite if
and only if MR(H) = MR(G), and in that case Md(G) = [G : H] - Md(H).
Moreover, two definable subgroups of G with same Morley’s rank and degree
and one contained in the other coincide.

Proof. If [G : H] is infinite, there is a (a;);cw sequence of elements in G such
that a;H NajH = ( for every i,j € w (¢ # j). Then, MR(a;H) = MR(H) for
each i implies that MR(G) > MR(H) + 1. On the other hand, if [G : H] = d
is finite, there are aq,...,aq elements such that G = a1 H U --- U agH and
a;HNa;H = ( for each i # j. Then, MR(a,H) = MR(H) for each ¢ implies that
MR(G) = MR(H), by the fundamental property Also, because these are
disjoint, we have that Md(G) = Y%, Md(a;H) = d-Md(H) = [G : H]-Md(H).

Finally, let H and H’ have the same Morley’s rank and the same Morley’s
degree with H' C H. Since MR(H) = MR(H’), [H' : H] is finite and Md(H') =
MdA(H) - [H' : H]. But MA(H') = Md(H), so [H' : H] = 1, i.e, H=H'.  [l.

Theorem 3.3. (Descending Chain condition) There is no infinite strictly
decreasing sequence of definable subgroups G.

Proof. Suppose there is (H;);c,, an infinite strictly decreasing sequence of
definable subgroups. Since MR(G) exists, (MR(H;));c. is an infinite decreasing
sequence of ordinals. Let o = min{MR(H;) : i € w} and iy € w be such
that MR(H;,) = a. Then, MR(H;) = MR(H,,) for every i > iy. Consider
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(MdA(H;))i>iy, that is a decreasing sequence of non zero natural numbers, so it
must have a minimum. Let 47 > iy be such that Md(H;,) = min{Md(H;)

i > 1o}, then we know H; C H;,, MR(H;) = MR(H;,) and Md(H;) = Md(H;,)
for every ¢ > i;. By the last lemma H; = H;,, so (H;);e, is not strictly
decreasing, a contradiction. O

Corollary 3.4. The intersection of any family of definable subgroups of G is
the intersection of a finite subfamily. In particular, any intersection of definable
subgroups of G is definable.

Example. Let us show a standard application of the descending chain condition.
Let A be any subset (not necessarily definable) of elements of G, then the
centralizer of A is

Z(A)={geG: foranya€c A g-a=a-g} = ﬂC’G(a).
a€A

Now, C¢(a) is a definable subgroup since Cg(a) = GNp(T, a)[M] where o(Z,7)
isT-y=71-T. Hence, Z(A) is a finite intersection. Therefore, Z(A) = Cg(a1)N
---NCg(am) for some {ay,...,am} € A. Thus, Z(A) = Z(Ap) for some Ag C A
finite, and this implies that Z(A) is definable.

When A is definable we obtain a sentence of the theory of 9. If A = @[N],
Z(A) =M NG, where ¥(T) = VG(d(y) — ¢(T,7)). So, the conclusion is that
Y[IMING = (T, a1) [N - -N(T, a,, ) [M]NG for some particular ay, ..., a, € A.
Thus,

M = vE (@) AG(T) < (p(F,a1) A= A (T, an) NG(T))) -

Note that this argument is not particular of the centralizer. Indeed, given any
family of formulas {©;(Z)};cr, such that each one defines a subgroup of G, the
set of elements satisfying all these formulas is a definable subgroup determined
by a finite number of the subgroups. That gives us a useful way to describe
many important group-theoretic objects.

3.2 The connected component

The intersection of all the definable subgroups of finite index of G, G°, is the
(definable) connected component of G. G is connected when G° = G.

Note that, by the corollary G° is a definable subgroup which must be
of finite index. Therefore, G° is the smallest definable subgroup of finite index
of G.

Note that, by the lemma G is connected if Md(G) = 1. We will prove
that it is actually an "if and only if" condition.

Proposition 3.5. If (G,-) is an A-definable, then G° is A-definable too.

Proof. Add A to the language and assume that (G, -) is O-definable. Let o(Z, )
be an L-formula such that G° = (T, a)[9] where @ is a tuple of parameters.
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Let k = [G : G°], then it is routine to write an L-formula (%) such that, for
any b, M = ¢(b) if and only if ¢(z,b)[M] is a subgroup with index k. Then,
o(T) = (v (Y) A (T, 7)) is an L-formula which defines G°. O

Proposition 3.6. Let 91 be an elementary extension of M, and G and G°
formulas defining G and G° in 9N, respectively. Then, G°[N] = G[N]°.

Proof. We know that G° is the unique definable group with index [G : G°].
For any formula (), it is expressible by an L(M)-formula that ¢(7) is a group
of index k in G. We conclude by recalling that elementary extensions leave the
Morley’s rank and the Morley’s degree invariant [lemma [2.10]. O

Proposition 3.7. Let (G,-) be a definable group with or without Morley’s rank
and Sg(M) the set of complete types in G. Then, G acts on Sg(M) by

g-p={p(T) : ¢(g9-7) € p}.

Also,

(1) if a € G realizes pj4 and g € A, then g-pja = tp(g-a/A);

(2) for any g € G, MR(p) = MR(g-p) and, when p has Morley’s rank, Md(p) =
Md(g - p); and

(8) if p has Morley’s rank, then Stab, is a definable subgroup and Stab,[N] =

Stab,, when M is an elementary extension of M and p' € S™(N) is the non-
forking extension of p.

Proof. A straightforward argument shows that G acts on Sg(M). (1) It is also
clear.

(2) Firstly note that x — g-x is a definable bijection, so it preserves the Morley’s
rank and degree [corollary . Indeed, for example,

MR(p) = min{MR(¥) : ¢ € p} = min{MR(¢(g-7)) : ¢ € p} =
=min{MR() : ¢ € g-p} =MR(gp).

(3) Assume p has Morley’s rank «. Then, given ¢ € p such that MR(¢) =
MR(p) = o and Md(¢) = Md(p), we know p = {¢p € For L(M) : MR(p A —)) <
o} and g-p = {¢ € For L(M) : MR(¢(g-T) A =) < a}, by proposition 2.20]
Hence, g € Stab,, if and only if ¢(g-Z) € p. Now, since p has Morley’s rank, there
exists a formula d,Z¢(y-T) such that ¢(g-T) € pif and only if M = d,Te(g-T)
[corollary . Hence, Stab,, is defined by d,Z¢(7 - T). Finally, in the latter
case, since p is a global type in 9, by lemma[2.36] there is just one non-forking
extension p’ to I, and it is given by p’ = {¢) € For L(N) : MR(¢ A —¢) < a}.
Thus, the same formula defines Stab,, in 91. O

Note that the last proposition can be rewrite for monster models and global
types.

Proposition 3.8. Let (G,-) be a definable group with or without Morley’s rank
and p € Sg(M) a type with Morley’s rank. Then, MR(Stab,) < MR(p).
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Proof. Let A C M be a finite sorted set such that Stab,, is A-definable and p
does not forks over A. Let b € Stab, be generic over A. Let 91 be an |[M|*-
saturated elementary extension of 9t and consider the non-forking extension p’
of p to M and @ an element in N realizing p. Note that MR(a/A4,b) = MR(a/A),
so MR(b/A, a) = MR(b/A) by symmetry of Morley’s rank independence [Theorem
2.33]. Since g+ g-a is a definable bijection in G, MR(b-a/A, a) = MR(b/A, a).
Hence,

MR (Stab,) =MR(b/A) = MR(b/A, a) = MR(b - a/A, a) <
<MR(b-a/A) = MR((b-p)|a) = MR(pj4) = MR(p).

O

Lemma 3.9. A type p € Sq(M) is generic in G if and only if Stab, has finite
indez in G. Moreover, |G : Staby| is the number of conjugates of p.

Proof. If [G : Stab,] € N, then MR(Stab,,) = MR(G) and, by the last proposition
MR(p) = MR(G), so p is generic. On the other hand, when p is generic,
g - p is generic too. Hence, {g-p : g € G} is a subset of the finite set of generic
types. Now, g-p=g¢ -pif and only if g~' - g’ € Stab,, so {g-p : g € G} isin
bijection with {gStab, : g € G}. Hence, [G : Stab,] is finite. O

Remark. Since the set of generic types has cardinal Md(G), we have proved
that [G : Stab,] < Md(QG) for every p generic in G. Actually, this inequality is
an equality, which we will prove it bellow.

Theorem 3.10. (Characterization of connected definable groups) G is
connected if and only if Md(G) = 1.

Proof. Of course, Md(G) = 1 if and only if there is just one generic type.
We already know that Md(G) = 1 implies that G is connected. We prove the
converse, i.e., G connected implies that there is just one generic type. Let p
and g be two generic types, we are going to prove that p = ¢. Since Stab, and
Stab, are subgroups of finite index [lemma [3.10], Stab, = Stab, = G. Let M
be an |M|*-saturated elementary extension of 9, let a realize p in 9T and ¢’ be
the non-forking extension of ¢ to M. Let 91 be an |N|"-saturated elementary
extension of 9 and b realize ¢’ in 9. It is clear that a € Stab, since Staby, =
Stab, (M) = G(M'), where Stab, and G are two formulas which define Stab, and
G in M, respectively. Then, since a is in N, tp(a-b/N) =a-q¢ = ¢ = tp(b/N).
So, in particular, tp(a - b/M) = q. Now, consider p~! = {p(Z~1) : ¢ € p} and
q¢~!. By symmetry of Morley’s rank independence |Theorem , the same
argument proves that tp(b~1-a=!/N,b) = tp(a~'/N,b). Thus, ¢ = tp(a-b/M) =
tp(a/M) = p. O

We have the following corollaries to the last theorem.

Corollary 3.11. A global type p € Sg(M) is generic in G if and only if Stab, =
GO
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Proof. (<) By proposition [3.8) MR(Stab,) < MR(p) < MR(G). So, if Stab, =
G°, p is generic.

(=) Since Stab,, has finite index [lemma [3.9], G° < Stab(p). Let us prove that
Stab, C G°. Since [G : G°] =k € N, there are c1,...,c; € G such that

k
M =V (G(m) & VQO(E_l : ci)> .

Hence, G°(T~! - ¢;) € p for some i € {1,...,k}. Then, G°(a-(z~'-¢;)) € p for
every a € Stab,. So G°(a) € p for every a € Stab,, i.e., Stab, C G°. O

Corollary 3.12. The indez [G : G°] is equal to Md(G). Moreover, the orbit of
a global generic type in G is the finite set of all the global generic types.

Proof. Since Md(G) = [G : G°]Md(G®), we have that Md(G) = [G : G°].
Therefore, for any generic p, [G : G°] = [G : Stabp]. So, there are Md(G)
conjugates of p, by lemma [3.9] Now, every conjugate of p is generic in G, and
there are Md(G) generic types in G. Hence, by pigeonhole principle, every
generic type is a conjugate of p. U

Proposition 3.13. Let M be an | M| -saturated elementary extension of IN.
Then, every element of G is the product (in G(M)) of two elements of G|N]
both generic over M. In particular, if X C G is a definable set such that
MR(X) = MR(G) and Md(X) = Md(G), X - X =G.

Proof. Let p be a global generic type in G, a € G and ¢ be an element of G[N]
realizing p, hence generic. Since a is in M, a-c¢~! and ¢ are interdefinable over
M, so MR(a-c™'/M) = MR(c¢/M) by theorem[2.23] Thus, a-c™! is also generic
in G[M] over M and, of course, a =a-c!-ec.

Now, if X C G is a definable set such that MR(X) = MR(G) and Md(X) =
Md(G), then MR(G \ X) < MR(G) and every generic element in G is in X too.
Let X be a formula defining X, given a € GG, we have proved that

NI X@)AX{FH)Na=T-7.

But 9t <M, so
MEITTYX@)AXG) Na=T 7.

Now, since a € G was arbitrary, we get X - X = G. O
An infinitely definable group in 9 is a tuple (X, -, — 1, 1) such that
1. 3(Z) is a s-type in 9N,

2.0 (Mg, X -+ X M )> — Mg, x -+ x Mg, and o= Mg x -+ x My, —
M, x -+ x M, are M-definable functions,

3. 1€ M, x---x M, issuch that M = X[1],
4. X(T)UL(®) = X(=T-7) and X(7) E X(z 1), and
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5. 3(T) B ¢1(T) A p2(T) and X(z) U B(Y) U XS(Z) = ¢¥3(7,7,2),

-1

1, z-z t=z1'-Z=1an

8l

where the formulas @1, 9,93 are 1 - T =7 =
T-(y-zZ)= (T -Y)-Z, respectively.

We say that (X,-,—1,1) is A-definable if ¥ is a type with parameters A,
the operations - and ——! are A-definable and 1 is A-definable. We write (3, ).

Lemma 3.14. Let A be a sorted subset and (3, -) an infinitely A-definable group
with MR(X) € On. Then, there is an A-definable set G such that ¥(T) = G(T),
G(T) isolates X(T) and (G, ") is a definable group. In other words, (X,-) is a
definable group.

Proof. We may assume that X is closer under logical consequence. Thus,
©1,92 € X. By Compactness theorem [Theorem [L.11], let A C ¥ be finite
such that A(T) UA(y) U A(Z) E ¢3(7,7,2). Thus, g3 = Ayca ) € X. Let
a = MR(X) and d = Md(X), and let ¢ € ¥ be such that Md, (o) = d. Let
= /\f=0 ©0i(T)Npi(T™1). Tt is clear that ¢ is an A-formula belonging to ¥. Also,
it is clear that Md(¢) = d. Firstly, note that every complete type in (p)gm (4)
of Morley’s rank « extends Y. Indeed, any complete type p such that ¢ € p and
MR(p) = MR(p) is such that ¥ C {¢ € ForzL(A) : MR(p A =) < a} C p.
Now, let
G ={be ¢M] : MR(p(T) A —¢(T - b)) < a}.

By theorem G is A-definable — note that G # () because e € G. Let us
prove that G satisfies the required properties:

i. G isolates . Let b € G, we want to prove that 9 = X[b]. We know
that MM = p[b]. Let p € (p)ga (4, be such that MR(p) = a, M be an |[M|*-
saturated elementary extension and a in 9 realize p. Since ¥ C p, N | X[d]
and N | @[a]. Since b € G and {¢ € Forz L(A,b) : MR(p A ) < a} C p,
N = ¢la-b]. On the other hand, a - b and a are interdefinable over A,b, so
MR(a - b/A) = MR(a/A) = o [Theorem 2.23]. Then, ¥ C tp(a - b/A). So
N | Lla) and N |= X[a - b]. Hence, N = X[a~! - (a-b)]. Finally, since N |= ¢la),
N E pla!] and N | p[b], we have that a=! - (a-b) = b and N | X[b]. In
particular, 9 = 3[b].

ii. G € ¥. Let bin 9 be such that MM = X[b]. Let pi,...,pr be the types
in (p)gm 4y of Morley’s rank a. Let 9 be an [M|*-saturated elementary
extension and aq,...,a, realize p1,...,px respectively. Then, M | X[a,] for
each i. Thus, M | X[a; - b] for each i. Then, ¢(T - b) € p; for each i. So
MR(o(Z) A —(T - b)) <aand be G. So G € %.

iii. Since G is equivalent to X, (G,-) is a definable group. O

3.3 Zilber’s indecomposability theorem

Let X C G be a definable subset. We say that X is indecomposable if, for
every definable subgroup H of G, X/ := {xH : x € X} is either infinite or a
singleton. We have analogous definitions for monsters models, noted that */g
is a definable class of imaginaries.

An example of indecomposable definable subset is a connected subgroup.
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Lemma 3.15. Let X C G be a definable subset such that X9 :== gXg~ ' = X
for every g € G. Then, X is indecomposable if and only if X/ is infinite or a
singleton, for every K < G definable.

Proof. The "only if" part is trivial. Let us prove the "if" one. Let K < G be
a definable subgroup such that card(¥/x) < w. For every g € G, card(¥/ks) =
card(X’/ks) = card(¥/ k) because the conjugation by g is a bijection. Consider
the normal subgroup K’ = ﬂgec K9. By the descending chain condition
[corollary , there is A C G finite such that K’ = () 4, K9. So K’ is a
normal definable subgroup of G. Hence, by hypothesis, X/ is infinite or a
singleton. Since K’ = (1,4 K is a finite intersection and card(*/xs) < w for
each g € A, we know that card(¥/k/) < w. So ¥/ is a singleton. Let z € X,
so for every y € X, y~' -z € K’ = (e K¢. In particular, y ' -z € K for
every y € X. Hence, X/x is a singleton. O

Theorem 3.16. (Zilber’s indecomposability theorem) Assume G has finite
Morley’s rank. Let {X;}icr be a family of indecomposable definable subsets such
that each one contains the identity of G. Then, the group generated by | J;.; X;
is definable and connected. Moreover, it is generated by the union of finitely
many X;.

Proof. Assume that {X;}ie; = {X; '}ics. Let H = (Uier Xi) be the generated
subgroup. For every finite sequence ¢ = (t1,...,t,) € <*I, consider X7 =
Xy, - X, Clearly X7 C H, for every ¢ € <“]. We have that MR(X3) <
MR(G) < w, so {MR(X3) : t € <¥I} is a set of natural numbers less that
MR(G). So, there is a maximum. Let ¢ = (t1,...,t,) € <“I be such that
MR(X7) = m = max{MR(X3) : t € <“I}. Let p be a global generic type in Xz.
I claim that H = Stab,. We first prove that H C Stab,. It suffices to prove that,
for every i € I, X; C Stab,. Let ¢ € I. Since 1 € X, it suffices to prove that
Xi/Stab, 18 a singleton. Assume that not. Since X; is indecomposable, **/s¢ap,
is infinite. Let (a;);jew € “X; be such that a;l -ay, ¢ Stab, for any j, k € w such
that k # j. Then, ay - p # a; - p for any k,j € w such that k # j. On the other
hand, we have that, for every j € w, MR(a,-p) = m. Also, by definition of a; - p,
X; X7 € aj -p — indeed, X; - X7 € p since 1 € X;. Thus, there are infinitely
many types with Morley’s rank m in X; - Xz = X;7. So MR(X;3)) > m.
That contradicts the maximality of m. Now, we prove that Stab, C H. Since
H C Stab,, X; C Stab,. Therefore, MR(X37) = MR(Stab,) = MR(p). The
latter implies that Stab, is connected by corollary since p is a global
generic type in Stab,. Since MR(X) = MR(Stab,) and Stab,, is connected, by
theorem 1 < Md(X) < Md(Stab,) = 1. So MR(X) = MR(Stab,) and
Md(X) = Md(Stab,). Thence, by proposition Stab, = X7 - X; C H.
The latter also implies that H = Stab, is connected and H is generated by
Xy, U U Xy . O

Remark. For monster models, we can apply the indecomposability theorem to
"classes" of indecomposable definable classes.
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Corollary 3.17. Assume G has finite Morley’s rank. Then, the commutator
[G, G| is definable. Moreover, if G is connected, [G, G| is connected too.

Proof. [G,G°] is generated by the collection {X, },ec where X, ={a-b-a™!-
b= : b€ G°}. X, is definable and 1 € X, for each a € G.

I claim that every X, is indecomposable. Let Y, = {b-a~!-b~! : be G°},
since X, = a-Y,, it suffices to prove that Y, is indecomposable for each a. Since
b-Y,-b~! =Y, for every b € G°, by lemma it suffices to prove that, for every
K < G° definable, Y¢/ is infinite or a singleton. Now, given bab™!, cac™! € Yy,
we have that bab™'K = bac™'K if and only if ¢™'b € Co, (aK). So, Yo/ is
infinite or a singleton, since ¢°/ is connected.

Thus, the indecomposable theorem states that [G,G°] is connected and
definable. If G is connected, we have finished. If G is not connected, note
that G/[QGO] has finitely many conjugates, so [G/[G,GO],G/[G,GO]] is finite and
[G, G| is definable. O

3.4 One-based groups

Notation. In the rest of this chapter and except otherwise stated, (G,-) and
(G, ) will be 0-definable groups.

Theorem 3.18. Let € be totally transcendental and G one-based. Then,

(1) for any n € w, if H < G" is a connected definable subgroup, cb(H) €
acl®(0);

(2) there is a finite definable abelian subgroup of G of finite index; and,

(3) for any p global type in G, there exists b € G such that Staby, - b € p.

Proof. (1) Since H is connected, Md(H) = 1, so there is just one global generic
type [theorem [3.10]. Let A be a finite sorted subset such that H is A-definable,
g € G™ be generic over acl®l(A), p be the global generic type in H and a be
generic in H over acl®d(A, g). Let ¢ = stp(g-a/A, g), u = cb(H) and v = cb(q).
Note the following:

i. v € acl®d(g - a) since G is one-based [Lemma [2.59].
ii. u € acl®(A) since H is A-definable [Theore.
iii. stp(g - a/A) is generic in G™. Indeed, we know that aJ/aCleq(A
by symmetry [Theorem , g J/acleq (4) % Therefore, since g is generic over
acl®d(A) and g-a and g are interdefinable over acl°d(A), a, by theorem we
have

)g and,

MR(g - a/acl®d(A),a) =MR(g/acl®(A),a) = MR(g/acl®!(4)) =
=MR(G") > MR(g - a/acl®*(4)) > MR(g - a/acl®?(A),a).

iv.g-a J/(Z) u. Indeed, by ii. and iii.,
MR(G") >MR(g-a) > MR(g - a/u) >
>MR(g - a/acl®l(4)) = MR(G").
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v. u € dcl®(v). Indeed, we use the theorem Let f be an automorphism
fixing v and let H' = f(H) and ¢’ = f(g). Since gH and ¢’H’ both belong to ¢
and ¢ - a and a are interdefinable over acl®!(4, g), by theorem [2.23)

MR(g) =MR(g - a/acl®)(4, g)) = MR(a/acl*(4, g)) =
=MR(H) > MR(gH N ¢'H’) > MR(q).

Since gHN ¢'H' = ¢"(HN H’) for any ¢” € gHN ¢'H’, we have that MR(H N
H') = MR(H). But H is connected, H = HNH’, so H C H'. Also, H' is
connected and MR(H) = MR(H'), so H=H'.

Finally, v. and i. together imply that u € acl®(g - a), and by iv. we get
that u € acl®!(0).

(2) It suffices to prove that G° is abelian, so we may assume that G is
connected — observe that G° is also one-based. Consider G? and, for any
g€ G, Hy={(h,go'-h-g) : h e G} < G2 Since H; and G are definably
isomorphic, H, is connected [theorem and theorem B.10]. Consider the
definable equivalence relation g ~ ¢’ < H, = H,. Of course, g ~ ¢’ if and
only if g1 -h-g =g ' -h-g for every h € G. Therefore, g ~ ¢ if and
only if g7' - ¢’ € Z(G). Now, by (1), H, is definable by a finite tuple from
acl®d(0) for every g € G. Thus, there are at most card(L) different Hy, i.e.,
[G : Z(G)] < card(L). However, in €, the latter is possible if and only if
[G: Z(G)] < w. Hence, G = Z(G) since G is connected.

(3) Let Ay = cb(p), g be generic in G over Ag and q = g - p. Let u =
cb(gStabp) and v = cb(q). Firstly, note that u and v are interdefinable over Ag
by theorem Indeed, every automorphism f fixing Ay leaves p invariant, so
leaves Stabp invariant too. Then, f fixes u if and only if f(g)Stab, = gStabp.
So f fixes w if and only if q = g-p = f(g) - p = f(q). Therefore, f fixes u if and
only if f fixes v. Let 9t < € be an Ng-saturated structure where Ay and g are
in and @ be such that tp(a/M) = p|as. Then, since g € M, qjar = tp(g - a/M).
Since tp(g - a/M) is stationary and G is one-based, v = c¢b(q) = c¢b(g - a/M) €
acl*d(g-a) by lemma So u € acl®d(A4g,g-a). Now, a \LAO g and g is generic
in G over Apg. So g-a J”Ao a and g - a is generic in G over Ag. Indeed, by

theorem [2.23]

MR(G) >MR(g - a/Ap) > MR(g - a/Ag,a) =
=MR(g/Ao, a) = MR(g/Ag) = MR(G).

Since u € acl®d(Ayp, g-a), we conclude by symmetry [theoremand corollary
that aJ/AOg ~a,u. Let b € M realize pj, 4, So, bJ/AO u. We know
that v = ¢b(q) € dcl®¥(Ap,u), so q does not fork over Ag,u [theorem [2.37].
Also, tp(g - a/M) = qyar, 50 g - @ \LAo,ub by monotonicity [proposition [2.31].
By symmetry [theorem , b J/Ao,ug -a. By transitivity [proposition [2.31
b J/AO g-a,u. Hence, a A b \LAO g-a,u and tp(b/Ag) = tp(a/Ap)
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Pja,- But Ay = cb(p), so pja, is stationary [corollary . Therefore,
tp(b/Ag, g - a,u) = tp(a/Ao,g - a,u). We know that g - a € gStabpa. So
gStaby((g-a) - 1) € tp(a/Ao, g - a,u) = tp(b/Ag, g - a,u). So g-a € gStabyb.
In particular, a € Stabpb. Hence, we conclude that Stabyb € tp(a/M) = pjp C
p- O

Our next aim is to prove the theorem [3.22] which is a characterization of
one-based 0-definable groups. To do that, we need the following lemmas.

Lemma 3.19. Let L be an S-language, T a complete L-theory, ¢ € ForzL
consistent with T and F C Forz L a non-empty set closed under N,V and — such
that ¢ € F and there is ¢ € F with ¢ € p and ¢ & q for every pair of different
types p,q € ($). Then, every formula ¢ € ForzL such that T = VT(p — ¢) is
equivalent to a formula of F modulo T.

Proof. Of course, (¢) C ({(¥) : v € Fand T = VE(p — ¢)}. Let us prove
by contradiction that
= @

peF
TEVZ(p—)
Let p € Sz(T) be such that ¢ ¢ p and ¢ € p for every ¢y € F such that
T E VZ(p — ). In particular, ¢ € p. For every q € (y), since ¢ € g, there
is 1, € F such that ¢, € p and ¥ & q. Let ¥ = {¥}qe(py € F. Thus,
¥ C pand (X) N {p) = 0. By the Compactness theorem [Theorem [[.11], there
is A C ¥ finite such that (A) N (p) = 0. Therefore, 1o = )\ e ¥ is such that
o € F, Yo € pand T = VZ(p — —bg). So, =)y € p and g € p, which is a
contradiction. Hence,

= [ .
peF
TEVZ(¢—v)
By compactness of Sz (7)) [proposition [I.18], there is a finite subset A C F such
that <<p>:<A):</\weAw>,and /\weAwe}'. O

Lemma 3.20. Let € be totally transcendental. Then, for every n, every definable
subclass of G™ is a boolean combination of cosets of acl()-definable subgroups of
G" if and only if, for every n, every definable subclass of G™ is a finite boolean
combination of cosets of definable subgroups of G™.

Proof. The "only if" part is clear, let us prove the "if" part. It suffices to prove
that every definable subgroup has a acl(f))-definable subgroup of finite index.
Let Hz € G™ be an a-definable subclass. Let ¢(%,y) € Forz 5L be such that
»(T,a)[€] = Hg. Let

H = {(¢.d) : }= ¢(¢,d) and ¢(7,d)[€] < G}

and write H; = {¢ : (¢,d) € H}. It is clear that H C G"'™ is a 0-
definable class. By hypothesis, H is a boolean combination of cosets of definable
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subgroups. Therefore,

’

N ; M;
:U ﬂéikKM\UﬁF
=0 j

where F;;, K;;, < G™™™ for each i, j, k. The intersection of cosets is empty or

a coset, so we may assume that M/ = 0. Thus,

N M;
H=|J|aK:\ ] d,F
§=0

Let D; := ¢;K; and E;; := d;;F;; for each i, j. Let b be such that D;, K;, E;;
and F;; are b-definable for each i,j. Since H is 0-definable, we may assume
that that b \L@ a. Let h € HZ be a generic element over @, b. Since (h,a) € H,
there is an 4 such that (h,a) € D; \UJ ~ E;;. We may assume that (h,a) €
Do\UJ ()EOJ Write ¢ —Co,d —doj, i —FO,],K Ko,D —DO and
E, := Ey; for each j. Let K' = {u : (u,1) 6 K} and F; = {7 : (u,1) € F;}
for each j. I claim that HS = K'°.

Firstly, let us prove that H2 C K'°. Let € be a generic element in H2 over
@,b,h. Note that h - is a generic element in HZ over @,b, h [Theorem-
Since HS is connected, tp(h-€/a, b) = tp(h/a,b) because both are generic. Since
(h,a) € D and D is b definable, then (h-€,a@) € D. So (h,a), (h-€,a) € ¢F.
Hence, (e,1) € K, i.e., € € K’'. Therefore, we have proved that every generic
element of HZ is also in K’. By proposition we conclude that HS C K’,
so H2 C K’°.

Now, we prove that K'* C H2. Let Q1 = {j : (1,a) € E;} and Q2 =
{] : [K/ : F;} < w}. Then, Q1 N Q2 = 0. Indeed, if j € Q1 NQ2, then
h e Hy CK'® CF). So (h,1) € F; and (1,a) € E;. Therefore, (h,a) € Ej,
a contradiction since (h,a) ¢ E;. So, Q1 N Q2 = 0. Let ¢ be the generic type
in K'° over @,b,h. For each j, since E; is b-definable, either —=E;(Z,a) € ¢ or
E;(7,a) € q for some j.

Let us prove that E;(Z,a) ¢ ¢ for each j. Indeed, if E;(Z,a) € ¢, for
every generic element e € K'° over @, b, h, (e,a) € E;. Let €,¢’ be independent
generic elements in K'° over @, b, h, then ¢’ - € is a generic element over @, b,
too [Theorem m Thus, (e, ), (e ,a),(€ -¢,a) € E;. Soec F). Since € is
arbitrary, every generic element of K'° belongs to F; By proposition we
conclude that K C F. So [K': F}] < w, i.e. j € Qa. Also, given e € K’°
generic over @, b, h, we have that ,e71 € F and (e,@) € E;. Thus, (1,a) € Ej,
i.e. j € Q1, a contradiction since Q1 N Qy = 0.

Therefore, —E; (T, @) € ¢ for each j. On the other hand D(Z, @) € ¢. Indeed,
since h € K'°, h-e € K'° is generic over @,b,h. So (E_l -%,1) € K and
(h,a) € D. So (e,a) € D. Hence, every generic element € in K'° over @,b, h
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is such that (e,a) € D\ UE; C H. So, every generic element in K'° over
@, b, h belongs to Hg. By proposition we conclude that K’° C H5. Hence,
K'° C HO.

Finally, consider N = Hz N K’. We have proved that [Hz : N] < w and

[K' : N] < w. Since Hz is a-definable and [Hg : N] < w, N has finitely
many conjugates over a. Thus, N is acl(@)-definable. By a similar argument,

N is acl(b)-definable. Let r = cb(N) in €%, then r € acl®d(a) N acl®!(b) and
h2.31

@ | b. By the corollary [2.34] @ | b,r. By monotonicity [proposition ,
@ | r. By symmetry [theorem [2.33|, 7 | @. Since MR(r/@) = 0, we conclude
that MR(r) = 0. So r € acl®!(0)). Thus, N is acl(@)-definable. O

Lemma 3.21. Let H < G be a acl(D)-definable subgroup and ¢ € G. Then,
any infinite intersection of conjugates of gH is empty.

Proof. Indeed, since there is a finite number of conjugates Hy, ..., Hy of H,
for any automorphism f, f(cH) = f(c)H; for some i € {1,...,k}. Now, for
any ¢,d € G and any i € {1,...,k}, either cH; NdH; = 0 or cH; = dH,.
Thus, when {f,(cH)},cy is infinite, by the pigeonhole principle, there are i €
{1,...,k} and n,m € N such that f,(cH) = f,(c)H; and f,,(cH) = f,,(c)H;
and £, (¢)H; N £, (c)H; = 0. O

Theorem 3.22. Let € be totally transcendental. Then, G is one-based if and
only if, for every n € N, every definable subclass of G™ is a finite boolean
combination of cosets of definable subgroups of G™.

Proof. (=) By the lemma|3.19] it suffices to prove that for pair of global types
P, P’ € (G")se(c) there is a definable group H < G™ and an element g € G"
such that p € (Hg) and p’ ¢ (Hg). Indeed, assume that MR (p) < MR(p’). Let
Ao be a finite sorted subset such that p and p’ do not fork over A, and P|4,
and piAO are stationary. Let c realize p4, and ¢’ realize piAo,c' By (3) of the

theorem [3.18} there is an element a € G™ such that ¢ € Stabpa. If ¢’ € Stabpa,
then ¢ - ¢=! € Stabp. Now, since ¢’ - ¢~! and ¢ are interdefinable over Ay, ¢ and
MR(p) > MR(Stabp,) [proposition [3.8]:

MR(c- ¢~ /Ag, ¢) =MR(c /Ay, ¢) = MR(¢ /Ag) = MR(p') >
>MR(p) > MR(Stab,) >
>MR(c’ - ™" /Ag) > MR(c' - ™" /A, 0).

So, ¢/ -c7! L, ¢ Also,c |, ¢ by symmetry [theorem [2.33], so ¢’- c ! L,

since ¢ - ¢~ and ¢ are interdefinable over Ag,c’. Thus, tp(c/Ag,c - ¢71) =
Plag,r-—1 and tp(¢/ /Ao, ¢ - ¢™') = pjag,er.c1. Since ¢/ - ¢7! € Staby

B pn et =tp(e Ao, & ) =
=tp((¢' - ¢ ) -¢/Ag,d ) = (- ¢! D) Ag,ee—t =
=P|Ag,c' -

Hence, p = p’. So, if p # p’, then Stabpa € p and Stabpa ¢ p’.
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So, by the lemma|3.19] every definable subclass of G™ is a boolean combination
of right cosets of G™. Now, let H be a definable subgroup of G™, then H° <
(G™)°. Since (G")° is abelian by (1) of theorem [3.18] H° < (G™)°. And
(G™)° <4 G™, so H° <4 G™. Therefore, every right coset is a finite union of
left cosets. The latter implies that every definable subclass of G™ is a boolean
combination of cosets.

(<) By lemma|[3.20} every definable subclass of G™ is a boolean combination
of cosets of acl()-definable subgroups of G™. Let a € G™ and A be a finite
sorted subset. Let p = stp(a/A) and p be its global non-forking extension. By
lemma we want to prove that cb(p) € acl®d(a). Let ¢ € p be such that
¢ = Vz(¢ — G™), MR(¢) = MR(p) and Md(¢) = Md(p). By corollary 2.41] we
know that cb(p) € dcl®d(cb(¢)). It suffices to prove that cb(¢) € acl®(a). Let
Y = ¢[€]. By assumption,

¥ ~UNE Uos
i g k

where E;;, D;;, are cosets of acl(())-definable groups for each ¢, j, k. There is an
i such that a € (; Ej; \ UDix. We may assume that Y =, E; \ J; Dx. On
the other hand, the intersection of cosets is empty or a coset. So, we have that
Y = E\ U, Dy were E and Dy, are cosets of acl(P)-definable subgroups for each
k. Then,

Y:ﬂE\Dk.
k

If MR(Dy) < MR(E), then MR(E \ D;) = MR(E). So, we may assume that
MR(E) = MR(Dy,). Therefore, E \ Dy, is a finite union of cosets of the same
group that D;. We may assume that

Y =(\UFwri = Fir-
k 1 ik

There is an ¢ such that a € (), F,. We may assume that Y = (), F,. Now, note
that cb(Y) € dcl®d({cb(FY},) : k}), so it suffices to prove that cb(F}) € acl®!(a)
for each k. Let F be a coset of an acl((})-definable subgroup such that a € F.
Let F = ({£(F) : f aut. and a € £f(F)}. Of course, a € F. In particular F # 0,
so F is a finite intersection [lemma . Therefore, there are finitely many

conjugates of F to which a belongs. Hence, cb(F) € acl®d(a). O

Corollary 3.23. Let € be totally transcendental. Then, G is one-based if and
only if, for every n € N, every definable subclass of G™ is a finite boolean
combination of cosets of definable connected subgroups of G™.

3.5 Almost strongly minimal subgroups

Lemma 3.24. Let X C G be a strongly minimal definable class. Then, there is
a definable subclass Xo C X such that X\ Xy is finite and Xg is indecomposable.
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Proof. Let
K ={K : K < G definable and */x finite}

and Ko = N{K : K € K}. By the descending chain condition [corollary [3.4],
Koy is definable and Ko = [[{K : K € A} where A C K is finite. Thus,
X/k, is finite. Then, X = |J,(z;Ko) N X for some z1,...,2, € X. By
1 = Md(X) = >, Mdy((2;Ko) N X). Therefore, there is just one i
such that Md; ((z;Ko) N X) # 0. Assume that Md; ((z1Ko) N X) = 1 and
Mdl((a:jKO) n X) = 0. Then, (]}jKo) N X is finite for ] # 1. Let XO =
(r1Kp) N X, then X \ X is finite. I claim that Xg is indecomposable. Indeed,
if K < G is a definable subgroup, either X/k is infinite or K € K. Since
X \ X is finite, X0/ is infinite when ¥/ is so. If K € K, then K; C K, so
XU/K == {le} O

Proposition 3.25. Let € be a monster model over L and assume G has finite
Morley’s rank. Let X C G be a strongly minimal definable subclass. Then, there
exists a connected definable subgroup H < G such that H C dcl(X) and X/g is
finite.

Proof. By lemma [3:24] let Xy C X be an indecomposable definable subset
such that X \ Xy is finite. Let a € Xo, write X, := a~'Xy. Thus, {X,}aex,
is a family of indecomposable definable subsets such that, for each a € Xy,
1 € X, and every element of X, is definable from elements of X. By the
indecomposability theorem [theorem , H = (U,ex, Xa) is a connected
definable subgroup of G generated by a finitely many X,. Thus, every element
of H is definable from finitely many elements of X. On the other hand, X = XoU
{a1,...,a,}, so card(X/g) < card(X°/g) +n =1+nsince b; ' - by € X, CH
for any by, bs € Xj. O

Assume G has finite Morley’s rank and let X C G be a strongly minimal
definable subclass. Consider the set

By —IB B < G is definable, connected and there
X717 s a finite sorted subset F' such thatB C acl(F,X)

By the proposition Bx # (. Since MR(G) < w, {MR(B) : B € Bx}
is a finite set of natural numbers. Therefore, there is Bx € Bx such that
MR(Bx) = max{MR(B) : B € Bx}. I claim that every element of Bx
is contained in Bx. Indeed, let B1,Bs € Bx and Fi, F5> such that B; C
acl(F;, X), for ¢ € {1,2}. Then, By and By are indecomposable, so B’ =
(B1 UBsy) < G is a connected definable subgroup by the indecomposability
theorem [theorem [3.16]. Now, B’ C dcl(B; UB3) C acl(Fy U F»,X). Thus,
B’ € Bx and MR(B;) < MR(B’). Hence, for B; = Bx and B, = B arbitrary,
we conclude that MR(Bx) = MR({Bx U B)). Since (Bx U B) is connected,
Bx = <BX @] B>

Note that, for any two strongly minimal definable sets X; C G and X5 C G,
if X1 7KX2, by lemma BX1 = sz and BX1 = sz.
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Finally, we define Bg and Bg as follows:

B < G is definable, connected and such that there
Be=4¢B : is X C G definable with MR(X) = 1 and a finite
sorted subset F' such that B C acl(F, X)

Note that Bx C Bg for every strongly minimal definable subclass X C G.
Also, note that both definitions coincide when G is strongly minimal — in this
case, Bg = {B : B < G is definable and connected}. Since MR(G) < w,
{MR(B) : B € Bg} is a finite set of natural numbers. Therefore, there is
Bg € Bg such that MR(Bg) = max{MR(B) : B € Bg}. As in the above
case, we can prove that Bg is maximum in Bg.

Proposition 3.26. Assume G has finite Morley’s rank. Then, there are Xy,

., Xy, strongly minimal definable subclasses of G, such that Bg = (J;—, Bx,).
Moreover, there are Xq,...,X,,, strongly minimal definable subclasses of G
pairwise orthogonal such that Bg = (J;—, Bx,).

Proof. Let Y C G definable and F finite sorted subset be such that MR(Y) = 1
and Bg C acl(F,Y). Let

K={H: H=(Bx, U---UBx_ ) where X;,...,X,, C G strongly minimal}.

Since MR(G) < w, {MR(B) : B € K} is a finite set of natural numbers. Let H €
K be such that MR(H) = max{MR(B) : B € K}. Let H= (Bx, U...UBx, ).
Let A be a finite sorted subset such that FF C Aand Y, X4,...,X,, Bg and H
are A-definable. It is clear that H C Bg. Suppose that Bg \ H # (). Since Bg
is connected, Bg \H # 0 implies that MR(H) < MR(Bg). Then, [Bg : H > w
by the descending chain condition. So, B&/y is a proper definable class of €9,
Then, there is an imaginary element ¢ = cH € B&/g C C®9 non-algebraic over
A. Since ¢ € Bg, there is a finite Yy from Y such that ¢ is algebraic over Yy, A.
Thus, ¢is algebraic over Yy, A. We may assume that ¢ is not algebraic over Y/, A
for any proper subset Y/ C Yy. Let y € Yj and set Y7 = Yy \ {y}. Then, ¢ €
acl®(4,Yp) \ acl®*(4,Y7). Thus, EJ//A’YI y. Since MR(y/A) = 1, by symmetry
[theorem [2.33], we have that y € acl®/(¢U Y7, 4). So ¢ € acl(4,Y; U {y}) C
acl®d(A4,Y1,¢) and ¢ ¢ acl(A,Y7). Thus, by theorem 0 < MR(c/A, Y1) <
MR(y/A,Y1) = 1, so MR(c/A,Y7) = 1. Also, MR(¢/A,Y1) = 1 by the same
theorem, since ¢ and ¢ are interalgebraic over A,Y;. So, since MR(c/A,Y7) = 1,
there is a A, Yj-definable class T C Bg such that ¢ € T and MR(T) = 1.
Since ¢ € acl®)(A,Y1,¢), there is a formula ¢(Z,y) € Forz,L*(A,Y1) such
that € = ¢[c,¢] and card(¢(Z, d)[€%]) = card(¢(F, ¢)[€*Y]) for every ¢. Let
W(T) = ¢(Z, 7 (T)). Thence, 1) € tp(c/A, Y1), so TV = T N¢[€Y] is such that
¢ € T'. Of course, T’ is such that MR(T’) > 1. Now, every element of d € T’
is algebraic over dH and A,Y;. Thus, [T’ : H] must be infinite. Let us prove
that for any X C G such that MR(X) = 1, ¥/ is finite. By proposition [2.12]
it suffices to prove that */g is finite for every strongly minimal definable class
X C G. The latter is clear, since Bx € H by maximality of H and X/g, is
finite by proposition [3.25] Therefore, H = Bg. Finally, since Bx = Bx: if
X AX’, we may assume that X1,...,X,, are pairwise orthogonal. O
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3.6 Orthogonality and groups

Lemma 3.27. Let € be totally transcendental, E a 0-definable class and g
algebraic from the coordinates of E. Then, there is an imaginary element f €
dcl®d(g) N del®Y(E) such that g € acl®d(f).

Proof. Let ¢(z,€)[€] be a finite e-definable set such that € = ¢(g,€) and
e € E". Let f = cb(é(g,7)[€] NE™). Since E is O-definable, f € dcl®(g) by
theorem It follows that f € dcl®)(E) by corollary

Let us prove that g € acl®(f). Let ¢(w,7) be an L®-formula be such that
V(f,9)[€] = ¢(g,7)[€] NE". Let k = card(¢(z,€)[€]), we prove that there are
at most k-conjugates of g over f. Indeed, let go, ..., gr be conjugates of g over f.
We know that tp(g;/f) = tp(g/f) for each i. Since Vy (¢(f,7) + ¢(z,y) NE(Y)) €
tp(g/f), we conclude that ¢(g;,7)[€] N E" = ¢(g;,7)[€] N E™ for each i,j.
So go,---,9n € ¢(x,€)[€] and by the pigeonhole principle g; = g; for some
P43 0
Theorem 3.28. Let € be totally transcendental, D a strongly minimal 0-
definable subclass and E a 0-definable class. Assume G is almost strongly
minimal respect to D. Then, G LE if and only if there are (H,*), a definable
group of €9, and a definable onto homomorphism h : G — H such that ker(h)
is finite and H C dcl®d(E).

Proof. (<) Let A C C° be a finite sorted subset such that H and h are A-
definable. Since g is algebraic over h(g) for every g € G, we have that g f , h(g)
for any g not algebraic over acl®d(A). So, G YH. Then, by corollary there
is a finite sorted set A such that G C acl®!(H, A) C acl®!(E, A). So G YE.

(=) First, assume that G is connected. Since G AE, by corollary [2.64]
there is a finite sorted subset A such that G C acl®*(E, A). In particular, E is
a proper class. Adding A to the language, assume that A is empty.

Step 1 (First approximation to h). There is a definable function hy :
G — dcl®Y(E) such that hy ' ({f}) is finite for every f.

Then, for every g € G thereis f, € dcl®d(g)Ndcl®(E) such that g € acl®(f,)
by lemma[3.27 since G C acl®d(E). Let 4 (7, €) be an L(E)-formula defining f,
where € € E™s and ¢4(7,7) a formula such that ¢(g,7)[€] = {g} and ¢(z, f,)[€]
is finite of cardinality k,. We may assume that ¢4 (%, f)[€] C G is finite of
cardinality k, for every f, that ¢4(¢’,7)[€] is a singleton for any ¢’ € G and

that 14(y,e')[€] is a singleton for every € € E™s. Consider

bg(T) = T7, 32 (py (T, 7) Ny (7,Z) NE"(Z)) .

We have chosen ¢, such that tp(g) € (¢4) C (G). Thus,

U <¢g> =(G).
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By compactness of S¢ [Theorem , there are finitely many ¢1,...,9, € G
such that U;_, (¢4,) = (G). Consider ¢} = ¢;AA\;_; =¢;. Thus, ¢{[€], ..., ¢, [€]
is a partition of G. We may assume that ¢1(Z,7),...,¢n(T,7) have the same
free variables — use definable elements of dcl®d(E). Define hy(g) such that
€ E vilg,ha(g)] when € = ¢;lg]. Then, hy : G — dcl®)(E) is a definable
function. Indeed, if € = ¢l[g,h2(g)], then {h(g)} = ty, (y,€¢)[€] for some
& € E"s, 50 h(g) € dcl®Y(E). Also, hy ' (f) € Ui, ¢:(7, f)[€] is finite.

Step 2 (Kernel) Since G is connected, it has a unique global generic type.
Let p be the global generic type in G. Let

K={beG : hy(b-T)=hs(T) €p} =
={be G : hy(b-g) =ha(g) for one (all) g € G generic over b}.

I claim that K is a finite A-definable normal subgroup of G. Adding A to the
language, assume that A is empty.

i. By the theorem K is 0-definable.

ii. If K is infinite, let {b;}ic, € K and g € G generic over {b;};cw, then
{b; - gYicw € hy'(g) which is finite. So, K is a finite definable set.

iii. It is clear that 0 € K. On the other hand, if b € K, let g be generic in G over
b, by theorem [2.23] b g is generic in G over b=! and ha(b™" - (b- g)) = hy(g) =
hy(b-g). Also, if a,b € K, let g be generic in G over a, b, by theorem [2.23] b- g is
generic in G over a. Therefore, ho((a-b)-g) = ha(a-(b-g)) = ha(b-g) = ha(g),
so a-b € K. Hence, K is a subgroup.

iv. Let ¢(7,7) be the formula given by hy(7 - Z) = hao(Z). Then, if b € K,
¥(Z,b) € p. Let a € G, since the conjunction for a is a definable bijection, by
corollary 2.25|and unity of the generic type, (7, a-b-a~!) € p. Soa-b-a~! € K.
Hence, a - K - o~ = K and we conclude that K is normal.

Step 3 (Second approximation to h) Since G is almost strongly minimal
respect to D, MR(G) = r € N [corollary . Let gg,...,g92- be generic
elements in G over A such that g; | git1,...,92-. Wedefineh; : G — dcl®*(E)
by hy(b) = (ha(b-go),-..,ha(b- gar)). This one is an A-definable function. We
prove that hy(a) = hy(b) = Ka = Kb. Indeed, by Lascar’s equation [Corollary
.56, MR(a,b) = MR(a/b) + MR(b) < MR(a) + MR(b) < 2r. So,

0 < MR(a,b/go,--.,92-) < MR(a,b/g1,...,92-) <--- < MR(a,b) < 2r.

So, a,b
> J'/!J'i+1>~-792

gi L giv1,---,92r, by transitivity [Proposition [2.31] and symmetry [Theorem
2.33|, a,b | gi- So, there is an i € {0,...,2r} such that g; is generic over a, b.

Then, a - g; is generic over b-a~! [Theorem [2.23]. Therefore,

hi(a) =hy(b) =hs(a-g;) =ha(b-g:) =ha(b-a™" - (a-g;))
=b-a e K= Kb= Ka.

~gi for some i € {0,...,2r} by the pigeonhole principle. Since
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Step 4 (Definition of h and H) We define h(g) as the class of (h'(b-g))pex
under the definable equivalence relation with infinitely many classes (mp)pex ~
(my)verx < {mptoex = {M}}rex. Thus, h: G — dcl®Y(E) is a A-definable
function. Let us prove that h(g) = h(¢') & Kg = K¢'. Indeed, if h(g) = h(¢'),
there are b,b' € K such that hyi(b-g) = hy(V/ - ¢'), so Kbg = KV'g, ie.,
Kg = Kg'. On the other hand, if Kg = K¢', then h;(Kg) = h;(K{¢'), i.e.,
h(g) = h(¢’). Now, we define H=Im h C E and « viah by fx f' =h(g-¢’)
for g,¢’ € G such that h(g) = f and h(¢’) = ¢’. Note that (H, ) is a group
since h(g) = h(¢’) & Kg = K¢’ and K is a normal subgroup. Thus, h is an
onto definable homomorphism with kernel K finite. Note that H = /.

Step 5 (When G is not connected) If G is not connected, consider
the connected component G°. Note that G AE implies G° AE. Let h° :
G° — H° be the onto definable homomorphism of finite kernel K° for G°
which we obtained by the steps 1 to 4. Note that K° C Z(G°), i.e., Z(K°) =
G°. Indeed, this is clear since G° is connected and Z(K°) has finite index
because K° is finite. On the other hand, since [G : G°] < w, let ay,...,am €
G be such that {a;G°,...,a,,G°} = ©/go. Since G° is a characteristic
subgroup of G and Z(G°) is a characteristic subgroup of G°, the conjugates
amK°ay?t, ... amK°a,! are subgroups of Z(G°). Thus, the product K =
alKoal_1 -+-a, K°a ! is a subgroup. Of course, K is a finite definable normal

subgroup of G. Let h°(g) = [h°(g)]ne (ko) € H® = HO/ho(KO). Let eq,...,e, €
dcl®d(E) be m different elements of the same sort and H = {ey,...,e,} X He.
Define h(a; - g) = (ei,ﬂg(g)) for g € G° and i € {1,...,m}. Then, h(g) =
h(¢) & gK = ¢K. So, (H,x) is a definable group defining * in H by
fxf =h(g-g) where g, € G, h(g) = f and h(¢’) = f’. Then, h is an
onto definable homomorphism with kernel K finite. O
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4 Model theory of algebraically closed fields

In this chapter we study some model-theoretic properties of algebraically closed
fields applying the results proved in the previous chapters. In the first section
we prove the basic properties of the theory of algebraically closed fields, like
elimination of imaginaries [Theorem [4.6] or w-stability [Theorem. The most
significant result is the equivalence between Morley’s rank and Krull’s dimension
[Theorem. Next, we define the basic algebraic-geometric concept of abstract
variety, check that are definable in the model-theoretic sense and prove the
rigidity theorem [Theorem [4.16]. At the end of the chapter, we apply the
results already studied to algebraic groups and abelian varieties. The most
relevant results are lemma [£.17] proposition [£.18 and theorem [.22]

We introduce some notations: Write L, for the language of rings, i.e., L, =
{0,1,—,+,-}. Write ACF for the L,-theory of algebraically closed fields, i.e.,
the axioms of fields together with the following sentences

VYo, -y Yn1 3T + Yp1 - Py x4ty =0 for n > 2.

Write ACF,, for the L,-theory of algebraically closed fields with characteristic
p (p =0 or prime), i.e.,

ACF, = ACFU {1+ Koy = 0} p prime characteristic
ACFg = ACFU {1+ -"- + # 0}nen- 0 characteristic.

Notation. In the rest of this chapter and except otherwise stated, K will denote
an Wy-saturated algebraically closed field.

Write V,, and I,, for the functions given by
V,.(A)={ze€ K" : VP A P(a) =0}
I,(A) ={P e K[z1,...,2,] : Yae A P(a) =0}

Remember that, by definition, V(A) is a Zariski closed set and I(A) is an ideal.
Also, remember the Nullstellensatz, i.e., I(V(A)) = /(A), and Hilbert’s basis
theorem, i.e., K[x1,...,x,] is a noetherian ring.

4.1 Basic model theory of algebraically closed fields

Our first theorem is a basic result of any course of model theory.

Theorem 4.1. (Quantifier elimination of ACF and completeness of
ACF,)

1. ACF has quantifier elimination;

2. ACF,, is k-categorical for every every k > Ry and every p prime or 0.
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As a consequence we have the following results:

Corollary 4.2. The definable sets of algebraically closed fields are the Zariski
relative open subsets of Zariski closed sets.

Proof. By quantifier elimination [4.1] and the basis Hilbert’s theorem. O
Corollary 4.3. Algebraically closed fields are strongly minimal.
Corollary 4.4. ACF,, is w-stable for each p prime or 0.

Proof. Since algebraically closed fields are strongly minimal, ACF, is totally
transcendental. Therefore, ACF,, is w-stable by theorem [2.22} since L, is finite.

Remark. Thus, ACF,, has saturated models [Theorem [2.2].

Proposition 4.5. Algebraically closed fields with transcendent degree over their
prime subfield greater than 8 are not locally modular.

Proof. Let K = ACF be a saturated model. Let a,b € K be transcendent
elements over () such that @ | b. Let V = {(z,y) : y = axz + b}. Since
x — (z,ax 4+ b) is a definable bijection, MR(V) = MR(K) = 1 and Md(V) =
Md(K) = 1 [Corollary 2.25]. So, V is strongly minimal. Let p(z,y) be the
global generic type in V, so MR(p) = 1 and Md(p) = 1. T claim that cb(p) =
(a,b). Indeed, let f be an automorphism leaving p invariant. Then, (f(a)x +
f(b) =y) € p. Let (¢,d) and (¢/,d’) be two different generic elements of V' over
a,b, f(a), f(b), then we have the equations

d= f(a)ce+ f(b), d=ac+b
d = f(a)d + f(b), d =ac +b

Note that (¢, d) # (¢/,d’) implies ¢ # ¢/. Therefore, a = (c—c')~t-(d—d') = f(a)
and b = f(b) too, i.e., f fixes (a,b).

Now, p is strongly minimal and MR(cb(p)) = 2, so K is not locally modular
[Theorem [2.60]. O

Remark. Any regular function is definable. Indeed, if f: Y — K is regular,
there are Uy, ...,U,, Zariski open, hence definable, and g1,h1,...,9m,hm €
K[zy...,2,], hence definable, such that fy,(Z) = gi(f)/hi@) where Y C U; U
-+ -UUy, and h; has not zeros in U;. Therefore, regular functions and morphisms
are definable.

Theorem 4.6. ACF), has elimination of imaginaries for every p > 0.

Proof. By the theorem ACF, has weak elimination of imaginaries. So, by
the theorem [1.38] it is suffices to prove that ACF), eliminates finite imaginaries.
Let D = {¢',...,@"} be a finite set of n-tuples in the monster model K and
consider the polynomial

n

k
P(z,y1,...,yn) = H(a: - Zcé “Y5)-
i=1

j=1

An automorphism fixes P if and only if it permutes the elements of D. So, the
coefficients of P are a canonical base of D. O
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We have two notions of algebraic. Now, we prove that the concept of
algebraic in the model-theoretic sense and in the field-theoretic sense concide.

Theorem 4.7. (Algebraic in model theory and field theory) Let A C K,
a € K and k C K be the subfield generated by A. Then, a € acl(A) if and only
if k(a)/k is an algebraic extension.

Proof. If a is algebraic over k, let P(z) € k[x] be the minimal polynomial of
a. Then, the L, (k)-formula P(x) = 0 defines a finite set in which a is. This set
is definable over A since every automorphism in the monster extension fixing A
fixes k, so leaves the zero set of P invariant.

Assume a is transcendental over k. All transcendental elements over k have
the same type over k by quantifier elimination [Theorem . Indeed, this is the
type generated by the set of L,(k)-formulas P(z) # 0 for each P(x) € k[z]. On
the other hand, we know that there are infinitely many transcendent elements
over k by saturation. That implies that every definable set over k£ in which a
is has infinitely many elements. Therefore, since every definable set over A is
definable over k, we conclude that a ¢ acl(A). O

However, A-definable in model theory does not mean defined over A in field
theory. Write V/k for defined in field-theoretic sense and k-definable for model
theory.

Lemma 4.8. (Definable in model theory and field theory) Let A C K
and k be the field generated by A. Then, a € dcl(A) if and only if a € kpers
— where kper is the perfect closure of k in K, i.e., kpert = U, Fr™ " (k) where
Fr: =+ 2P is the Frobenius’ automorphism of K.

Proof. If a € kpef, we can define a by the L(A)-formula 2™? = tX[¢] for n € Z,
where tX[9] € k with ¥ evaluation in A. On the other hand, if a € dcl(A), in
particular, a € dcl(kperf)- So a is algebraic over kperr. Let P(z) € kperf[x] be the
minimal irreducible and separable polynomial of a. If P(x) has degree greater
than 1, a is algebraic but no definable. Indeed, there is an automorphism which
maps a to other zero of P(x). So, P(z) has degree less or equal than one. Since
P(a) =0, P(z) =x — a, S0 a € kper. O

Lemma 4.9. (Minimal set of definition) Let V C K™ be a Zariski closed
set. Then, there is a subfield ko C K such that V/ko and, for any f € Aut(K),
f leaves V' invariant if and only if [ fizes k.

Proof. Let R = Klzvaul/y ) B = {eq,...,e,} C {Z" : r € N"} such that
{leo],---,[em]} is a basis of R as K-vector space and ko be the subfield of K
generated by

USXeK : IreN"og, hic, divn, o dm €K [T =D A+ [ey]
i=0 j=0

I claim that V/kq and that, for every f € Aut(K), f leaves V invariant if and
only if f fixes kg.
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First we show that I(V) = (I(V) Nko[z1,...,2Zn]) K[zy,....z,]» tO Prove that
V/ko. Let P € I(V). we have that

pzzaa.fa:Zaa-Z)\(a)j~ej+Zaa~ E“—Z)\(a)jwej

acl acl 7=0 acl 7=0

Since P € I(V) and ) . a - (fo‘ — 2o Ma); ~ej) € I(V), we also have

ZZaa “AMa)j-ej € (V).

j=0a€el

Therefore, Z;n:o Y acr Ga - Aa)j - [ej] = 0. Since {[eg],...,[en]} is a basis, we
conclude that ) _;aX(a); = 0 for each j € {0,...,m}. Hence,

P:Zaa~ fo‘fz/\(a)fej e (I(V) Nkolz1,...,zn])-

Now, it is clear that every f € Aut(K/kg) leaves V invariant. We prove
that, if f € Aut(K) leaves V invariant, f fixes ko. Let f: R — R given by

(32 aa®?]) = [ faa)z?]. Then, f is well defined since f leaves V' invariant.

Since f(1) = 1, we conclude that f([Z"]) = [z"] and that f([e;]) = [e;]. Since
{leo],- -, [em]} is a basis, we conclude that f(A) = A for every A € ko. O

Theorem 4.10. Let V C K™ be a Zariski closed set and k C K a subfield.
Then, there is a formula ¢ € For L,.(k) such that V = o(K) if and only if
V/kperf-

Proof. If V/kpert, then there is ¢ € ForL, (k) such that ¢(K) = V. Indeed,
there are Pi,..., P, € kpert[21,-..,%,] such that V = V(Py,...,P,), so V
is defined by Pi(Z) = O A --- A P,(T) = 0. Since the elements of kpes are
k-definable, each P; is k-definable, so V is k-definable.

On the other hand, let K’ be a saturated elementary extension of K and
V' = V[K']. Let kg C K’ be the subfield given by the lemma If there
is ¢ € ForL,(k) such that V' = p(K’), then every automorphism f’ fixing k
leaves V'’ invariant. So, f’ fixes ko by the lemma.9] Therefore, ko C dcl(k) by
theorem Thus, by lemma ko C kpert- S0, V' [kpers, hence, V/kperr. O

Now, we want to prove that the Morley’s rank is the Krull dimension [Theorem
4.13]. To do that we need the following two lemmas:

Lemma 4.11. Let p € SK(A). Then, there is an A-definable Zariski closed set
X such that p is the unique generic type in X over A.

Proof. Assume that K is saturated and |K| > |A|T and let @ realize p. Let k be
the subfield generated by A. Since k C dcl(A) C acl(A4), MR(a/A) = MR(a/k)
[Corollary [2.34]. Let m = MR(p)
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By theorem dim(ay,...,an/k) = m. Let {bq,..., b} C {a1,...,an}
be such that dim(b,,),..., b, /k) = dim(b,,,... b, /k) = s for s <1 < n. We
prove that there is Az C k[z,,, ..., 2] such that, for any ¢ € V(Ay) satisfying
dim(c,,, ..., cr, /k) = m, we have tp(¢/k) = tp(b/k).

To simplify notation, assume that # = (1,...,1). We know that bs41,...,b; €
k(bi,...,bs). Let Q;(b1,...,bj—1,x;) € k(b1,...,bj—1)[x;] be a minimal irreducible
polynomial of b;, for each s < j < 1. Thus, tp(b;/k(b1,...,b;—1)) is isolated

by Q;. The coefficients of each Q;(b1,...,bj_1,2;) are k-rational functions
of b1, ..., bj_1, so multiplying by the denominators, we may assume that
Qj(z1,...,xj_1,2;) is a polynomial. Therefore,

OT) = Qe1(T) =0A---ANQIT) =0

is such that o(by, ..., bs, Zsy1,-..,2;) isolates tp(bsy1, ..., b1 /k(b1,...,bs)). Then,
A ={Qqy1,--.,Q;} satisfies our claim. Indeed, let ¢ € K' such that K |= ¢[¢]
and dim(cy, ..., cs/k) = s. By lemma[2.50] tp(ci,...,cs/k) = tp(bi, ..., bs/k).

So, we may assume that by = ¢y, ...,bs = ¢s by mapping it via an automorphism
which fixes k [lemma [1.28]. Then,

Qm+1(b17 ey bsa ms—&-l) S tp(cs+1/k(b1, sy bs))7

so tp(csi1/k(b1,...,bs)) = tp(bst1/k(b1,...,bs)) because Q41 isolates this
type. Thus, we may assume that bs1 = c¢541 by mapping it via an automorphisms

which fixes k(by, ..., bs). Iterating, we conclude that b = € via an automorphism
which fixes k. So tp(b/k) = tp(¢/k).
Now, let

A U A . TE {1,...,n} such that A7 satisfies the above claim for
B T dim(apy, ..., a0 /k) = dim(ay,, ... a0 k) = s '

Let X = V(A). Therefore, any generic element of X over k has the same type
that @ over k. Indeed, let b € X such that MR(b/k) > m. There is 7 such
that dim(b,,,...,b. /k) = m. Then, dim(a,,...,a,, /k) = m too. Indeed,
if a,, is algebraic respect to a;,,...,a,;_,, then there is a polynomial @, in
Ay, ... such that Q. (ar,,...,ar,_,,ar;) = 0. So b, is algebraic respect to
brys-ooybr, . Now, dim(b/k) = dim(b,,,...,by,, /k) = m and b satisfies Q(b) =
0 for each Q € Arioormrmstsrns Where {ry, oo ore oo b = {1, n}. So,
tp(b/k) = tp(a/k).

Finally, since k C dcl(A), X is A-definable. Since k C acl(A), corollary
implies that the generic elements in X over A are generic over k. So, if bis generic
in X over A, then tp(b/k) = tp(@/k) and, in particular, tp(b/A) = tp(a/A). O

Lemma 4.12. Letk C K a subfield and V/k an affine variety, i.e., an irreducible
Zariski closed set. Then, Md(V') = 1 and the unique generic type of V' over kpert
18 aximatized by

{VIU{=W : W CV such that W/k is a Zariski closed set}.
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Proof. Let p be the type with parameters kper¢ containing
{V}U{=W : W C V such that W/k is a Zariski closed sets}.

By the lemma [T} there is a kyerf-definable Zariski closed set X such that p is
the unique generic type of X over kper. Let MR(p) = m = MR(X). Since X € p
is closed and X/k [theorem [£.10], V C X. So MR(p) < MR(V) < MR(X), i.e.,
MR(V) = m. Thus, p is the unique generic type in V' over kyer¢. Therefore, V
has a unique generic type, i.e., Md(V) = 1. O

Theorem 4.13. Let V be an affine variety. Then, MR(V) > n+1 if and only
if there is W C V' subvariety such that MR(W) > n. Moreover, MR(V) =

Proof. (<) Let W C V be such that MR(W) > n. Of course, MR(V) > n.
Let k be such that V/k and W/k. Suppose that MR(V) = n = MR(W). Let p,
g be the generic types in W and V over kperf, respectively. Then, p = ¢ since
both are generic types in V' over kperf and there is just one by the lemma
SoW €gq,ie,V CW by lemma a contradiction. Then, MR(V') > n + 1.

(=) Assume MR(V) = n+ 1. Let K C K be a subfield such that V is
k-definable. Let K’ be a |k|T-saturated elementary extension of K and V' =
V[K']. Let @ € V' be generic over k. Thus, MR(a@/k) = n+1. By theorem 2.51]
dim(a/k) = n+ 1. Assume that a; ¢ acl(k), then ¢ = tp(aq,...,a,/acl(k(a1)))
is a stationary type such that MR(q) = n. By the lemma there is a
acl(k(aq))-definable Zariski closed set W such that ¢ is the unique generic type
in W over acl(k(ay)). Then, MR(W) = n. We may assume that W C V since
V € g. On the other hand, we may assume that W is irreducible. Indeed,
there is a partition W = V3 U Vo U -+ U Vy in irreducible sets and MR(W) =
max{MR(V;) : i <d}. So we may assume that W is just one V;.

Therefore, MR(V) = dimg, (V). Indeed, MR(V') > n if and only if there is a
sequence of varieties Wy C Wy C Wy C --- C W,, = V such that MR(W;) = 0,
MR(W;) = 1, etc. O

Corollary 4.14. Let V be an affine variety and U C V be a relative Zariski
open subset. Then, MR(U) = MR(V).

Proof. Since MR(V) = max{MR(U),MR(V \ U)}, it suffices to prove that
MR(V \ U) < MR(V). Now, the latter is a straightforward consequence of the
theorem since MR(V \ U) = n implies that MR(V) > n.

4.2 Abstract varieties

An abstract n-variety of K is a pair X := (X, A) such that A = {(X;, fi) }i<m
where {X;}icm is a cover of X and f; : X; — V; is a bijective function from X;
to an affine variety V; C K", f;(X; N X;) CV; is a Zariski relative open set and
any transition map fjo f;i': fi(X; N X;) — f;(X; N X;) is an isomorphism
for any 4,7 < m. A chart of x € X is any (X;, f;) € A such that z € X;. Let
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k C K be a subfield. We say that (X, {(X;, fi)}i<m) is defined over k (X/k) if
the variety f;(X;) is defined over k and f; o f{l s (XN XG) = (XN XG)
is defined over k for each 7,5 < m.

The abstract variety X inherit an initial noetherian topology from the Zariski
topology of K™ via the charts. Then, in this topology, Xi,...,X,, is an open
covering and every chart f; is a topological homeomorphisms between X; and
Vi = fi(X;). Indeed, since the transition maps are isomorphisms, the basic open
sets of X in X; are f; '(W) C X; such that W is a Zariski relative open set in
Vi := fi(X;). Then, if H C X; is an open set, H = J,.c; fi '(W,) = f; " (W).

Finally, since the topology of an abstract variety is a noetherian topology,
we can talk about irreducible sets of abstract varieties and decompositions in
irreducible sets.

Remark. Every abstract variety is definable with imaginaries, so is definable in
K™ by elimination of imaginaries [Theorem . Indeed, consider the disjoint
union V; U --- UV, and the relations ~;; between the elements of f;(X; N X)
and f;(X;NX;) via f; ofi_l. Let a ~ b < There are ij a ~;; b. Therefore, our
variety X is the quotient Ui=: Vi/ ., which is definable with imaginaries. Then,
X; = Yi/. and f7' : V; — X, is the canonical projection. Also, X/k if and
only if X is kpers-definable by lemma Finally, each chart is a definable
bijection, so it preserves Morley’s ranks and degrees. Therefore, if X is an
irreducible abstract variety, then MR(X) is the dimension of X, Md(X) =1
and, for any open subset U C X, MR(U) = MR(X).

Example. Any relative Zariski open subset U of a variety V' C K™ is an abstract
variety. Indeed, if U ={Z €V : Pi(T) #0V---V P, (%) # 0}, consider the
charts (U;, f;) where U; = {Z € V : P;(T) # 0} and f; : T+~ (T, P;(T)"!). Then,
(U, {(U;, fi) }i<m) is an abstract n+ 1-variety. Indeed, f;(U;) = {(z,y) € K" :
y-P;(T)—1=0AZT € V} is an affine variety and fiofj_1 c (7)) = (T, Pi(T) 7Y
is a morphism where f;(U; NU;) = {(Z,y) € K" : y-P(T)-1=0AT €
V AT € U;} is a Zariski relative open subset.

Let X and Y be abstract varieties over K. A morphism ¥ : X — Y is
continuous function such that, for every x € X and any charts (X;, f;) and
(Y;,g;) of x and ¥(z), the function g; o Wo ;1 : f;(X; NU~Y(Y;)) — g;(V; N
U(X;)) is an affine morphism. An isomorphism is a bijective morphism whose
inverse is also a morphism.

Remark. The morphism are definable functions with imaginaries, so are definable
by elimination of imaginaries [Theorem .

Example. The most significant example is the projective space P"(K). Indeed,
the homogeneous maps,

[0y Tn] = (s T g T gy T )
where AT = {[xo,...,2,] : x; # 0}, are charts of the projective space. Indeed,

¢i(A}) = K", ¢i(A} N AY) ={T € K" : x; # 0} and ¢; o ¢; ! is a morphism.
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Of course, any projective variety has an abstract variety structure by restricting
this one.

Let X be an abstract n-variety over K. We say that X is separated if the
diagonal of X x X is a closed set, and that X is complete if, for every variety
Y over K, the projection 7 : X xY — Y is a closed map.

Lemma 4.15. (Regular functions from complete varieties) Let X be an
irreducible complete abstract n-variety over K. Then, every morphism f : X —
K is constant.

Proof. If f = 0, there is nothing to prove. Let f : X — K be a morphism
f#0. Let
Z={(z,y) e X x K : f(z) -y=1}.

Then, Z is a non-empty closed subset of X x K. Since X is complete, 7(Z)
is a non-empty Zariski closed set of K, so a definable set. Since K is strongly
minimal, 7(Z) is finite or cofinite. Since 7(Z) is closed, or 7(Z) = K or 7(Z)
is finite. We know that 0 ¢ w(Z), so n(Z) is finite. Suppose that 7(Z) =
{A1,..., A/}, then X = Uézlf’l({/\j_l}). Since f is a continuous map, each
ffl({)\j*l}) is a closed set. Since X is irreducible, X = f’l({)gl}) for one j.
Therefore, 7(Z) = {\} and f(z) = A~! for every z € X. O

Theorem 4.16. (Rigidity theorem) Let X, Y and Z be irreducible abstract
varieties over K such that X is a complete variety, and let ¥ : X xY — Z
be a morphism. If there is an yo € Y satisfying that V(x,yo) = V(a',yo), for
every x,x’ € X, then ¥(z,y) = U(a',y) for every z,2’ € X and y €Y.

Proof. Let zp = ¥(z,y0) and (Z;, h;) be chart of zy. Since ¥ is a continuous
map, U=1(Z¢) is a closed subset. Since X is complete, 7(¥~1(Z¢)) is a closed
set. Note that yo ¢ T(V=1(Z¢)), so U =Y \ m(¥~1(Z¢)) is a non-empty open
set. For any € X and y € U, we have that U(z,y) € Z; and « — U(z,y) is
a morphism. Now, h; o U(—,y) : X — K™ is constant by the lemma So,
since h; : Z; — K" is a one-to-one map, for every y € U and any z,2’ € X,
U(x,y) =V(2,y). Let z,2’ e X and U' ={y €Y : U(z,y) =¥(z',y)}. It is
clear that U C U’ and U’ is a closed set. Since Y is irreducible, U UU’' =Y
implies that U¢ =Y or U’ =Y. Since we know that U¢ # Y, we obtain that
{yeY : ¥(z,y) =¥(a,y)}=U"=Y. O

Let X be an abstract variety and x € X. We say that x is a singular point
if, for every chart (Xj, f;) of z, the point f;(z) is singular in f;(X;). Since affine
morphisms take singular points to singular points, it suffices to check one chart
to verify whether a point is singular.

Remark. The definition of abstract variety is analogous to the definition of
topological manifold. Moreover, the abstract varieties over C, without singular
points, are also differential manifolds.
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4.3 Algebraic groups and abelian varieties

An algebraic group is a group (G,-, ~!) where G is an abstract variety and
: GxG— Gand —': G — G are a morphism.

Notation. In the rest of this section and except otherwise stated, (G,-) will
denote an algebraic group.

Lemma 4.17. (Separability and smoothly) Every algebraic group is separable
and does not have singular points.

Proof. Let ¥ : G x G — G be defined as ¥(z,y) = -y~ !. Then, VU is a
morphism and the diagonal of G x G is ¥~!({e}). Therefore, by continuity of
¥, we conclude that G is separable. On the other hand, we know that the set of
singular points is a proper closed subset, so there is a non-singular point a € G.

Hence, since a-b~!- — : G — G is a morphism for every b € G, we conclude that
b is a non-singular point for every b € G. Indeed, if b is singular, a-b~ - b = a
is singular too, a contradiction. O

Example. The standard example of algebraic group is the linear group of
matrices GL,, (K), which is a Zariski open subset of K™ defined by the inequality
det(A) # 0. Of course, the product of matrices is a morphism. Since GL,,(K)
is also isomorphic to an irreducible affine variety of K ”2+1, we may consider
GL,(K) as an algebraic group. Indeed, GL,(K) = {z € K™ : det(z) # 0}
and ¥ : T+ (Z,det(Z)"!) is an isomorphism between GL,,(K) and {(Z,y) €
K™ HL: det(T) -y = 1}

Algebraic groups are definable groups in algebraically closed fields. On the

other hand, every definable group is definable isomorphic to an algebraic group
(see Proposition 4.12 of [4]).

Proposition 4.18. Let H < G be a definable subgroup. Then, H is closed.

Proof. We know that H = Uier Ys where I is finite, the Y;’s are pairwise
disjoint and Y; are irreducible. Thus,

H=JVi\Z
el

where Z; is a proper closed subset of Y;. Then, Md(Y;) = 1 and MR(Z;) <
MR(Y;) for each i € I. We know that H is a definable group. Let a =
max{MR(Y;) : i € I'}, let Iy C I be such that MR(Y;) = « for every i € Iy and
let U =J,., Yi\ Z. Then,

m\uc |J vulz

ieI\I, i€ly

i€lp

Thus, MR(H \ U) < a = MR(H). Therefore, MR(U) = MR(H) and Md(U) =
Md(H), so U - U = H by proposition Hence, H = H since U C H. O
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Proposition 4.19. G° is the irreducible component of G containing the identity.
Thus, G is connected in model-theoretic sense if and only if G is a variety, and
if and only if G is Zariski connected.

Proof. It is a basic algebraic-geometric fact that the maximal irreducible component
of G containing the identity is a connected group of finite index. Therefore, it
is G°. O

Now, thanks to the theory studied about groups with Morley’s rank, we
know that, for example,

e the centralizer of a set in an algebraic group is an algebraic group and is
the centralizer of a finite number of points [example [.1]; or

e the commutator of an algebraic group is an algebraic group and if the
group is irreducible the commutator is it too [corollary [3.17].

An abelian variety (A,+) is a irreducible (connected) complete algebraic
group.

Example. Elliptic curves are abelian varieties. Indeed, it is clear that elliptic
curves are irreducible algebraic groups. On the other hand, it is a well known
fact that projective varieties are complete.

Lemma 4.20. Every abelian variety is an abelian group.

Proof. Let f: Ax A — A be given by f(a,b) = a + b — a. We have that
f(a,b) = f(a’,b) for every a,a’b € A by the rigidity theorem |Theorem [£.16],
since A is a complete and separable variety [Lemma and f(a,0) = 0 for
every a € A. Therefore, for any a,b € A, we have that f(a,b) = f(b,b) = b, i.e.,
A is an abelian group. O

Lemma 4.21. Let (G,-) be an abelian variety, (H,*) a commutative algebraic
group and f : G — H a morphism. Then, h : G — H given by h(z) =
f(z) — f(e) is an homomorphism of groups.
Proof. Consider g : GxG — H given by g(z,y) = f(z)+ f(y) — f(z-y), which
is a morphism. Then, g(e, y) = () + £(y) — f(4) = f(e) = £(2)+ F(e) — f(x) =
g(z,€), for any x,y € G. By the rigidity theorem [Theorem [.16], we have that
g(x,y) = g(z',y") = f(e) for any z,y,2’,y € G. Therefore,
Ma-y) =f(x-y) — fle) = —g(@,y) + f(x) + fy) — fle) =
=—fle)+ flx)+ fly) — fle) =
=(f(z) = fe)) + (f(y) — f(e)) = h(z) + h(y).
O

Let V be a C-vector space of finite dimension d. A complex torus is a quotient
group V/5 where A C V is a lattice of rang 2d, i.e., a discrete subgroup aditivo.
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Remark. Complex torus are abelian varieties.

Theorem 4.22. (Complex abelian varieties) Every complex abelian variety
18 @ torus.

Proof. It suffices to note that abelian varieties over C are Lie groups since
abelian varieties do not have singular points [Lemma [4.17]. Therefore, every
abelian variety over C is a torus, since Lie groups are torus. O
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5 The Mordell-Lang’s Conjecture

5.1 Introduction

Mordell’s Conjecture (1922): If C'is an smooth projective curve in C defined
over Q of genus greater or equal that 2, then C(Q) is finite.

Therefore, Mordell’s Conjecture is a problem about diophantine equations.
Given a polynomial P € Q[x,y], define the curve X = {(z,y) € C? : P(x,y) =
0}. All in all, we want to determinate X (Q). An approach is to consider the
projective smooth curve C' associated to the homogenization of P and to study
C(Q). Therefore, there are three cases:

1. If C has genus 0, C is a rational curve. Then, either C(Q) = 0 (e.g.,
P(z,y) = 2% + y? + 1) or all but finitely many solutions are parametrized
by rational functions x(t) and y(t) (e.g., P(x,y) = 2 +y*> — 1 and z(t) =

2
/21 and y(t) =" Y2 11).

2. If C has genus 1, then either C(Q) = 0 or C is an elliptic curve taking
a point as origin. Therefore, we have that C(Q) is a finitely generated
group by the Mordell-Weil’s theorem.

3. If C has genus greater or equal 2, we apply the Mordell’s Conjecture:
C(Q) is finite.

Hence, the Mordell’s Conjecture is a complete classification of the diophantic
problem of determining the rational solutions of projective curves.

Absolute Mordell-Lang’s Conjecture (characteristic 0): Let X be an
irreducible subvariety of a complex abelian variety A and T" a subgroup of finite
rank, i.e., there is a finitely generated subgroup I'y < I' such that, for every
element v € T, there is n € N satisfying ny € I'yg and nl # 0. Then, there are
Y1,--+,¥m € I'and By, ..., B,, abelian subvarieties of A such that v, +B; C X,
for each i € {1,...,m}, and

rnx=Jw+BnT
=1

Note that this is actually a diophantic conjecture. Indeed, if K is a field
finitely generated over Q and X C A is an irreducible subvariety over K of
an abelian variety A over K, then A(K) is finitely generated by the Mordell-
Weil’s theorem. Thus, taking I' = A(K), the absolute Mordell-Lang’s conjecture
describes the K-points of X.

The Mordell-Lang conjecture in absolute form is equvialent to the following.

Lemma 5.1. (First equivalence) The absolute Mordell-Lang’s conjecture is
equivalent to the following statement:
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Let X be an irreducible subvariety of a complex abelian variety A and T < A
a subgroup of finite rank. Then, if XN is Zariski dense in X, X is the translate
of an abelian subvariety by a point of I

Lemma 5.2. (Second equivalence) The absolute Mordell-Lang’s conjecture
is equivalent to the following statement:

Let X be an irreducible subvariety of a complex abelian variety A and T < A
a subgroup of finite rank. If X NT is dense in X and Stabyxy = {0}, then X is
a translate of an abelian subvariety by a point of .

Proposition 5.3. The absolute Mordell-Lang’s conjecture implies the Mordell’s
conjecture.

Remark. (Manin-Mumford conjecture) The Mordell-Lang’s conjecture is
also a generalization of the Manin-Mumford conjecture which states that either
C N Aiorsion 18 finite or C is a translate of an elliptic curve, for any curve C' in
an abelian variety A.

5.2 Model-theoretic content of Mordell-Lang’s conjecture

Let K = ACF, A a commutative algebraic group over K and I' < A. We say
that (K, A,T") is of Lang-type if, for any n € w and every subvariety X C A™(=
Ax - xA) over K, X NT™ is a finite union of cosets.

Thus, the absolute Mordell-Lang’s conjecture says that, for any subgroup I'
of finite rank, (C, A,T) is of Lang-type.

Lemma 5.4. Let K |= ACF, G be an algebraic group over K, X a subvariety
of G and T' a subgroup of G. Then, X N T is a finite union of cosets if and
only if there are connected algebraic subgroups G1,...,G, of G and respectively
translates C1, . ..,C, of these ones such that C; C X, for each i, and X NT" C
CiU---UC,.

Proof. (<) f XN C C1U---UC, C X, then XNT = J,C; NT. Let
C; = ¢;G; for each i. Then, either C; NT' = @ or we may assume ¢; € I.
The latter proves that X NI is a finite union of cosets of algebraic subgroups
restricted to I'".

(=) XNT'=ByU---UB, with B; = g;H; where H; < G not necessarily
closed. Consider B; = g;H; C X. Then, H; < G is a Zariski closed set. The
connected component H' isa variety [proposition . Therefore, for some
Cij:

Xnr Q UUgicijFio Q X.
i

O

Lemma 5.5. (Neumann’s lemma) Let G be a group, K;,..., K, < G
different subgroups and a},...,a?, € G such that G = J;_, U=, a’-K'. Then,

- Py, =17
G =U,ea UL aiK; for
A={ie{l,...,n} : [G: K;] € N}.
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In particular, A # (), i.e., at least one of the factors has finite index.

Proof. Firstly, we prove that A # () by induction of n. For n = 1, we have
that G = (Ja; K1, so K; has finite index. For n > 1, since there is nothing
to prove if G = U;nz"l ajnKpn, let h € G be such that h ¢ U;’Z& ajnK,. Then,
hKn Q U?;ll U;nél aj,iKi. SO,

n—1 m; My, n—1 m;
G = U U ajviKi U U Ajm hil U U asyiKi.
i=1j=1 j=1 i=1 s=1
By induction hypothesis, at least one of K1,..., K,_;1 has finite index.
Now, we prove the lemma. Assume that A = {1,...,r} with 1 <r < n. Let
H = ;ca Ki. Tt is clear that H is a subgroup of finite index. Thus, each K;
for i € A is a finite union of cosets of H. So, there are b1,...,bxy € G such that
r o m; N
U U CLjﬂ'Ki = U ij
i=1j=1 j=1

Suppose that G # |Jb;H and let h € G such that b ¢ (Jb;H. Then,

n m;
bH Q U U am-Ki.
i=r+1j=1

So, H=JUb ! a;;K;N H. Thence, we have proved that there is i ¢ A such
that K; N H has finite index in H. Thus, for one i ¢ A, K; has finite index in
@, a contradiction. O

Lemma 5.6. Let K = ACF countable, A be a commutative algebraic group
over K and T < A. Let A = (X NI" : X C A™ K-defin (K,+,-)) and
To = Teo(A). Then, if (K, A,T) is of Lang-type, Ty is a totally transcendental
one-based theory.

Proof. After proving that it is totally transcendental, we are going to apply
theorem So, we first prove that every definable set in 2 is a boolean
combination of cosets.

Firstly, every X C A™ K-definable in (K, +,-) is a finite union of varieties.
Since (K, A,T') is of Lang-type, for X C A™ variety, we know that X NT"™ is a
finite union of cosets B; NI where B; < A" is an algebraic subgroup. Hence,
every definable set in 2 is already definable in g = (I', yBNI'™) p<an K —defin (K,+,) and yel™ -
Then, it suffices to prove that Teo(2ly) has quantifier elimination. Note the
following:

1. The intersection of cosets is empty or a coset.

ii. The projection on I'™ of a coset yB NI *! is the coset of the projection
of BNT™*! in which the projection of + is. Indeed, he projection of B is an
algebraic subgroup of A”.

iii. The diagonal is a coset, we write D N T2,
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iv. Adding a dummy variable to a coset yBNIT™ of I'™ produces a coset of "1,
this is (v, e)(B x {e})NI"™*1. Also, changing names of variables in a coset gives
a coset (e.g., YBNT"™(Z,y,y) is equivalent to I2(yBNT"™(Z,y,2) A D(y, 2)))-

v. Let yBNI", P(y) = {x : (z,9) € yBNI"} and @,b € I~ 1. Then, either
P@) N P(b) = 0 or P(@) = P(b). Moreover, if P(a) # 0, then it is a coset
of H={z : (z,e,...,e) € BNT"}. Indeed, let 2y € P(a), it is clear that
zoH C P(a). Let x; € P(a). Then, (z0,d), (z1,a@) € yBNT", so 2] 'z € H.

To prove quantifier elimination, it suffices to prove that Va1 (x, 7)) is equivalent
to a boolean combination of cosets if ¢ is so. And, using iv. and i., this reduces
to the case:

Y= /\ 7B NI (2,7) — \/%‘jBij NI (z,y)
i J

Also, by i., we may assume that for each i, j
Ao = Vavy (7B N0 (2.5) > 181" (@.7))

Finally, the quantifier V satisfies that V1 is equivalent to

AV | 1B T (2,9) = \/ 2 Bi N\T™(2,7) | ,
i J

so we may assume that there is just one . Hence, it suffices to prove that there
is a boolean combination of cosets equivalent to

Va | 3B NT™(2,9) = \/ 7, Bi NT"(z,7)
J

Let @ from I'. Let P(a@) = yBNI"(z,a)[RAo] and N;(a) = v;B; N T (z,a)[RAo],
for each j. Hence, it suffices to prove that there is a boolean combination of
cosets such that P(a) = Uj N;(@) if and only if @ belongs to it. Let H =
BNI"(z,e)[Ap] and H; = B; NI (x,€)[2Ap]. By v., note that P(a) and N;(a)
are respectively cosets of H and H; or empty, for any @ and any j. Let A =
{7 e{l,....J} : [H: Hj] € N}. Let K = ;e H;, A= Hl g and A; =
Hi/y .= {zH : x € H;} for each j € A. Note that K, A and A; do not depend
on a.

There are two cases, either P(a) = ) or P(a) # 0. If P(@) = 0, then
P(@) € U] N;(@), and P(a) = 0 if and only if @ is in # 3zP(x,7)[2o], which
is a coset by ii.. For the other case, let I(@) = {j : N;(a) # 0}. Then,
P(a) = U;er Nj(@) if and only if H = {J;¢(q) o;H; for some aq,...,a;. By
the Neuman~n’s lemma (5.5 137 = Ujeani(@ ngj, so P(a) = Ujeani(a) Ni(@)-
Let A =xz0A ={z¢C : C € A} and A; = z;A; where zy € P(a) and z; € N;(a)

83



for j € AN I(a). Thus, 0 # P(a) = J; N;(a) if and only if A =U;cani@) 4j-
By the Inclusion-exclusion principle, A = UjeAﬂI(E) A; if and only if

S =DM 4] =0.
TCANI(a) JET
Finally, note that ;. A; # 0 if and only if ;. N;(@) # 0. Thus, |(;er 45 =

_ A;|. Therefore, we conclude that P(@) = | ). N;(@) if and only if @ is in
| ﬂ] cT 4y ) R y
the coset # JxP(x,7)[™Ao] or

> 0| A =

Tex(a) JET

where X(a) is the set of ' C A N I(a) such that (., N;(@). Now, since

the numbers ‘ﬂjeT A;
sets ¥1,..., Yy for which the equation is true. Hence, P(a) = |, N;(@) if
and only if @ is in the coset # JzP(z,7)[Ao] or X(a) € {Z4,...,2,}, and
Y(a) = X, is actually that @ is in a specific boolean combination of the sets
3z (;er Nj(2,7)[Ao], which are cosets by ii..

do not depend on @, we have that there are specific

Now, we prove that Ty is totally transcendental to apply It suffices
. . r .
to prove that it is w-stable [theorem 2.18]. Given a type p € S¢ (C) with
card(C) < w, consider

¥, ={B,-B’ : B,B' < A" KUC-def. in €* and BNI",-BNI" € p}.

By quantifier elimination, for any p, ¢ € SSF(C)7 p=gq<& X, =23, Also, note
that p finitely satisfiable in €' implies ¥, finitely satisfiable in ¢X. Since €¥
is w-stable and card(K) = Xg, we conclude that T is w-stable too. Finally,
applying Ty is one-based. O

Remark. Actually, without the condition card(K) = Rg, the lemma is still true
replacing totally transcendence by stable. Indeed, most of the theory studied
in the sections 3 and 4 of the chapter 2 is easy adapted in the context of stable
theories not necessarily totally transcendent. In this context, forking is defined
by heirs and coheirs [theorem [2.42] and preserves its fundamental properties
[proposition theorem lso, the significant result which gives
us canonical bases, is also true in general stable theories, so the result and
some variations of its corollaries are true too. Therefore, the theorem [3:22] is
also true for stable theories and the last proof can be adapted.

Theorem 5.7. Let K = ACF countable, A a commutative algebraic group
over K and T' < A. Then, (K,A,T) is of Lang-type if and only if the theory
T = Teo(K,+,-,T',a)ack is totally transcendental and the formula T is one
based in T .

84



Proof. (<) Let A = (I X NI™ : X C A™ K-defin (K,+,-)) and Br x =
(K, 4+, T a)sck. Let X C A be a subvariety. Since X NT™ is a definable set
in the structure 8, by the theorem [3.22] X NT'" is a finite boolean combination
of definable cosets of A™. Thus, X NI'" is a finite union of cosets of algebraic
subgroups. By the lemma[5.4] we conclude that X NI'™ is a finite union of cosets
of algebraic subgroups restricted to I'. Therefore, (K, A,T") is of Lang-type.
(=) Let Q:KK = (K,+,-,I',a)qex be the monster extension of Br x and
¢ = (I'XNI" : X C A K-def. in (K,+,-)) of 2. Note that €' is totally
transcendental and one-based by lemma Let acly denote the algebraic
closure in the field-theoretic sense:

Claim: Let B C K be an infinite subset. Then, there is a subset C C T’
such that card(C) = card(B) and, for any @; and @y from T’ with the same type
over C in €, there is a map f : acl;(BUK UT) — acl;(BU K UT) satisfying
the following properties:

i. f fixes BU K U C pointwise.
ii. fip is an automorphism of the structure el

iii. f is a pairtial elementary map in the sense of €§.

iv. f(al) = Qs.

v. For any ¢,d € K such that ¢,d ¢ aclg(BU K UT), there is an automorphism
g of Cff,K extending f and taking c to d.

Proof of the Claim: Firstly, add K to B, so assume K C B. Note that card(B) =
card(B U K) since card(K) = X,. For each b from B, let C; be the canonical
base, which is finite [corollary , of tp€x (b/T). Let C = Upe<wr Cp- Tt is
clear that card(C) = card(B). Now, we prove that C satisfies the claim. Let
@1, a; from T such that tp€ (a,/C) = tp€ (@2/C). By the lemma Let f;
be an automorphism of €' fixing C' and taking @ to @». Then, for any tuple b
from B and any @ from T,

tp" (b,a/K) = tp (b, £1(a)).

Indeed, let ¢(7,7) € For L,.(K). By the choice of C, there is some ¢ from C and
a formula ¥(y,¢) = dy,/r,x)T¢(Y) € For L,.(¢) such that, for any d

€k Eolb,d] & €K = v[d,ql.

Now, ¢[Bg] = X C A™ is a K-definable set in (K,+,-). Thus, X N T™ is
an atomic formula in €'. We have that € = X NT™[a,q if and only if
¢’ = X nI™[f)(a),d, since f; is an automorphism in € and fixes C. Then,
we have that (@,¢) € X if and only if (f1(@),¢) € X. So

o(x.7) € ® (b,a/K) & ¢(z.7) € p® (b,a/K).

Define f : BUT — BUT as f5(b) = b and f3(a) = fi(a) for any a € T and
b € B. By the above observation, f, is an elementary map in €%. Let f be an
elementary extension, in €%, of f, to aclf(BUT). Now,

i. f; Cf fixes C and fy C f fixes B, so f fixes BUC and K C B;
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ii. fir = f; is an automorphism;

iii. f is an elementary map in €%;

iv. f(a;) = fi(a@1) = as; and

v. given ¢,d ¢ acly(BUT), it is a basic theorem of algebraically closed fields
(and in monster models is still true) that there is an automorphism g in ¢k
extending f and taking c to d, which is also an automorphism in fo’ x Since g
fixes K and leaves I' invariant.

Now, we conclude the proof of the theorem. By the claim, T is w-stable
implies that T is w-stable too, so T is totally transcendental [Theorem [2.18].
Indeed, let B such that card(B) = Ny. Then,

SECx (B) ={tp®'x(d/B) : d € K} =
={tp®'x (d/B) : d ¢ acl;(BUC UT)}U
{tp€'x (d/B) : d € acl;(BUCUT)} =

—N U D,
where C is the set given by the claim. Then, card(l;) = 1 and card(l3) < w.
Indeed, it is clear that card(l;) = 1 by v. taking any @; = G2. On the other
hand,

L= |J {tp%x(d/B) : deacl;(BUC,a)}.
ae<er

If @; and @ have the same type in el over C, let f : acly(BUCUT) —
acly(BUC UT') be an elementary map given by the claim, then

{tp€x (d/B) : d € acl;(BUC,a1)} = {tp®Tx(d/B) : d € acl;(BUC,a,)}.
Hence,

I, = U {tptf{K(d/B) : d € acly(B U C,a) where @ realizes p}.
pese’ ()
Since card(SCF(C)) < w by w-stability of Ty and card(acly(BU C,a)) < w, we
conclude that card(lz) < w.

Finally, we prove that I' is one-based. By lemma @(and theorem [3:22] it
suffices to prove that every definable subclass of T'™ in €p j is definable in ¢l

Note that any I'"*-definable subclass of I'™ in Cff,  is definable in €. So, let
X C IT'"™ be a B-definable subclass in CEK and assume B infinite. Let C' be a
set given by the claim. Then, X is C-definable in QI{{K. Indeed, if not, there are
a1 € X and @2 € X such that tpel{iK(El/C) = tpch(ag/C). Note that every
definable class in €' is definable in C{{K. Thus, tp€ (@/C) = tp€ (@2/C).
Then, by the claim, there is an elementary map (in Cé{, ) f taking @; to @y and
fixing B and C, a contradiction since X is B-definable. O

Remark. As in the case of the lemma[5.4] without the condition |K| = Ry, the
lemma is still true replacing totally transcendence by stable.
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5.3 Hrushovski’s proof in characteristic 0

The absolute Mordell-Lang’s conjecture is not true in characteristic non zero.
We give two counterexamples:

(1) Let A/F, be an abelian variety. All points of A(F,) are torsion points.
Since the Mordell-Lang’s conjecture extends the Manin-Mumford’s one, the
Mordell-Lang’s conjecture implies that any curve in an abelian variety is the
translate of an elliptic curve. Of course, this is false, any smooth projective
curve of genus different than 1 (and 0) is birrationaly embedded in its jacobian
and is not the translate of an elliptic curve (see [3]).

(2) Let C be an smooth projective curve of genus g > 1 over F,,, A = Jac(C),
F/F, an algebraically closed field different from F, and K = F,(t) where t €
C(F)\ C(F,). Let Fr: F — F be the Frobenius’ map, which acts on A and C
since these are defined over F,,. We know that I' = {Fr"(¢) : n € N} is a finitely
generated group. The absolute Mordell-Lang’s conjecture says that C(K) N T
must be finite. However, t € C(K)NT, so Fr"(¢t) € I' N C(K) for every n € N.
Since t ¢ C(F,), all these points are different (see pag. 208 of [14]).

Thus, we need a relative version of the Mordell-Lang’s conjecture for positive
characteristic:

Theorem 5.8. (Mordell-Lang’s conjecture for function fields) Let k, K =
ACF and k C K. Let X be an irreducible subvariety of an abelian variety A
over K and I' < A(K) be a subgroup of finite rank. Suppose Stabx is finite
and X NT is dense in X. Then, there are an abelian subvariety B < A and an
abelian variety S defined over Ko and a subvariety Xg C S defined over Ky too
and a bijective morphism h : B — S such that X = ag + h™'(Xo) for a point
ag € A.

We end this dissertation with an sketch of Hrushovski’s proof of the relative
Mordell-Lang’s conjecture in characteristic 0.

Proof. (Sketch) (see [7])

The main idea is to replace I" by a definable group. To do that, we add a
derivation. Let ¢ be a derivation in K such that k be its field of constants and
L be the differential closure of (K, J), so k is O-definable in L by the equation
0(x) = 0. Since L | ACFy, by completeness, we do not loss generality by
replacing K by L. Let L’ be an Ng-saturated elementary extension of L and
K = k[L'].

Step 1 It suffices to prove the statement for L’ and &k’ instead of K and k,
i.e., it suffices to prove that there are an abelian subvariety B of A, an abelian
variety S’ over k', a subvariety X{; of S’ defined over k&’ and a bijective morphism
W : B— S such that X = a4+ h'~"(X}).

To simplify the notation, we may assume that L = L'. Write d-definable for
sets defined (with parameters) by formulas of the language of differential rings
and definable for sets defined (with parameters) by formulas of the language of
rings. Since L = ACF, L satisfies quantifier elimination for definable sets, i.e.,
every definable set in L is definable without quantifiers.
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Step 2 Now, we replace I' < A by a d-definable subgroup of A. Since I' is a
group of finite rank, there is a d-definable subgroup H < A containing I' which
has finite Morley rank.

Step 3 The main part of the proof is a technical argument showing that
we may assume without loss of generality that H is an almost strongly minimal
d-definable connected group and no one-based.

Step 4 Finally, we conclude by showing that

i. there exists an abelian variety S defined over k£ and a bijective morphism f
from H (the Zariski closure) to S such that f(H) = S(k) = SN k™, and
ii. given X C A subvariety defined over L such that X N H is dense in X, there
is a subvariety Xo C S defined over k such that X = f~1(X)).
Indeed, let B be a strongly minimal §-definable set such that H C acl(B).
Then, B is a Zariski geometry and, since H is not one-based, B is not locally
modular. Therefore, B interprets an algebraically closed field by the dichotomy
theorem for Zariski geometries. Since B is strongly minimal, this algebraically
closed field is §-definably isomorphic to k. Therefore, B Yk, so H fk. Then,
by theorem theorem [3.28| and elimination of imaginaries, there is a d-definable
homomorphism h : H — G with finite kernel such that G C dcl(k) is a 4-
definable group. Now, inverting the map h we obtain the map f that satisfies
our claim.
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A

Axioms of set theory

Zermelo-Fraenkel-Skolem axioms.- The Zermelo-Fraenkel-Skolem set theory
(ZFC) is the following theory in the language Lzrc = {€}:

1.

Axiom of extensionality: VaVy(z =y <> Vz(z € x <> z € y)).
[Two sets are equal if and only if they have the same elements].

Axiom of pairing: VaVy3zVw(w € z < (w =z Vw = y)).
[For any two sets = and y there exists the set z = {z, y}].

Axiom schema of specification: For any formula ¢(z,w) of Lzrg and
any variable y, non-free in ¢(z,w),

VoVe3yWz(z € y > (2 € z A (2, W))).

[For any formula ¢ of Lzpg, for every set x there exists the subset y =
{zex: ¢}

Axiom of union: VzIyVz(z € y > Jw(w € z A z € w)).
[For any set x, there exists the set y = |J x].

Axiom of power set:
VeIyVz(z € y ¢ Vw(w € z = w € x)).

[For any set x, there exists the set y = P(x)].

Axiom schema of replacement: For any formula ¢(2',y’,7) of Lzrg
and any variable y, non-free in ¢,

Vo(va' Ay (2, Y, 0)) — VaIyWVz(z € y + Fw € x p(w, 2,7)).

[For any formula ¢ of Lypg, if ¢ is a function formula, there exists the
image set y = {2z : Jw(w € z A p(w, 2))} by ¢ of z, for any set z].
Axiom of infinity: 3z(0 € z AVy(y € z — y U {y} € z)).

[There exists a set with infinitely many elements].

Axiom of foundation: Vz(Jw w € x — Jy(y € x AVz(2 ¢ 2V 2 ¢ y))).
[In any non-empty set x there is an element y without common elements
with z].

Axiom of choice:
Vr(x # 0 — 3f(f functionAVz((z C zAz # 0) — Jw ((2,w) € fAW € 2))))

where " f function" represents the formula of Lzpg expressing that f is a
function and (z,w) := {{z}, {z,w}}.

[For any non-empty set x there exists a function f : P(z) \ {0} — = of
choice, i.e., a function such that f(y) € y for every y € P(z) \ {0}].
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If A = (A4, em) is a model of ZFC, a set in 2 is an element of the universe
A and a class in 2 is a definable subset of A. It is clear that every set a € A is
associated to a class given by = € a, such that

A

re¥asrec{red: ze¥a)

But, there are classes ¢(2() such that there is not a set a € A satisfying x €
) & € 4. These classes are named proper classes. The existence of this
classes is a consequence of the Russel paradox. The wuniversal class V is the
proper class defined by = = z, and of course V is the universe of the model.

Neumann-Bernays-Gddel axioms.- The language Lpgc is a language of
two sorts s; and so extending Lyzpc. It consists in two binary relation symbols
€(s1,s1) and €4, 5,y —we use € for both. The variables of sort s; are the sets
and we use small letters. The variables of sort sy are the classes and we use
capital letters. The Neumann-Bernays-Godel set theory (BGC) is the following
Lpgc-theory:

1. Axiom of extensionality: VaVy(z =y ¢ Vz(z € v ¢ z € y)).
2. Axiom of pairing: VaVy3Vw(w € z > (w =z V w =y)).
3. Axiom of union: Vz3yVz(z € y +» Jw(w € z A z € w)).

4. Axiom of power set:

VedyVz(z € y <> Vw(w € z — w € 1)).

5. Axiom of infinity: Jz(0 € z AVy(y € v — y U {y} € x)).
6. Axiom of foundation: Vz(Jw w € x — Jy(y e x AVz(2 € zV 2 ¢ y))).

7. Axiom of extensionality for classes:
VXVY (X =Y & Vz(ze X < z€Y)).

[Two classes are equal if and only if they have the same elements].

8. Axiom schema of comprehension: For any formula ¢(y,w, W) of
Lpgc where every variable of class sort is free and for any variable X,
non-free in ¢,

VovIWaXVy(y € X < p(y,w, W)).

[For every formula ¢ of Lpgc where every variable of class sort is free,
there exists a class X whose elements are the sets satisfying ¢].
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9. Axiom of replacement:
VF(F function-class — Vo3yVz(z € y > Jw(w € x A (w, z) € F)))

where "F' function-class" represents the formula of Lygc expressing that
F is a function-class and (w, z) := {{w}, {w, z}}.

[For every class F', if F is a function-class, then there exists the set image
by F of z, for any set x].

10. Axiom of global choice:
JF(F function-class AVz(z # 0 — Jw((z,w) € F Aw € 2)))

where "F' function-class" represents the formula of Lygc expressing that
F is a function-class and (z,w) := {{z}, {#z,w}}. [There exists a function-
class F of choice, i.e., a function-class such that F(z) € z for every x # ().

The axiom of replacement implies the axiom of specification:
VX (FaVy(y € X »y € x) = I2Vw(w € X & w € 2)).

Let us prove it. If X = (), the statement is clear. If X # () and yo € X, consider

the function-class defined by comprehension F = {(y,y) : y € X} U {(y,%0) :

y €x Ay ¢ X} and apply replacement with x.

By the axiom scheme of comprehension, we conclude that the axioms of replacement
and specification of Neumann-Bernays-Go6del imply the axiom schemes of replacement
and specification of Zermelo-Fraenkel-Skolem. Hence, BGE |= ZFE.
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