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Resumen

La teoŕıa de optimización convexa es cuerpo fundamental para la resolución de muchos pro-
blemas de aprendizaje automático y problemas del d́ıa a d́ıa. Estudiar y alcanzar una mejor
comprensión de estos métodos es por tanto un aspecto fundamental de cara a construir
buenas soluciones y extraer conclusiones adecuadas. Además, centraremos también nuestra
atención en el estudio de modelos lineales como Lasso o Group Lasso, que incorporan varias
ventajas, siendo las más importantes el bajo coste computacional y la interpretabilidad de
los modelos finales.

En esta tesis de máster realizaremos en primer lugar un estudio del campo de la teoŕıa
de optimización convexa desde un punto de vista puramente teórico, estudiando conceptos
como subdiferencial y minimización de problemas proximales de cara a minimizar funciones
compuestas donde alguna de sus componentes es no diferenciable. Este cuerpo teórico es
la base para estudiar ISTA, un primer enfoque iterativo para la minimización de tales
funciones. Para mejorar la convergencia de ISTA, Nesterov introdujo una optimización
para alcanzar una convergencia óptima de O(1/k2) que supone una mejora sustancial
frente al O(1/k) de ISTA. Este método optimizado se conoce hoy en d́ıa como FISTA. No
obstante, a pesar de que esta optimización nos permite alcanzar una convergencia teórica
mas rápida, en la práctica puede resultar en una evolución no monótona, que normalmente
afecta la convergencia haciéndola más lenta. Para resolver estos problemas se han propuesto
ciertas mejoras en la literatura. En este sentido hemos estudiado los esquemas de reinicio
propuestos por O’Donogue y Candes y posteriores optimizaciones incluidas por Ito en su
método FAPG.

A la hora de mostrar los efectos de estas optimizaciones presentaremos varios expe-
rimentos. Un primer experimento consistirá en datos generados de forma sintética con
propósitos ilustrativos. Este experimento se centrará en el estudio de los efectos que las
distintas optimizaciones tienen sobre los métodos y su ventaja sobre FISTA. En este expe-
rimento podemos ver claramente cómo los métodos optimizados son mejores en términos
de iteraciones para converger. No obstante, un ejemplo sintético no nos permite extraer
resultados concluyentes. Para ello hemos aplicado estos mismos métodos a un problema
de predicción de enerǵıa eólica en Sotavento, un parque eólico situado en Galicia. En es-
te experimento perseguimos dos objetivos. En primer lugar, comparar Group Lasso como
método competitivo contra otros modelos lineales como pueden ser Lasso y Ridge Regres-
sion. Por otro lado, perseguimos replicar los experimentos del ejemplo sintético, estudiando
el efecto de las distintas optimizaciones en situaciones complejas de cross validation.

En resumen, hemos observado que las optimizaciones no son solo útiles en un contex-
to de único experimento, sino que en el peor caso los métodos optimizados muestran un
rendimiento similar a los demás, y que por tanto podemos obtener un mayor beneficio
en contextos de cross validation, donde probamos muchos modelos y por tanto el coste
computacional es mayor. Esto tiene que ver con la forma del problema y del término de
regularización. Una penalización pequeña supone un área muy amplia para buscar la solu-
ción, y por tanto podemos esperar una optimización mayor. Por otro lado, una penalización
muy grande simplifica demasiado el problema y hace que, en esencia, todos los modelos
se comporten de forma similar. En términos de competitividad, Group Lasso se comporta
de manera muy similar a los otros como Lasso y Ridge, teniendo una pequeña ventaja en
expresividad cuando hablamos de la interpretabilidad final del modelo.





Abstract

Convex optimization is a fundamental theoretical core for many well known machine learn-
ing models used in day-to-day problems. Studying and getting a better understanding of
these methods is an important aspect to build good models and extract proper conclusions.
Furthermore, we will also focus on the study of linear models such as Lasso and Group
Lasso, which incorporates several advantages, being the most important ones the cheap
computational cost and the interpretability of the resulting models.

In this Master’s Thesis we will first review the field of convex optimization from a pure
theoretical point of view, studying concepts such as subdifferential and proximal descent
minimization in order to minimize composite functions where one of its components is
non differentiable. This theoretical background is the base to study ISTA, a first iterative
approach to minimize such functions. To improve the convergence of ISTA, Nesterov first
introduced an optimization to reach an optimal convergence ratio of O(1/k2), which is
a significant improvement over the O(1/k) convergence of ISTA. This optimized method
is known as FISTA. Nonetheless, even if this optimization allows us to reach a faster
theoretical convergence, in practice we see that it may not be monotone, which usually
affects the convergence, making it slower in real applications. To solve these issues there
have been several proposals. We have studied here some restarting schemes proposed
by O’Donoghe and Candes and further accelerations introduced in the FAPG by Ito and
colleagues that actually make FISTA faster in practice.

To show the effects of these optimizations we have ended this work by presenting some
real experiments. A first experiment consists on synthetic data generated from a Gaussian
distribution. This experiment focuses on exploring the effects of the different proposed
optimizations and its advantage over standard FISTA. In this experiment we clearly see
how the optimized methods are clearly better in terms of iterations to convergence than
FISTA. Nonetheless, a synthetic experiment is not a conclusive demonstration. For this, we
have also applied these methods to a real problem of wind energy prediction in Sotavento,
a wind farm located in Galicia, northwest Spain. In this experiment we pursue two goals.
First, to test the usefulness of the optimized methods in a complex cross-validation setup
where we test many hyperparameters and the effects of such strategies. Second, to test
Group Lasso as a competitive model against state of art models such as Lasso and Ridge.

In summary, we have observed that the optimizations are not only useful in a single-
run setup, where the worst case shows a performance similar to standard FISTA, but in a
cross-validation setup, where the benefit is actually greater. This has to do with the shape
of the problem and the penalization term. A small penalization implies a very wide area
to find the solution, and then a greater optimization may be expected. On the other hand,
a big penalization makes the problem pretty much “straightforward”, making all models
behave similarly. In terms of competitiveness, we see that Group Lasso performs similarly
to other methods such as Lasso, and better than Ridge, with the added advantage of a
grouped structure and thus an interesting interpretation of the final model in terms of
feature selection.
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Chapter 1

Introduction

1.1 Motivation

Convex optimization is an essential theory core needed to solve many machine learning
problems. Among these we find well known models in the literature such as Lasso and its
group extensions, Group Lasso and others. The solution to these models usually takes an
iterative form given their particular analytical conditions, that usually involve non closed
expressions. Furthermore, complex problems also involve advance mathematical techniques
to solve non differentiable components, which are usually included as regularization terms
in these models. As a consequence, a deep study of mathematical branches such as subdif-
ferential calculus and proximal operators is very important to reach a proper understanding
of the field.

The basic topics of convex optimization include the very well known gradient descent
method, which is the most fundamental procedure to minimize smooth functions that
appear in fairly simple models. Nonetheless, we cannot apply gradient descent when trying
to work with more complex composite functions of the form f + g, where f is convex and
differentiable and g is convex but not necessarily differentiable due to, precisely, the non
differentiability of one of its components. To overcome this issue we study subdifferential
calculus, which allows us to define the proximal operator of such functions. With these
tools we can now find an iterative algorithm to solve these problems, known as ISTA.

Nonetheless, ISTA’s performance is not good enough for most applications and some ac-
celerations proposals have appeared in the literature, resulting in significant improvements
over ISTA’s convergence ratio. The main contribution to this was made by Nesterov. Along
this line FISTA was later introduced, a fast version of the previous ISTA, as a major im-
provement on the field. However, for complex problems FISTA does not show in practice
its theoretical advantage over ISTA, due to the possible non monotone behavior introduced
by Nesterov’s modifications.

Thus, the motivation of this work is to study the current state of art and review the
mathematical background necessary to reach a good understanding of this field. Apart
from this study, we are also motivated to study and experiment with further optimizations
that address this non monotonicity issue.

1.2 Objectives

The main objective of this work is to introduce a research line focused around Nesterov’s
acceleration schemes. These schemes have many applications in well known machine learn-
ing models such as the ones we will study here, Lasso and Group Lasso. Nonetheless, they

1



2 Chapter 1. Introduction

are being currently applied in deep neural networks theory and SVM solvers such as SMO.
Based on this general purpose, in this work we pursue the following main objectives:

• To study and understand the mathematical background of smooth optimization.

• To study subdifferential calculus and proximal operators.

• To introduce the convex optimization problem and study ISTA as the first iterative
algorithm to find a solution to such problems.

• To study Lasso as a first real model involving these concepts.

• To study general Nesterov’s acceleration schemes and FISTA as an improvement over
ISTA.

• To study the non monotone behavior of Nesterov’s acceleration schemes and some
proposals to avoid it such as O’Donoghue’s restarting schemes and Ito’s FAPG
method.

• To study Group Lasso as an extension to Lasso that deals with grouped structured
predictors. As far as we know this is the first application of these techniques to Group
Lasso, a problem very important in many fields such as genome-based diagnosis and
renewable energies.

• To implement these ideas and methods and apply them in both synthetic and real
world problems and perform a comparison of all optimizations to extract some con-
clusions.

1.3 Structure

In this context, this work is structured around three main chapters:

1. Proximal descent minimization, where we introduce the original problem and de-
velop the necessary mathematical background. We will work first with smooth func-
tions to later introduce the convex optimization problem we are actually interested
in. This chapter also describes in detail the fundamental results of subdifferential
calculus and proximal operators needed to introduce ISTA, an iterative algorithm
to solve composite optimization problems. At the end of the chapter we introduce
Lasso, a first machine learning model that applies these ideas.

2. Accelerated proximal descent, where we introduce Nesterov’s acceleration schemes
and FISTA as a fast version of ISTA applying Nesterov’s ideas. This leads us to the
rippling non monotone behavior that these accelerated methods may show. To over-
come this issue we present some proposals from the literature such as O’Donoghue’s
and Candes’s [7] restarting schemes or the many optimizations included in Ito et
al. [6] FAPG method. This chapter ends with the introduction of Group Lasso as a
natural extension of Lasso for problems with group structured predictors.

3. Experiments, where we will implement and compare these methods. We will work
on two different problems; a synthetic one and a real one, a wind forecasting problem,
where the predictors are geographically grouped, which makes natural the application
of Group Lasso. We will compare the convergence of all optimized methods against
standard FISTA.
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We also include a final chapter of conclusions and further work, where we hint future
lines of work and more advanced applications of these methods.
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Chapter 2

Proximal Descent Minimization

In this chapter we will cover a set of mathematical concepts that will be essential to
develop the analysis of the models and problems that we will deal with in further sections
of this work. This introduction will include a first approach to the general optimization
theory and to the more specific convex optimization theory, which involves the functions
we are interested in, convex functions. We will also review the field of subdifferential
calculus in order to be able to solve this kind of problems, ending up with an explanation
of the proximal operator, an essential tool for our analysis and algorithms. After this
introduction we will present a very well-known algorithm to solve composite minimization
problems, ISTA, giving a glimpse of its convergence ratio. After covering this basic theory
we will present the first model, the Lasso problem, which constitutes a first application of
the ideas and concepts explained in this Chapter.

The Chapter is divided into four main sections that will cover the following areas

1. We first introduce the context of general optimization theory. In Section 2.1 we cover
the most fundamental results in finding the minima of differentiable functions. After
this we introduce Lipschitz continuous functions to later introduce the first scheme
to find the minima of a general smooth function: the gradient descent method.

2. After covering the minimization of general smooth functions we narrow our study
down to convex functions, for whose minimization we need to study subdifferential
calculus. This branch of calculus enables us to introduce the proximal operator, an
important tool for minimizing non-smooth functions.

3. The proximal operator allows for the definition of an iterative algorithm to find
the minima of composite functions, those composed of a smooth and a non-smooth
functions. This algorithm is known as ISTA and Section 2.3 covers in detail its
description and convergence properties.

4. In Section 2.4 of this Chapter we finally introduce the Lasso problem, a first real
application of the ideas detailed in this Chapter. We will cover the solutions of this
model from the perspective of the ISTA algorithm.

2.1 Introduction to General Optimization Theory

Before focusing on our specific problem regarding convex optimization theory, we will
present a brief introduction to the concepts of the more general nonlinear optimization
theory covered in [1]. In this context, the general form of an optimization problem is

5



6 Chapter 2. Proximal Descent Minimization

arg min f0(x) s.t. fj(x) ≤ 0, j = 1, . . . ,m, x ∈ S, (2.1.1)

where x = (x1, . . . , xn) ∈ Rn, S ⊂ Rn, the functions f0(x), . . . , fm(x) ∈ R, where f0(x)
is our objective function and the rest are the functional constraints. A very well known
problem of this form is the machine learning model support vector machines (SVM). We
define S as the basic feasible set and set

Q = {x ∈ S | fj ≤ 0, j = 1, . . . ,m} (2.1.2)

as the feasible set of the problem, which is the set of points that verify all the constraints.
Nonetheless, given that many of these problems do not have an analytical closed solu-

tion, in this Section we will describe the minimization process for unconstrained functions,
given its far simpler derivation. This will serve as an introduction to the problems that we
are more interested in, convex optimization problems.

2.1.1 Minima of Differentiable Functions

A great majority of nonlinear problems are usually solved by working on an approxi-
mated function of the original one and generating then a decreasing sequence of values on
this function. A sequence {ak}∞k=0 is a decreasing sequence if ak+1 ≤ ak for all k ≥ 0.
Thus, to solve our original problem, we will try to generate a decreasing sequence of val-
ues {f(xk+1) ≤ f(xk)} leading to a convergence on a minimum of f(x) if the function is
bounded below.

Another important concept is that of the approximation. In general, we say that to
approximate an object is to replace it with a simpler object that is sufficiently similar to
the original one. In nonlinear optimization problems we will generally apply linear and
quadratic local approximations based on the derivatives of the original function. From this
idea we can derive two essential methods, gradient descent and Newton method, based on
the first and second order derivatives, respectively.

The first order approximation to a continuously differentiable function f at x can be
written as

f(y) = f(x) + 〈y − x,∇f(x)〉+ o(‖y − x‖), (2.1.3)

where o(r) is a function such that limr↓0
1
ro(r) = 0.

Consider Lf (α) = {x ∈ Rn | f(x) = α} the level set of f(x) at α and the set Sf (x) of
tangent directions to Lf (α) at x such that f(x) = α as

Sf (x) =

{
s ∈ Rn | s = lim

yk→x,f(yk)=α

yk − x
‖yk − x‖

}
. (2.1.4)

Lemma 2.1.1. If s ∈ Sf (x) then 〈∇f(x), s〉 = 0.

Proof. Since f(yk) = f(x) we have that

f(yk) = f(x) + 〈∇f(x), yk − x〉+ o(‖yk + x‖) = f(x).

Then we have that 〈∇f(x), yk − x〉 + o(‖yk − x‖) = 0. If we divide by ‖yk − x‖ and take
the limit when yk → x we finally have

lim
yk→x

〈∇f(x), yk − x〉
‖yk − x‖

= lim
yk→x

〈∇f(x), s〉 = 0.
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Consider s ∈ Rn such that ‖s‖ = 1. The local decrease in f(x) following the direction
s is

∆(s) = lim
α↓0

1

α
[f(x+ αs)− f(x)]

Since f(x + αs) − f(x) = α 〈∇f(x), s〉 + o(α) we have ∆(s) = 〈∇f(x), s〉. Using the
Cauchy-Shwartz inequality

−‖x‖ · ‖y‖ ≤ 〈x, y〉 ≤ ‖x‖ · ‖y‖

we obtain

−‖∇f(x)‖‖s‖ ≤ 〈∇f(x), s〉 ≤ ‖∇f(x)‖‖s‖
=⇒ ∆(s) = 〈∇f(x), s〉 ≥ −‖∇f(x)‖

Let us now take s = −∇f(x)/‖∇f(x)‖. Then

∆(s) = −〈∇f(x),∇f(x)〉 /‖∇f(x)‖ = −‖∇f(x)‖ (2.1.5)

Thus, the antigradient direction, −∇f(x), is the fastest local decreasing direction of f
at x, which is an important result because all descent methods are based on reaching the
fastest decreasing direction on f .

Theorem 1. Let x∗ be a local minimum of the differentiable function f(x). Then we have
∇f(x∗) = 0.

Proof. Given that x∗ is a local minimum of f(x), then there exists an r > 0 such that for
all y ∈ Bn(x∗, r) we have f(y) ≥ f(x∗) where Bn(x, r) = {y ∈ Rn | ‖y − x‖ ≤ r}, that is,
the ball with radius r and center x. Since f is differentiable we have

f(y) = f(x∗) + 〈∇f(x∗), y − x∗〉+ o(‖y − x∗‖)

Then, for all s, ‖s‖ = 1, we have 〈∇f(x∗), s〉 = 0. This is clear if we choose some directions
s and −s, where we have

−‖s‖ · ‖∇f(x∗)‖ ≤ 〈∇f(x∗), s〉 ≤ ‖s‖ · ‖∇f(x∗)‖
−‖ − s‖ · ‖∇f(x∗)‖ ≤ 〈∇f(x∗),−s〉 ≤ ‖ − s‖ · ‖∇f(x∗)‖

and therefore we must have 〈∇f(x∗), s〉 = 0 ∀s, ‖s‖ = 1.
Finally, choosing s = ei, where ei is the ith coordinate vector in Rn we hence have

∇f(x∗) = 0.

Nonetheless, we have just proved a necessary condition for a local minimum. The
points that satisfy this condition are usually known as stationary points. An example of a
function where these points are not a minimum is f(x) = x3.

We now introduce the second order approximation to a continuously twice differentiable
function f(x)

f(y) = f(x) + 〈∇f(x), y − x〉+
1

2

〈
f ′′(x)(y − x), y − x

〉
+ o(‖y − x‖2) (2.1.6)

where f ′′(x) is the second derivative of f at x, that is, the Hessian.
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Theorem 2 (Second order optimality condition). Let x∗ be a local minimum of a twice
differentiable function f(x). Then

∇f(x∗) = 0, and f ′′(x) ≥ 0, (2.1.7)

that is, the Hessian is semi-positive definite.

Proof. Since x∗ is a local minimum of the function f(x) there exists an r > 0 such that for
all y ∈ Bn(x∗, r) and then

f(y) ≥ f(x∗).

We know that ∇f(x∗) = 0, as shown before, and it follows

f(y) = f(x∗) +
〈
f ′′(x∗)(y − x∗), y − x∗

〉
+ o(‖y − x‖2) ≥ f(x∗)

Then, if we divide by ‖y − x∗‖2 we know that o(‖y − x‖2) tends to 0 on the limit and we
are left with the desired result as follows:

lim
y→x∗

f ′′(x∗)‖y − x∗‖2

‖y − x∗‖2
+
o(‖y − x∗‖2)

‖y − x∗‖2
= f ′′(x∗) ≥ 0

Nonetheless, this is still a necessary but not a sufficient condition for a minimum in
f(x). Let us prove a sufficient condition

Theorem 3. Let f(x) be a twice differentiable function in Rn and let x∗ be a point satis-
fying

∇f(x∗) = 0, f ′′(x∗) > 0. (2.1.8)

Then x∗ is a strict local minimum of f(x).

Proof. If we consider a small neighborhood around x∗ in f(x) we can represent f(y) as

f(y) = f(x∗) +
1

2

〈
f ′′(x∗)(y − x∗), y − x∗

〉
+ o(‖y − x∗‖2).

Since 1
ro(r)→ 0, there exists a sufficiently small r such that for all r ∈ [0, r] we have that

|o(r)| ≤ r

4
λ1f

′′(x∗),

where λ1 is the smallest eigenvalue of f ′′(x∗). Assuming that the Hessian is positive definite
at x∗ we have then that for all y ∈ Bn(x∗, r)

f(y) ≥ f(x∗) +
1

2
λ1f

′′(x∗)‖y − x∗‖2 + o(‖y − x∗‖2)

≥ f(x∗) +
1

4
λ1f

′′(x∗)‖y − x∗‖2 > f(x∗)



2.1. Introduction to General Optimization Theory 9

2.1.2 Lipschitz Continuous Differentiable Functions

From now on we focus on a set of functions with specific properties. This kind of functions
allows us to define more interesting properties about the minimization process, that often
involve the Lipschitz condition for a derivative of certain order of f(x).

Let Q ⊂ Rn. We denote Ck,pL (Q) as the class of functions k times differentiable of
which the pth derivative is Lipschitz continuous with constant L. That means that the pth
derivative fulfills that

‖fp(x)− fp(y)‖ ≤ L‖x− y‖.

where fp(x) is an abbreviated form of expressing any partial

∂α1+...+αd

∂xα1
1 . . . ∂xαd

d

f,

where α1 + . . .+ αd = p.
We are particularly interested in the class of functions with Lipschitz continuous gra-

dient, that is, C1,1
L . A particularly important result that we will use in further derivations

is

Lemma 2.1.2. Let f ∈ C1,1
L (Rn); then we have that

|f(y)− f(x)− 〈∇f(x), y − x〉| ≤ L

2
‖y − x‖2. (2.1.9)

Proof. For all x, y ∈ Rn we have

f(y) = f(x) +

∫ 1

0
〈∇f(x+ τ(y − x)), y − x〉 dτ

= f(x) + 〈∇f(x), y − x〉+

∫ 1

0
〈∇f(x+ τ(y − x))−∇f(x), y − x〉 dτ,

from which follows

|f(y)− f(x)− 〈∇f(x), y − x〉 | =
∣∣∣∣∫ 1

0
〈∇f(x+ τ(y − x))−∇f(x), y − x〉 dτ

∣∣∣∣
≤
∫ 1

0
| 〈∇f(x+ τ(y − x))−∇f(x), y − x〉 |dτ

≤
∫ 1

0
‖∇f(x+ τ(y − x))−∇f(x)‖ · ‖y − x‖dτ

≤
∫ 1

0
τL‖y − x‖2dτ =

L

2
‖y − x‖2.

2.1.3 Gradient Descent

Now that we have setup the bare minimum set of tools and concepts we need to understand
the problem, comes the phase where we actually perform the optimization of the function
to solve. In this case we are dealing just with differentiable functions, and thus the most
reasonable method is the gradient method. As we mentioned before, we can easily derive
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two methods from the first and second order approximations; the gradient method and the
Newton method, which are based on first and second order derivatives respectively. In this
section we will focus on gradient descent, since the Newton method involves the calculation
of the Hessian, which is much more expensive from the point of view of the computational
cost.

As we just said, the simplest method to find the minimum point of a certain function
f is to follow its fastest local decreasing direction, which is, as we saw, the antigradient.
This simple scheme would involve two basic steps

1. Choose a starting point x0 ∈ Rn.

2. Iterate

xk+1 = xk − hk∇f(xk), k = 0, 1, . . . (2.1.10)

where hk is a parameter known as the stepsize.

For this to be possible we need that the gradient of f is defined and continuous, that
is, we assume that f ∈ C1,1

L . The key of this algorithm is how to choose the step size
parameter. We have three main strategies

1. Choose the {hk}∞k=0 beforehand.

2. Full relaxation:
hk = arg min

h≥0
f(xk − h∇f(xk)).

3. Goldstein-Armijo rule: find the xk+1 = xk − h∇f(xk) such that

α 〈∇f(xk), xk − xk+1〉 ≤ f(xk)− f(xk+1),

β 〈∇f(xk), xk − xk+1〉 ≥ f(xk)− f(xk+1),

where 0 < α < β < 1 are fixed parameters.

Consider now our usual problem

arg min
x∈Rn

f(x). (2.1.11)

Take y = x− h∇f(x) as the first step of the gradient method. We then have

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2

= f(x)− h‖∇f(x)‖2 +
h2

2
L‖∇f(x)‖2

= f(x)− h(1− h

2
L)‖∇f(x)‖2.

We can obtain the optimal step by minimizing ∆(h) = arg minh−h
(

1− h

2
L

)
=⇒

h∗ = 1
L . Hence, a single step can decrease the objective function as much as

f(y) ≤ f(x)− 1

2L
‖∇f(x)‖2 (2.1.12)
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We are now ready to estimate the performance of the gradient method. Let us start
by summing the inequalities in (2.1.12) for k = 0, . . . , N, reaching

w

L

N∑
k=0

‖∇f(xk)‖2 ≤ f(x0)− f(xN ) ≤ f(x0)− f∗, (2.1.13)

where w is some positive constant and f∗ is the optimal value of the problem we want to
minimize. As a simple conclusion we see that

‖∇f(xk)‖ → 0 as k →∞.

Indeed, we can go further and get the convergence rate at which the gradient goes to
zero. Let us denote

g∗N = arg min
0≤k≤N

gk,

where gk = ‖∇f(xk)‖. In view of (2.1.13), we have

g∗N ≤
1√
N + 1

[
1

w
L(f(x0)− f∗)

]1/2

, (2.1.14)

which describes the rate of convergence of the sequence {gk} to zero. Note that this still
does not say anything about the convergence of the sequences {f(xk)} or {xk}.

Recall that, even if our goal in this kind of problems is moderate, namely, we want
to find a minimum on the sequence f(xk), it is generally out of reach for the described
gradient method as it is. To show this, consider the following example detailed in [1].

Consider the function of two variables

f(x) ≡ f(x(1), x(2)) =
1

2

(
x(1)

)2
+

1

4

(
x(2)

)4
− 1

2

(
x(2)

)2
.

The gradient of this function is ∇f(x) =
(
x(1),

(
x(2)

)3 − x(2)
)T

. Therefore there are only

three possible local minima of this function

x∗1 = (0, 0), x∗2 = (0,−1), x∗3 = (0, 1).

Computing the Hessian of this function,

f ′′(x) =

(
1 0

0 3
(
x(2)

)2 − 1

)
, (2.1.15)

we conclude that x∗2 and x∗3 are the isolated local minima, while x∗1 is only a stationary

point of our function. Indeed, f(x∗1) = 0 and f(x∗1 + εe2) = ε4

4 −
ε2

2 < 0 for ε small enough.
Consider the trajectory of the gradient method, starting from x0 = (1, 0). We note

that the second coordinate is 0 and thus the second coordinate of the gradient is also 0.
Consequently, the second coordinate of any xk is also 0. This means that this sequence
can only converge to x∗1. Thus, without any additional assumptions on the function, it
is impossible to guarantee the global convergence of the minimizing sequence to a local
minimum, only to a stationary point.

Furthermore, the next theorem states the necessary assumptions for any function f in
order to guarantee a global convergence to a local minimum.

Theorem 4. Let a function f(x) satisfy the following assumptions
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1. f ∈ C2,2
M (Rn).

2. There exists a local minimum of function f at which the Hessian is positive definite.

3. We know the bounds 0 < µ ≤ L <∞ for the Hessian at x∗:

µIn ≤ f ′′(x∗) ≤ LIn. (2.1.16)

4. Our starting point x0 is close enough to x∗.

Then we have

r0 = ‖x0 − x∗‖ < r =
2µ

M
, (2.1.17)

and then the gradient method with the optimal step size converges with the following rate [1]:

‖xk − x∗‖ ≤
rr0

r − r0

(
1− µ

L+ µ

)k
(2.1.18)

2.2 Convex Optimization

As we have claimed at the beginning of this chapter, in practice we do not have terms
that are easily differentiable but, in contrast, we have nonsmooth terms that are not
differentiable at some points. For instance, a term we will use here is the well known `1
norm ‖β‖1 =

∑p
j=1 |βj |, which is a convex but not differentiable function. Nonetheless, we

will have a natural extension to minimize this kind of functions in the field of subdifferential
calculus.

This generalization is based on the theorems of Fermat and Moreau-Rockafellar that
we describe later on. We now need a minimization scheme valid for nonsmooth functions,
as opposed to the gradient descent method that we described in the Section 2.1.3. Before
describing this specific scheme to solve the nonsmooth optimization, let us review first the
context of the general subdifferential calculus and a set of results that we will need in
further derivations.

2.2.1 Subdifferential Calculus

We now focus on the so-called convex functions, leading thus to the field of convex opti-
mization. Our interest in the convex optimization problems is mainly motivated because of
the relevant presence that convex functions have in day-to-day machine learning problems.
In this context, the objective of this section is to study subdifferential calculus, which is an
extended branch of classical calculus including the notions of subdifferential and subgra-
dient. These two concepts will make possible the analysis of nonsmooth convex functions,
that constitute the main problem to solve here. We start with a few important definitions:

Definition 1 (Convex Set). A set C ⊆ Rn is a convex set if for all t ∈ (0, 1) the following
condition holds

tx+ (1− t)y ∈ C, ∀x, y ∈ C. (2.2.1)

Intuitively, this condition states that for any two given points x, y in C, any other point
in the segment that joins x, y must also be in C. Examples of convex sets are an hyperplane
H = {x ∈ Rn : w · x− β = 0} or a ball B = {x ∈ Rn : |x− x0| ≤ β}.
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Figure 2.2.1: Convex function definition (extracted from Wikipedia)

Definition 2 (Effective Domain). The effective domain of f is the set

dom(f) = {x ∈ Rn : f(x) < +∞} . (2.2.2)

If dom(f) is not empty the function is said to be proper.

Definition 3 (Convex Function). A convex function f is a function f : Rn → (−∞,∞]
whose effective domain is an open convex set and for which x, y, 0 ≤ t ≤ 1, fulfill that

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y). (2.2.3)

A graphical example of a convex function is shown in Figure 2.2.1. A fundamental
property of convex functions is given in the following theorem

Theorem 5. Consider a convex function f and a local minimum point x∗ ∈ Rn, then it
is necessarily a global minimum.

Proof. To show this property let us take a point x that is a local minimum. Hence, there
must be a ball of points A around this point x for which we have ∀y ∈ A, f(x) ≤ f(y). We
can then find a small ε > 0 for which it also holds that ∀y ∈ Rn we have (1− ε)x+ εy ∈ A.
Applying the convex function definition that means that

f(x) ≤ f((1− ε)x+ εy) ≤ (1− ε)f(x) + εf(y),

from which we can easily obtain

εf(x) ≤ εf(y) =⇒ f(x) ≤ f(y).

The core concepts of the subdifferential calculus, as we mentioned before, are subgra-
dient and subdifferential. Their definitions are

Definition 4 (Subgradient). A subgradient of a convex function f at x ∈ Rn is a vector
ξ ∈ Rn for which ∀y ∈ Rn the following condition holds

f(y) ≥ f(x) + ξ · (y − x). (2.2.4)
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Figure 2.2.2: Graphical representation of some subgradients of f(x) = |x|.

That is, the function is left above the hyperplane defined by ξ · (x− y).

Definition 5 (Subdifferential). The subdifferential of a convex function f at x is the set
function of subgradients ∂f : Rn → 2R

n
, defined as

∂f(x) = {ξ ∈ Rn : f(x) + ξ · (y − x) ≤ f(y), ∀y ∈ Rn} . (2.2.5)

We can easily see that if the function is differentiable then we have ∂f(x) = {∇f(x)}.
By definition, we can approximate f(y) as

f(y) ≥ f(x) + ξ · (y − x),

where ξ = ∇f(x) iff f(x) is differentiable. If we now choose ξ = 0 we have proved that
∂f(x) = {∇f(x)}.

A nonsmooth convex function that we will study here is the aforementioned `1-norm,
whose form is ‖x‖1 =

∑n
i=1 |xi|, which involves the absolute value function. We can clearly

see that this is a convex function that is not differentiable at x = 0. Its subdifferential is

∂|x| =


−1 if x < 0,

[−1, 1] if x = 0,

1 if x > 0.

(2.2.6)

The tricky piece of this function is the case where x = 0. We can see that any line
with slope in [−1, 1] leaves above the function, which is, essentially, what the subgradient
definition means. In Figure 2.2.2 we can see two subgradients of the absolute value function,
with slopes −0.5 and 0.5. Note that we have an infinity number of subgradients at x = 0.

All the technical definitions presented in this Section are useful to define a way of
minimizing a composite function that is typically composed of a smooth part f(x) and a
nonsmooth part g(x). This problem is known as composite optimization. Nonetheless, we
need yet another theorem that allows us to compute the subgradient of the sum of two
given functions. Fortunately, one of the key results of this field includes a theorem that
allows us to divide the subdifferential of this function into its two components.
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Theorem 6. Moreau-Rockafellar Let f, g be convex functions defined in Rn. Then,
∀x0 ∈ Rn the following condition holds

∂f(x0) + ∂g(x0) ⊂ ∂(f + g)(x0). (2.2.7)

If int (dom f ∩ dom g) 6= ∅ we also have that ∂(f + g)(x0) ⊂ ∂f(x0) + ∂g(x0).

Proof. We will divide the proof into two parts, one for proving each part of the inclusion,
as presented in [2].

For the proof of the first inclusion we choose ξ1 ∈ ∂f(x0) and ξ2 ∈ ∂g(x0) for which we
have ∀x ∈ Rn,

f(x) ≥ f(x0) + ξ1 · (x− x0),

g(x) ≥ g(x0) + ξ2 · (x− x0),

By summing these inequalities we end up with the following expression

f(x) + g(x) ≥ f(x0) + g(x0) + (ξ1 + ξ2) · (x− x0),

and therefore (ξ1 + ξ2) ⊂ ∂(f + g)(x0), proving the first part of the theorem.
To prove the second part, let ξ ∈ ∂(f + g)(x0). First, we observe that f(x0) = +∞

implies (f + g)(x0) = +∞, whence f + g ≡ +∞, which is impossible by ξ ∈ ∂(f + g)(x0).
Analogously, g(x0) = +∞ is impossible. Hence, we now that both f(x0) and g(x0) belong
to R. We form the following two sets in Rn+1.

Λf := {(x− x0, y) ∈ Rn × R : y > f(x)− f(x0)− ξ · (x− x0)} ,
Λg := {(x− x0, y) : −y ≥ g(x)− g(x0)} .

Note that both sets are nonempty and convex. From ξ ∈ ∂(f+g)(x0) follows that Λf∩Λg =
∅. Hence, by the set-set-separation Theorem [2], there exists (ξ0, µ), (ξ0, µ) 6= (0, 0) ∈ Rn+1

and α ∈ R, such that

ξ0 · (x− x0) + µy ≤ α for all (x, y) with y > f(x)− f(x0)− ξ · (x− x0),

ξ0 · (x− x0) + µy ≥ α for all (x, y) with − y ≥ g(x)− g(x0).

By (0, 0) ∈ Λg we get α ≤ 0. But also (0, ε) ∈ Λf for every ε > 0, and this gives µε < α,
so µ ≤ 0 (take ε = 1). In the limit, for ε→ 0, we find α ≥ 0. Hence α = 0 and µ ≤ 0. We
now claim that µ = 0 is impossible. Indeed, if one had µ = 0, then the first of the above
two inequalities would give

ξ0 · (x− x0) ≤ 0 for all (x, y) with y > f(x)− f(x0)− ξ · (x− x0),

which is equivalent to

ξ0 · (x− x0) ≤ 0 for all x ∈ dom f,

because we can essentially choose any arbitrarily large y such that y > f(x)− f(x0)− ξ ·
(x− x0). Similarly, the second inequality would give

ξ0 · (x− x0) ≥ 0 for all x ∈ dom g.
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In particular, for x as above this would imply ξ0 · (x − x0) = 0. But since x lies in the
interior of dom f (so for some δ > 0 the ball Nδ(x̃) belongs to dom f), the preceding would
imply

ξ0 · u = ξ0 · (x̃+ u− x0) ≤ 0 for all u ∈ Nδ(0).

This would give ξ0 = 0 which would be in contradiction to (ξ0, µ) 6= (0, 0). Hence, we
conclude µ < 0. Dividing the separation inequalities by −µ and setting ξ0 := −ξ0/µ, this
results in

ξ0 · (x− x0) ≤ y for all (x, y) with y > f(x)− f(x0)− ξ · (x− x0),

ξ0 · (x− x0) ≥ y for all (x, y) with − y ≥ g(x)− g(x0).

The last inequality gives −ξ0 ∈ ∂g(x0) and the one but last inequality gives ξ+ξ0 ∈ ∂f(x0).
Since ξ = (ξ + ξ0)− ξ0, this finishes the proof.

Another fundamental result here is the Fermat rule. The Fermat rule is known for its
implications in the field of classical and subdifferential calculus. We present its versions
for both the differentiable and non-differentiable cases next.

Theorem 7. Fermat Rule (differentiable case) For a convex and differentiable func-
tion f we have

arg min f = {x ∈ Rn | ∇f(x) = 0} . (2.2.8)

This first definition gives us a very explicit way to calculate the minimum point of
a given function by calculating its gradient and solving the equation ∇f(x) = 0. The
non-differentiable case, on the other hand, will not give us such an explicit tool.

Theorem 8. Fermat Rule (non-differentiable case) For a convex function f we have

arg min f = {x ∈ Rn | 0 ∈ ∂f(x)} . (2.2.9)

Proof. If 0 ∈ ∂f(x) we have that

f(y) ≥ f(x) + ξ · (y − x),

where ξ = 0 and then f(y) ≥ f(x) ∀y ∈ Rn.

To reach a more explicit equation to find this point we will need the proximal operator,
that we explain next. The implications of these two theorems (Moreau-Rockafellar and
Fermat Rule) are very important to the field of convex optimization because they give a
formal condition of the minimum of a composite function f that may not be necessarily
smooth keeping the intuitiveness of classical calculus.

2.2.2 The Proximal Operator

Nonetheless, although the general analysis of the gradient method may be useful, we can-
not directly apply it to our usual problems due to the non-differentiability of one of its
components. Then, we have to define a more powerful tool that makes us able to deal with
non-differentiable components in our problem: the proximal operator. Actually, this new
minimization scheme should behave in a similar fashion as the gradient scheme, and should
then perform some sort of descent along a decreasing direction of the objective function.
Before actually defining this operator we need a set of technical definitions
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Definition 6 (Monotone Operator). An operator T : Rn → 2R
n

is monotone if it fulfills
the following condition

(ξ1 − ξ2) · (x1 − x2) ≥ 0, ∀x1, x2 ∈ Rn, ξ1 ∈ T (x1), ξ2 ∈ T (x2). (2.2.10)

Lemma 2.2.1. If T is a monotone operator then T−1 is also monotone

Proof. To prove that the inverse of an operator is also monotone we consider the graph of
an operator T

G(T ) : {(x, ξ) : ξ ∈ T (x)}

and define T−1 through its graph

G(T−1) = {(ξ, x) : (x, ξ) ∈ G(T )} with ξ ∈ T (x),

which, in other words, means that (ξ, x) ∈ G(T−1) iff ξ ∈ T (x). Then, we can see that the
monotonicity of T−1 follows since x ∈ T−1(ξ) ⇐⇒ ξ ∈ T (x).

Lemma 2.2.2. If T is a monotone operator then αT is also monotone ∀α > 0.

Proof. Let us have η1 ∈ αT (x1) and η2 ∈ αT (x2). This means that η1 = αξ1 for ξ1 ∈ T (x1)
and the same holds for η2. By applying the definition of monotone operator we have that

(η1 − η2) · (x1 − x2) ≥ 0 =⇒ α(ξ1 − ξ2) · (x1 − x2) ≥ 0.

Proposition 1. The subdifferential is a monotone operator.

Proof. Suppose ξ1 ∈ ∂f(x1) and ξ2 ∈ ∂f(x2), where f is a convex function. Then we have

f(x1) ≥ f(x2) + ξ1 · (x1 − x2)

f(x2) ≥ f(x1) + ξ2 · (x2 − x1)

If we now sum these inequalities we get

f(x1)− f(x2) ≥ f(x2)− f(x1)− (ξ1 + ξ2) · (x1 − x2),

=⇒ (ξ1 − ξ2) · (x1 − x2) ≥ 0

which fulfills the definition of monotone operator.

Theorem 9. The resolvent operator RT = (I+T )−1 is univalued and firmly nonexpansive,
that is, it fulfills that

〈RT (x1)−RT (x2), x1 − x2〉 ≥ ‖RT (x1)−RT (x2)‖2, ∀x1, x2 ∈ Rn. (2.2.11)
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Proof. To prove that the resolvent operator is single valued, let us have (Z, x1), (Z, x2) ∈
G(RT ). The we have that Z ∈ (I + T )(x1) = x1 + T (x1), i.e., Z ∈ x2 + T (x2) and there
are ξi ∈ T (xi) such that Z = x1 + ξ1 = x2 + ξ2, i.e., ξ1 − ξ2 = −(x1 − x2). But since T is
monotone it follows that

0 ≤ (ξ1 − ξ2) · (x1 − x2) = −‖x1 − x2‖2

and therefore we must have x1 = x2.

To prove the firmly non-expansiveness let us define xi = RT (Zi). Then Zi ∈ xi +T (xi)
and Zi = xi + ξi with ξi ∈ T (xi). Now it follows that

(x1 − x2) · (Z1 − Z2) = (x1 − x2) · (x1 − x2) + (x1 − x2) · (ξ1 − ξ2)

= ‖x1 − x2‖2 + (x1 − x2) · (ξ1 − ξ2),

and since T is monotone, firmly non-expansiveness of RT follows.

Definition 7 (Proximal Operator). The proximal operator of a function f is defined as
the resolvent of the subdifferential and is denoted by proxf = (I + ∂f)−1.

We can see that the previous definition of the Proximal Operator is not particularly
useful when it comes to actually solve a problem. For this, we can find a more operative
definition of the Proximal Operator.

Definition 8 (Alternative definition of the Proximal Operator).

proxf (z) = arg min
y∈Rn

(
f(y) +

1

2
‖z − y‖2

)
. (2.2.12)

We now prove the equality of both definitions

Proposition 2. Both definitions for the proximal operator are equivalent.

Proof. Consider g(y) = f(y) +
1

2
‖z − y‖2 and x = arg min g(y). If x is the minimizer of

g(y) we have that

0 ∈ ∂g(x) = x− z + ∂f(x).

This implies that

z ∈ x+ ∂f(x) = (I + ∂f)(x)

=⇒ x = (I + ∂f)−1(z)

=⇒ x = proxg(z)

by applying the original definition of the proximal operator.

As we mentioned before, the purpose of introducing the proximal operator is to be able
to solve composite optimization problems, where the final function F (x) is composed by a
smooth function f(x) and a nonsmooth function g(x). In this context, and thanks to the
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theorem of Moreau-Rockafellar, we know that minimizing the sum of two convex functions
translates to finding the point that verifies 0 ∈ ∇f(x) + ∂g(x).

The solution to this problem is thus x = proxγg(x− γ∇f(x)), taking into account that

0 ∈ ∇f(x) + ∂g(x) ⇐⇒ −∇f(x) ∈ ∂g(x) (2.2.13)

If we introduce a term γ, since we know that γT , where T is a monotone operator, is
still a monotone operator, we get

x− γ∇f(x) ∈ x+ γ∂g(x) = (I + γ∂g)(x)

=⇒ x = (I + γ∂g)−1(x− γ∇f(x))

=⇒ x = proxγg(x− γ∇f(x)) (2.2.14)

and this finally leads us to the next section, where we will introduce an algorithm to
compute the solution of the aforementioned composite minimization problem, based on
the application of the proximal operator.

2.3 ISTA Algorithm

In this section we present a very well known algorithm, ISTA, for solving proximal problems
of the form F ≡ f+g. In Section 3.2 we will introduce a fast version of this algorithm. The
previous section gave us an interesting tool to solve problems that involve a nonsmooth
component, the proximal operator. From Equation (2.2.14) we see that we need to find a
fixed point of the proximal operator. The simplest idea that comes to our mind to find a
fixed point in any sequence is to iterate the expression until we reach such a point. The
basic iteration would be then the application of this equation in the following way

xk+1 = proxγg(xk − γ∇f(xk)), (2.3.1)

which amounts to finding the fixed point of the proximal, leading us directly to the ISTA
algorithm. The key of the ISTA algorithm is not only to propose such iterative method
but to prove its convergence.

Let us recall the general problem that we are trying to solve.

arg min
x∈Rn

{F (x) ≡ f(x) + g(x)} , (2.3.2)

where f(x) ∈ C1,1
L (Rn) is convex and g(x) is convex but not necessarily differentiable.

Let us start with the quadratic approximation to this function at a point y

QL(x, y) := f(y) + 〈x− y,∇f(y)〉+
L

2
‖x− y‖2 + g(x), (2.3.3)

where we leave the non differentiable term without any modification. The minimizer of
this problem is

pL(y) := arg min
x∈Rn

{QL(x, y)} . (2.3.4)

We can see that by completing squares this can be equally written as
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pL(y) = arg min
x

{
g(x) +

L

2

∥∥∥∥x− (y − 1

L
∇f(y)

)∥∥∥∥2
}

= arg min
x

{
1

L
g(x) +

1

2

∥∥∥∥x− (y − 1

L
∇f(y)

)∥∥∥∥2
}
,

which is the proximal operator as we alternatively defined it in Equation (2.2.12) evaluated
at the point y− 1

L∇f(y). Before proceeding to the analysis of ISTA we need the following
results from [3].

Lemma 2.3.1. Let f : Rn → R be a continuously differentiable function with Lipschitz
continuous gradient and Lipschitz constant Lf . Then, for any L ≥ Lf ,

f(x) ≤ f(y) + 〈x− y,∇f(y)〉+
L

2
‖x− y‖2 for every x, y ∈ Rn, (2.3.5)

and furthermore, using the definitions of F and Q given in (2.3.2) and (2.3.3),

F (x) ≤ QL(x, y) ∀y ∈ Rn. (2.3.6)

Lemma 2.3.2. For any y ∈ Rn, one has z = pL(y) if and only if there exists a γ ∈ ∂g(z),
the subdifferential of g(·), such that

∇f(y) + L(z − y) + γ = 0. (2.3.7)

Proof. If z = pL(y), we have that

0 ∈ ∇f(y) + L(z − y) + ∂g(z)

and then there must exist a γ ∈ ∂g(z) for which

0 = ∇f(y) + L(z − y) + γ.

We can now show that

Lemma 2.3.3. Let y ∈ Rn and L > 0 such that

F (pL(y)) ≤ QL(pL(y), y). (2.3.8)

Then, for any x ∈ Rn, it follows that

F (x)− F (pL(y)) ≥ L

2
‖pL(y)− y‖2 + L 〈y − x, pL(y)− y〉 (2.3.9)

Proof. From (2.3.8) we have that

F (x)− F (pL(y)) ≥ F (x)−QL(pL(y), y) (2.3.10)

Since f, g are convex we have

f(x) ≥ f(y) + 〈x− y,∇f(y)〉
g(x) ≥ g(pL(y)) + 〈x− pL(y), γ〉 ,



2.3. ISTA Algorithm 21

Algorithm 1: ISTA algorithm with constant step

Input : f convex with ∇f Lipschitz constant L; g convex
Output : xk+1 ' arg minx∈Rn {f(x) + g(x)}
Initialization: x0 ∈ Rn
for k = 1, . . . do

xk+1 ← prox 1
L
g

(
xk−1 −

1

L
∇f(xk−1)

)
(2.3.13)

end

where γ verifies (2.3.7), that is

γ = −∇f(y) + L(y − pL(y)).

Summing these inequalities we obtain

F (x) ≥ f(y) + 〈x− y,∇f(y)〉+ g(pL(y)) + 〈x− pL(y), γ〉 . (2.3.11)

On the other hand, by the definition of QL at pL(y) we have

QL(pL(y), y) = f(y) + 〈pL(y)− y,∇f(y)〉+
L

2
‖pL(y)− y‖2 + g(pL(y)). (2.3.12)

Thus, introducing (2.3.12) and (2.3.11) in (2.3.10) it follows that

F (x)− F (pL(y)) ≥ f(y) + 〈x− y,∇f(y)〉+ g(pL(y)) + 〈x− pL(y), γ〉

− f(y)− 〈pL(y)− y,∇f(y)〉 − L

2
‖pL(y)− y‖2 − g(pL(y))

≥ −L
2
‖pL(y)− y‖2 + 〈x− pL(y),∇f(y) + γ〉

= −L
2
‖pL(y)− y‖2 + L 〈x− pL(y), y − pL(y)〉

=
L

2
‖pL(y)− y‖2 + L 〈y − x, pL(y)− y〉 .

See [3], Lemma 2.3.3, for more details.

The pseudocode for the standard ISTA algorithm is shown in Algorithm 1. Nonetheless,
even if this is the standard case, we note that we may not know the actual Lipschitz constant
Lf . In this case we also note from Lemma 2.3.1 that for any L ≥ Lf the condition (2.3.8) is
always fulfilled for pL(y). This implies that for any L ≥ Lf we are decreasing the objective’s
value each time we iterate the proximal operator, which is the goal in a minimization
scheme. Then, in this case, when we do not know the actual Lipschitz constant, we will
need to use an estimate. To obtain this approximation we will have to make sure that our
estimation Lk for the kth iteration fulfills that Lk ≥ L and the condition (2.3.8). This
strategy is known as backtracking. We obtain the following remark.

Remark 2.3.1. Since inequality (2.3.8) is satisfied for any L ≥ Lf , where Lf is the
Lipschitz constant of ∇f , it follows that for ISTA we can define a backtracking strategy in
which we have Lk ≤ ηLf for every k ≥ 1. Overall,

βL0 ≤ Lk ≤ ηLf , (2.3.14)
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Algorithm 2: ISTA algorithm with backtracking

Input : f convex; g convex
Output : xk+1 ' arg minx∈Rn {f(x) + g(x)}
Initialization: Take L0 > 0, some η > 1 and some x0 ∈ Rn
for k = 1, . . . do

Find smallest nonnegative integers ik such that with L̄ = ηikLk−1 we have

F (pL̄(xk−1)) ≤ QL̄(pL̄(xk−1), xk−1) (2.3.15)

Set Lk = ηikLk−1

xk+1 ← prox 1
Lk
g

(
xk−1 −

1

L
∇f(xk−1)

)
(2.3.16)

end

Essentially, this amounts to finding a proper η for which our estimation of Lk verifies
the condition (2.3.8). The pseudocode of the ISTA algorithm for the backtracking strategy
is shown in Algorithm 2.

We can now prove the convergence rate of ISTA, given by the following theorem [3].

Theorem 10. ISTA Convergence Ratio Let {xk} the sequence generated by either
version of the ISTA algorithm. Then, for any k ≥ 1

F (xk)− F (x∗) ≤ αL‖x0 − x∗‖2

2k
, (2.3.17)

where α = 1 for the constant stepsize setting (in the case of known Lipschitz constant) and
α = η for the backtracking setting.

Proof. We follow the proof in [3], Theorem 3.1. We first invoke Lemma 2.3.3 with x =
x∗, y = xn and L = Ln+1; then we have that

2

Ln+1
(F (x∗)− F (xn+1)) ≥ ‖xn+1 − xn‖2 + 2 〈xn − x∗, xn+1 − xn〉

= ‖x∗ − xn+1‖2 − ‖x∗ − xn‖2 ,

which using (2.3.14) and the fact that F (x∗)− F (xn+1) ≤ 0 gives

2

αLf
(F (x∗)− F (xn+1)) ≥ ‖x∗ − xn+1‖2 − ‖x∗ − xn‖2.

Summing this inequality over n = 0, . . . , k leads us to

2

αLf

(
kF (x∗)−

k−1∑
n=0

F (xn+1)

)
≥ ‖x∗ − xk‖2 − ‖x∗ − x0‖2 . (2.3.18)

Again, invoking Lemma 2.3.3 with x = y = xn and L = Ln+1 we obtain

2

Ln+1
(F (xn)− F (xn+1)) ≥ ‖xn − xn+1‖2 .

Since Ln+1 ≥ βLf (because of (2.3.14)) it follows that
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2

βLf
(F (xn)− F (xn+1)) ≥ ‖xn − xn+1‖2 .

By multiplying this inequality by n and summing over n = 0, . . . , k we get

2

βLf

k−1∑
n=0

nF (xn)−
k∑

n=1

nF (xn) +

k∑
n=1

F (xn) ≥
k−1∑
n=0

n‖xn − xn+1‖2

=⇒ 2

βLf

k−1∑
n=0

{
nF (xn)− (n+ 1)F (xn+1) + F (xn+1)

}
≥

k−1∑
n=0

n‖xn − xn+1‖2.

which can be simplified as

2

βLf

(
−kF (xk) +

k−1∑
n=0

F (xn+1)

)
≥

k−1∑
n=0

n‖xn − xn+1‖2. (2.3.19)

Summing Equations (2.3.19) and (2.3.18) times β/α we finally reach

2k

αLf
(F (x∗)− F (xk)) ≥ ‖x∗ − xk‖2 +

β

α

k−1∑
n=0

n‖xn − xn+1‖2 − ‖x∗ − x0‖2

obtaining the final convergence ratio

F (xk)− F (x∗) ≤
αLf‖x∗ − x0‖2

2k

This convergence ratio is called sublinear. This means that to reach a solution within
a tolerance ε we need at most dC/εe iterations, where C is the constant numerator on the
convergence ratio.

2.4 The Lasso Problem

We present now the first machine learning model we will work with, the Lasso problem [4, 5].
The Lasso model is a regularized linear regression model that imposes an `1 norm penalty
on the coefficients to avoid overfitting and to improve the interpretability of the model.
In contrast to other regularized linear regression models, such as Ridge Regression, the
`1 norm penalty term makes things a bit more difficult due to its non-differentiability.
Nonetheless, after the introduction to the concepts of subdifferential calculus and the
proximal operator, we are now able to deal with it.

The original formulation of the problem, as presented in [5] is often written as

arg min
β∈Rn

{
1

2N
‖y −Xβ‖2 + λ‖β‖1

}
s.t. λ ≥ 0, (2.4.1)

where we have standardized the features and the target to get rid of the β0 term, known
as the intercept, to ease the derivations.

We note that the Lasso formulation fits very well the kind of problems we have been
dealing with in a more abstract fashion during this Chapter. Specifically, the Lasso problem
can be seen as a composite problem, where f = 1

2N ‖y−Xβ‖
2 and g = ‖β‖1. In this context,

we want to solve the following problem
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β∗ = arg min f(β) + g(β). (2.4.2)

As we have seen in the last Section, to find the minimum of the sum of these two
functions is the same as finding the fixed point of the proximal operator applied to the
sum, which amounts to iterating the ISTA algorithm

xk+1 = prox 1
L
g

(
xk −

1

L
∇f(xk)

)
. (2.4.3)

In the specific case of Lasso, we can calculate the proximal operator from the subdif-
ferential of the `1 penalty term, which is

∂|βj | =


−1 if βj < 0,

[−1, 1] if βj = 0,

1 if βj > 0.

(2.4.4)

Applying the definition of the proximal operator we find that

(I + λ∂f)(β̂) =


β̂ + λ if β̂ > 0,

[−λ, λ] if β̂ = 0,

β̂ − λ if β̂ < 0,

β̂ =


β̂ + λ if β̂ < −λ,
0 if β̂ ∈ [−λ, λ],

β̂ − λ if β̂ > λ.

(2.4.5)

This can be written in a more compact form

Sλ = sign(x)(|x| − λ)+ = sign(x) max {|x| − λ, 0} (2.4.6)

which is known as the soft-thresholding operator.
Thus, we see that solving the Lasso problem by application of the ISTA algorithm

translates to iterate the following expression until convergence

xk+1 = Sλ

(
xk −

1

L
∇f(xk)

)
(2.4.7)

A very interesting advantage of the ISTA algorithm is that it gives a generic formulation
that allows us to solve different proximal problems very easily, simply by changing the
proximal operator. This advantage often contrasts with the probably better efficiency
that specific algorithms for some problems may have. In the case of Lasso there exists an
alternative specific algorithm, known as cyclic coordinate descent. We describe it next.

To solve the Lasso problem by applying the coordinate descent algorithm let us first
write the zero-point subgradient equations in the following way

1

N
〈xj , y − xβ〉+ λsj = 0, j = 1, . . . , p (2.4.8)

where p is the number of features and where sj is an element of the subdifferential of the
|βj |. Note that we are taking a specific element of the subdifferential ∂g(β), sj .

To derive the full solutions to the Lasso problem we first assume that we have a single
predictor z, which is a far simpler case. For this case, we recover the proximal equation in
(2.4.5), the soft-thresholding operator.
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Going back to the system we can see that the actual solutions are

β̂ = Sλ

(
1

N
〈z, y〉

)
(2.4.9)

by applying the soft-thresholding operator we defined earlier.

In the more general case, of multiple predictors, we can express the solution of β̂j as
an iterative process fixing at each iteration one of the predictors. We then get an iterative
solution where the β̂j is solved as

β̂j = Sλ

(
1

N

〈
xj , r

(j)
〉)

(2.4.10)

where the r(j) = yi −
∑p

k 6=j xikβ̂k are the partial residuals fixing all but the jth predictor.

The Lasso model has been widely studied and has received some recent attention in
the literature, mainly because of its cheap computational cost and its good general results
for many applications, among which we find many related to energy prediction problems,
a field in which we have seen that Lasso is a very competitive model [14, 16]. Furthermore,
there are a lot of different models that somehow derive from Lasso, such as Elastic Net,
which employs a combination of both the `1- and `2-norms in order to avoid the erratic
behavior that Lasso may show in case of highly correlated features. Another kind of derived
models comes from a generalization of the Lasso, where the penalty term is modified by
applying a linear operator to it. In this case we can extract multiple models, and one
of the most famous is Fused Lasso, particularly useful in applications of image denoising
or signal approximation. In Chapter 3 we will introduce another extension of this model
known as Group Lasso, which is useful when our features are somehow structured in a
grouped fashion.

2.5 Conclusions

In this Chapter we have reviewed some important and interesting concepts. The main ones
are summarized next.

• We have reviewed the general nonlinear optimization theory, focusing on some inter-
esting properties of the minimum of a general nonlinear function. We explored the
gradient method as the most common minimization scheme for smooth setups.

• From this we have come to study the subdifferential calculus as an extension appli-
cable to convex functions, including the notions of subgradient and subdifferential,
allowing us to deal with nonsmooth terms, that usually arise in complex machine
learning models.

• This has lead us to present the proximal operator as a tool to solve optimization
problems that involve these nonsmooth terms. This new scheme generalizes the
common gradient descent strategy carried out in schemes of smooth optimization.

• The proximal operator is the main idea behind the ISTA algorithm. We have first
presented this algorithm along with the backtracking strategy, which comes in very
useful when we do not know the Lipschitz constant of the function. We have then
analyzed its convergence ratio, highlighting the importance of this result. We will
come back later to this algorithm to introduce an improved version, known as FISTA.
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• Finally, we have described the Lasso problem as a first application of the ideas de-
scribed in this Chapter, ending up with a solution by applying the ISTA algorithm.
We have also analyzed and presented an alternative algorithm to solve the problem,
the cyclic coordinate descent algorithm.



Chapter 3

Accelerated Proximal Descent

In the previous Chapter we described some very foundational concepts covering the basic
theory and tools we need in order to understand more advanced topics regarding convex
optimization theory. This Chapter focuses on presenting these topics, that mainly evolve
around the ideas introduced by Nesterov to accelerate gradient descent methods and thus
reach an optimal convergence ratio in the algorithms that solve these problems. In short,
these Nesterov methods are all based upon the idea of momentum, in which we will not
perform a gradient step directly on the previous point but instead on a smartly chosen
combination of previous points known as the momentum point.

This Chapter is divided into the next main sections that will cover the following areas:

1. In Section 3.1 we present a brief introduction to Nesterov acceleration schemes, where
we will give a general notion of these methods by describing some important intuitions
about the minimization process and the effects that these accelerated methods may
have.

2. After this, we will present FISTA, an extension of an already known algorithm, ISTA,
in Section 3.2, that reaches an optimal convergence ratio for first order problems,
those based on gradient steps.

3. The FISTA algorithm will give us the first application of Nesterov steps to solve our
kind of problems. Nonetheless, as we will see in Section 3.1, the acceleration may
not be monotone towards convergence, describing thus a somehow erratic behavior.
In Section 3.3 we cover some restarting schemes that could help avoiding this kind
of behavior.

4. In Section 3.4 we describe a set of further optimizations over FISTA that conform a
new algorithm, FAPG, presented by Ito et al. in [6]. These optimizations are focused
on achieving a faster practical convergence. In Section 3.5 we prove its convergence.

5. In Section 3.6 of this Chapter we describe Group Lasso as an extension of the Lasso
problem we previously described and analyze its solution.

3.1 Introduction to Nesterov Acceleration Schemes

Generally, Nesterov accelerated schemes can be thought of as some sort of momentum–
based methods, where we increase the impulse of our descent step in each iteration of
the minimization process. Intuitively, we can already see the sense of this idea applied
as a way to essentially accelerate the convergence. Nonetheless, and opposed to standard

27
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Algorithm 3: Accelerated Scheme 1

Initialization: y0 = x0 ∈ Rn, θ0 = 1 and q ∈ [0, 1]
for k = 0, 1, . . . do

xk+1 = yk − tk∇f(yk)
θk+1 solves θ2

k+1 = (1− θk+1)θ2
k + qθk+1

βk+1 = θk(1− θk)/(θ2
k + θk+1)

yk+1 = xk+1 + βk+1(xk+1 − xk)
end

Algorithm 4: Accelerated Scheme 2

Initialization: y0 = x0 ∈ Rn
for k = 0, 1, . . . do

xk+1 = yk − tk∇f(yk)
yk+1 = xk+1 + β∗(xk+1 − xk)

end

first–order methods, these accelerated schemes do not guarantee a monotone behavior
towards convergence. If we are increasing our impulse in each iteration we may end up
having too much impulse, leading us to take steps in our gradient direction that take us
out of the optimal range, resulting in a somehow rippling or bumping behavior. In this
section we will show how this erratic performance is characteristic of situations in which
we overestimate the required momentum, getting past the critical point. In this context,
the restarting techniques that we will later introduce seem a reasonable way to recover the
optimal convergence ratio that accelerated schemes promised.

Let us first introduce the set of concepts and properties that will help us go through all
the later derivations. Suppose we want to minimize a certain convex function that depends
on a variable x ∈ Rn, where f : Rn → R has Lipschitz continuous gradient. We recall that
this means that the following conditions holds

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

A function is considered strongly convex if there exists a certain µ such that

f(x) ≥ f∗ +
µ

2
‖x− x∗‖2, ∀x ∈ Rn.

In this context, we define the condition number of a strongly convex function as L/µ.

The essential idea underlying these schemes is to add an increasing sequence θk that
represents the momentum of the algorithm. This parameter is then used to generate a new
point yk from two past points xk and xk−1, known as the momentum point. An example
of accelerated scheme to solve this problem is presented in Algorithm 3. Note that there
are many possibilities to choose βk+1 and we will see another example when we study the
FISTA algorithm in Section 3.2. As we will see next, this algorithm converges for any
tk ≤ 1/L. For a setting of tk = 1/L, q = 1 this algorithm shows a linear convergence ratio.
More precisely, choosing q = 1 recovers the full gradient scheme that we previously saw in
Section 2.1.3. This can be easily derived since we have θ0 = 1 and then this update means
that θk+1 = 1 is constant and thus βk+1 = 0, leading to yk+1 = xk+1 and we are back to
performing the gradient step over the previous xk point, whose convergence rate is:
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F (xk)− F (x∗) ≤
αLf‖x− x0‖2

2k

For a setting of tk = 1/L, q = 0 we have a guaranteed convergence ratio of

f(xk)− f∗ ≤ 4L‖x0 − x∗‖2

(k + 2)2
,

which is significantly better than the linear convergence ratio we obtained earlier and whose
proof can be found in [3] (proof of ISTA convergence).

If the function is strongly convex we can go further and choose q = µ/L, for which the
convergence shows that [7]

f(xk)− f∗ ≤ L
(

1−
√
µ

L

)k
‖x0 − x∗‖2,

which implies that we can reach an ε–accurate solution within

O

(√
L

µ
log

1

ε

)
iterations.

In the case of a strongly convex function we can write the algorithm in a simplified
way, shown in Algorithm 4. In this scenario we write the β∗ parameter in a very specific
form

β∗ =
1−

√
µ/L

1 +
√
µ/L

, (3.1.1)

which is the same optimal βk that we recover in Algorithm 3 if we choose an optimal
q = µ/L.

Nonetheless, even if we study here the case of strongly convex functions in detail, we
should ask ourselves for the nature of the µ and L parameters. Since the most common
case is that of unknown parameters we would have to estimate them. For the case of
L we already know that there exists a backtracking strategy that we showed in the ISTA
algorithm to recover a good estimate of L. Unfortunately, this is not the case of µ, where the
estimation is more delicate. Even though Nesterov proposed a backtracking-alike method to
estimate µ [8], it seems that this method does not recover a very good estimate and thus we
will have a slower convergence. In this context, we can already see that a bad estimation
of q could lead to very different scenarios. Depending on whether we underestimate or
overestimate our q parameter we could see a characteristic rippling behavior.

More precisely, in the case of an overestimated q the algorithm would show a monotone
descent towards convergence, whilst in the underestimated case we will see a rippling
behavior of the cost function in which we wouldn’t have a monotone convergence. This
can be seen by briefly analyzing the form of our β∗ parameter, that we recall is the one
defining the momentum. In the case of an overestimated q we are somehow getting a
β generally smaller than the optimal one; intuitively we can see that we would have a
smaller numerator and a bigger denominator in Equation (3.1.1). This implies that the
momentum of our minimization process will be smaller, which, even though we will get
a worse convergence, is guaranteed to be monotone. On the other hand, if we instead
underestimate q we will end up with a bigger β than the optimal one, which implies that
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the momentum in our process may be too big, provoking then a bigger gradient step that
could take us out of the optimal direction.

We see then that the optimum momentum is closely related to the condition number of
the problem. Specifically, when we have a very big condition number we will need a bigger
impulse in our descent direction. We can see that this makes sense if we think of µ and L
as the slope of quadratic boundaries to f(x). In this context, a very big condition number
means that the inferior bound to our function is somehow very flat, resulting in very small
gradient steps that need to be balanced with a bigger momentum. The opposite case is
now clear: if we have a very small condition number then both boundaries to our function
are very steep and then a big momentum could easily lead us to big jumps resulting then
in a non–monotone behavior that we are trying to avoid.

3.2 FISTA Algorithm

In Section 2.3 we introduced ISTA, a first iterative algorithm to solve proximal descent
problems. While ISTA is a generic and good algorithm to solve proximal problems, its
sublinear convergence ratio is far from optimal. Suppose we want to find a solution for
an ε accuracy of ε = 10−6; that means that we may need at least one million iterations,
which is generally too many iterations for real problems, where we work with big datasets.
In this context, in [3] the authors propose a modification of this algorithm, called FISTA
(Fast Iterative Shrinkage–Thresholding Algorithm), including a Nesterov step to speed up
the iterations, reaching a much better convergence ratio of O(1/k2). As we described in
Section 3.1, the Nesterov step is actually an increasing sequence tk with which we generate
a linear combination of past points of xk that we name yk, the momentum point, over
which we later perform the gradient step.

We show the algorithms in Algorithms 5 and 6 and their analysis next. As we see, we
have a first version of the algorithm provided that we know the Lipschitz constant of the
problem, which is often not the case, and a second one where we make an estimation of
this parameter through a backtracking strategy. We remember from Section 2.3 that the
backtracking strategy tries to find a Lk ≥ Lf , where Lf is the Lipschitz constant, such that
the quadratic approximation to the function is above the function at the current point,
that is, find a Lk that fulfills (2.3.8).

As we easily see from the algorithms, the basic idea behind FISTA is the same as
ISTA’s, with the difference on where we apply the proximal operator. In this case we
apply the proximal operator on a specific combination of xk and xk−1 times the Nesterov
step tk−1

tk
. The reason for this step is motivated by the following lemma

Lemma 3.2.1. The sequences {xk, yk} generated by either version of the FISTA algorithm
where vk := F (xk)−F (x∗), uk := tkxk−(tk−1)xk−1−x∗ satisfy for any k ≥ 1 and Lk ≥ Lf

2

Lk
t2kvk −

2

Lk+1
t2k+1vk+1 ≥ ‖uk+1‖2 − ‖uk‖2,

whose proof is given in [3]. Before analyzing FISTA’s convergence ratio we need the
following result.

Lemma 3.2.2. Let {ak, bk} be positive sequences of reals satisfying

ak − ak+1 ≥ bk+1 − bk ∀k ≥ 1,

with a1 + b1 ≤ c, c > 0. Then, ak ≤ c for every k ≥ 1.
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Algorithm 5: FISTA algorithm with constant step

Input : f convex with ∇f Lipschitz constant L; g convex
Output : xk ' arg minx∈Rn {f(x) + g(x)}
Initialization: x0 ∈ Rn
y1 = x0;
t1 = 1;
for k = 1, . . . do

xk = prox 1
L
g

(
yk −

1

L
∇f(yk)

)

tk =
1 +

√
1 + 4t2k

2

yk = xk +
tk−1 − 1

tk
(xk − xk−1)

end

Algorithm 6: FISTA algorithm with backtracking

Input : f convex; g convex
Output : xk ' arg minx∈Rn {f(x) + g(x)}
Initialization: Take L0 > 0, some η > 1 and some x0 ∈ Rn
y1 = x0;
t1 = 1;
for k = 1, . . . do

Find smallest non-negative integers ik such that with L̄ = ηikLk−1 we have

F (pL̄(xk−1)) ≤ QL̄(pL̄(xk−1), xk−1)

Set Lk = ηikLk−1

xk = prox 1
L̄
g

(
yk −

1

L̄
∇f(yk)

)

tk =
1 +

√
1 + 4(tk)2

2

yk = xk +
tk−1 − 1

tk
(xk − xk−1)

end
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Theorem 11. FISTA Convergence Ratio Let {xk} be the sequence generated by either
version of the FISTA algorithm. Then

F (xk)− F (x∗) ≤
2αLf‖x0 − x∗‖2

(k + 1)2
,

where α = 1 for the constant step-size setting and α = η for the backtracking step-size
setting.

Proof. Let us define the quantities

ak :=
2

Lk
t2kvk, bk := ‖uk‖2, c := ‖y1 − x∗‖2 = ‖x0 − x∗‖2,

and recall that vk := F (xk)−F (x∗) from the previous Lemma 3.2.1. Then, by Lemma 3.2.1
we have for every k ≥ 1

ak − ak+1 ≥ bk+1 − bk,

and hence assuming that a1 + b1 ≤ c holds true. By Lemma 3.2.2 we obtain that

2

Lk
t2kvk ≤ ‖x0 − x∗‖2,

which, combined with the fact that tk ≥ (k + 1)/2, yields

vk ≤
2Lk‖x0 − x∗‖2

(k + 1)2
.

Therefore, we just have to show that

2

L1
t21v1 + ‖u1‖2 ≤ ‖x0 − x∗‖2.

We know that an upper bound for on Lk is Lk ≤ αLf (recall Lemma 2.3.1), and then
the desired result follows. Thus, all that is left to prove is the validity of the relation
a1 + b1 ≤ c. Since t1 = 1, and using the definition of uk, we have

a1 =
2

L1
t21v1 =

2

L1
v1, b1 = ‖u1‖2 = ‖x1 − x∗‖2, c = ‖y1 − x∗‖2 = ‖x0 − x∗‖2.

Applying Lemma 2.3.3 to the points x = x∗, y = y1 with L = L1 we get

F (x∗)− F (p(y1)) ≥ L1

2
‖p(y1)− y1‖2 + L1 〈y1 − x∗, p(y1)− y1〉 .

And then,

F (x∗)− F (x1) = F (x∗)− F (p(y1))

≥ L1

2
‖p(y1)− y1‖2 + L1 〈y1 − x∗, p(y1)− y1〉

=
L1

2
‖x1 − y1‖2 + L1 〈y1 − x∗, x1 − y1〉

=
L1

2

{
‖x1 − x∗‖2 − ‖y1 − x∗‖2

}
.
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This is equivalent to,

−v1 ≥
L1

2
‖x1 − x∗‖2 −

L1

2
‖y1 − x∗‖2 =

L1

2
‖u1‖2 −

L1

2
‖x0 − x∗‖2,

or, in other words,

−L1

2
a1 ≥

L1

2
b1 −

L1

2
c

which proves that a1 + b1 ≤ c holds true.

And thus the number of iterations of the FISTA algorithm to obtain an ε-optimal
solution is at most dC/

√
ε− 1e, where C = 2αLf‖x0 − x∗‖2 is the numerator in the

convergence ratio.

3.3 Nesterov Restarting Schemes

We have just seen the FISTA algorithm as a first real application of Nesterov ideas to
accelerate proximal descent problems. This opens up a wide variety of derivations that
have as common joint the exploitation of this kind of momentum steps in order to find
an optimal and computationally fast algorithm to solve high dimensional problems or, at
least, improve on the convergence ratio offered by ISTA.

Within this wide set of methods we find the restarting schemes proposed by O’Donoghue
and Candes in [7], that we describe next. Other techniques following this lead are described,
for instance, in [9].

These restarting schemes, as we briefly presented in the introduction to this Chapter,
have the general objective of avoiding the possible erratic behavior of accelerated methods
when showing a non–monotone trajectory towards convergence. These techniques make
the algorithm restart the tk sequence of the FISTA algorithm when they detect an erratic
behavior, given certain conditions that we explain next. As we described in Section 3.1, this
will be the most common case due to our lack of knowledge about the optimal parameters
µ and L of the function. In this context, the first naive idea that may come to mind is a
fixed scheme that restarts the algorithm every k iterations.

The optimal restarting interval k will be determined by the evolution of the system in
a given iteration outer j, which is the number of restarts, just before the restart occurs,
at the inner iteration k, which is the iteration counter within each restarting cycle. This
evolution is given by

f(x(j+1,0))− f∗ = f(x(j,k))− f∗ ≤ 4L‖x(j,0) − x∗‖/k2 ≤ (8L/µk2)(f(x(j,0))− f∗),

where the first inequality comes from the convergence ratio of Algorithm 3 and the second
from the strong convexity condition we defined earlier. After jk steps we get

f(x(j,0))− f∗ ≤
(
8L/µk2

)j
(f(x(0,0))− f∗).

By minimizing the term
(
8L/µk2

)j
over both j, k jointly we have that

k∗ =
√

8L/µ,

which implies that we will reach an ε-optimal solution after approximatelyO(
√
L/µ log(1/ε))

iterations.
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Again, this method will only show a good performance if we know the aforementioned
parameters µ and L, which, as we said, is often not the case.

The previous analysis suggests that an adaptive restarting scheme may be useful in
cases when we do not know µ and L. In the original paper the authors propose the two
following options

• Function scheme: we restart the algorithm whenever

f(xk) > f(xk−1).

• Gradient scheme: we restart the algorithm whenever

∇f(yk−1) · (xk − xk−1) > 0.

In Section 3.3.3 we report some experiments applying these optimizations for the Lasso
problem. Nonetheless, we would like to remark some interesting facts about both schemes.
On one hand, we can intuitively think that the first scheme tells us to restart the algorithm
whenever we see an increase in the cost function, which is a very reasonable criteria.
Nonetheless, that forces us to compute the cost function at two points, xk and xk−1, which
may end up being quite expensive computationally. On the other hand, the second scheme
tells us to restart whenever the momentum seems to be taking us in a bad direction, that
is, an ascent direction. Furthermore, this scheme expresses its criteria in terms of the
gradient, which we already had computed (remember that we are working with gradient
accelerated methods, so calculating the gradient is a must), and then this scheme does not
imply any additional computational costs, which makes this a very interesting option.

3.3.1 Analysis

In this section we focus on analyzing the simplest optimization case, that of a pure quadratic
form. The objective of this analysis is to observe the behavior of the methods from the
dynamical systems point of view. Having this context in mind, let us define the general
framework of the problem as the minimization of the following quadratic

arg min
x

f(x),

where f(x) = 1
2xAx, and A ∈ Rn×n.

In this simple case we have the optimal point x∗ = 0 and optimal cost f∗ = 0. Fur-
thermore, we know the parameters of the function, µ = λmin > 0 y L = λmax. Now let
us assume a constant step tk = 1/L for simplicity and we have that, since y0 = x0 the
Algorithm 3 evolves at iteration k as

xk+1 = yk − (1/L)Ayk,

yk+1 = xk+1 + βk(x
k+1 − xk).

Let as now consider the eigen–decomposition of A = V ΛV T , where V is the eigenvector
matrix and Λ is the eigenvalues diagonal matrix. Let us denote wk = V Txk y vk = V T yk

and write the system in terms of the previous eigendecomposition of A and its eigenvalues
as
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wk+1 = vk − (1/L)Λvk,

vk+1 = wk+1 + β(wk+1 − wk),

by means of simple algebraic operations. We can see that these equations now describe n
dynamical systems where the ith component evolves as

wk+1
i = vki − (1/L)λiv

k
i ,

vk+1
i = wk+1

i + β(wk+1
i − wki ).

We can now write each equation in terms of only one variable by substituting the other
and then we get the following recurrences

wk+2
i = (1 + β)(1− λi/L)wk+1

i − β(1− λi/L)wki ,

vk+2
i = (1 + β)(1− λi/L)vk+1

i − β(1− λi/L)vki ,

where w0
i is known and w1

i = w0
i (1− λi/L), v0

i = w0
i and v1

i = ((1 + β)(1− λi/L)− β)v0
i .

3.3.2 Convergence Properties

The behavior of this system is determined by the characteristic polynomial of the recurrent
relation, that can be written in the following form

r2 − (1 + β)(1− λi/L)r + β(1− λi/L).

This system has a critical point for β for which the recurrence has repeated roots. This β∗

can be found by solving the quadratic equation and then solving with respect to β for the
case of equal roots. This β is

β∗i :=
1−

√
λi/L

1 +
√
λi/L

.

This value of β divides the topological solutions of the dynamical system into the following
three regions

• βi < β∗i , where the system is over-damped.

• βi = β∗i , where the system is critically damped.

• βi > β∗i , where the system is under-damped.

In the first region, where βi < β∗i the polynomial has two real roots, r1 and r2, and the
system evolves according to

wki = c1r
k
1 + c2r

k
2 ,

where for each i the c1, c2 are the constants (1+βi)(1−λi/L) and βi(1−λi/L). In this region
we say that the system is in the low momentum regime and then the system is over-damped,
that is, the system will show a slow but monotone trajectory to convergence. When we have
β = β∗ then the system behaves according to the optimal convergence ratio ∝ (1−

√
λi/L)k
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and the roots are equal at the point r∗ = (1 + β∗i )(1 − λi/L)/2 = (1 −
√
λi/L), which

corresponds to critical dumping. For the case when βi > β∗i the roots of the polynomial
are complex and we say that we are in the high momentum regime and the system is under-
damped. In this case the system shows a periodic rippling whose periodicity depends on
the condition number, as we show next.

In this last case the characteristic solution is given by

wki = ci(βi(1− λi/L))k/2 cos(kψi − ti),

where ci and ti depend on the initial conditions and ψi is defined as

ψi = cos−1
(

(1− λi/L)(1 + βi)/2
√
βi(1− λi/L)

)
.

Similarly, we have

vki = ĉi(βi(1− λi/L))k/2 (cos(kψi − ti)) .

Since for a small angle θ we know that cos−1(
√

1− θ) ≈
√
θ and since λi � L we can

simplify ψi as

ψi ≈
√
λi/L,

where ψi symbolizes the oscillation frequency for the mode corresponding to the smallest
eigenvalue, which is approximately given by

√
µ/L.

We show next the analysis of the convergence ratio for both adaptive restarting schemes,
beginning with the function scheme. To derive the convergence we start from

f(wk) =

n∑
i=1

(wki )2λi, (3.3.1)

which is the value of the function at the kth iteration. Since the sum will be dominated
by the smallest eigenvalue we can assume that

f(wk) ≈ (w0
k)

2µβ(1− µ/L)k cos2(k
√
µ/L), (3.3.2)

which is interesting because it clearly shows the existence of the rippling behavior and its
generation. We can see that this function is formed by two components, (1−µ/L)k on one

hand, which is decreasing towards 0, and cos2
(
k
√
µ/L

)
, which incorporates the rippling

structure.

For the case of the gradient scheme we have a similar expression

∇f(yk) · (xk+1 − xk) ≈ µvkµ(wk+1
µ − wkµ)

∝ βk(1− µ/L)k sin
(

2k
√
µ/L

)
, (3.3.3)

which also explains the rippling behavior.

In addition, these two equations show us that the expected number of iterations after
which we should apply the restarting condition is (π/2)

√
L/µ. We can easily see that

this value nullifies the sin and cos functions. This guarantees us an ε–tolerance solution

after O
(√

L/µ log (1/ε)
)

iterations, which means that we have effectively recovered the

optimum convergence ratio of the Nesterov Accelerated Gradient.
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These schemes do not have application only on the strict cases of a explicit quadratic
problem, but also apply to all problems that may be approximated by a quadratic form
inside some regions. As we can expect, the behavior outside these regions is not clear.
Nonetheless, we must note that within these regions we may have a particular estimation
of µk > µ that leads to an even faster convergence ratio. This is due to µ being the
dominant eigenvalue (the smallest) in the sum of the forms (3.3.2) or (3.3.3), and thus,
being possibly bigger in these regions, the convergence should be faster. Note that this
is a very interesting result, leading to a more general discussion on the estimation of the
Lipschitz constant L. Similarly, we may have specific regions where the estimated L (by
means of backtracking) is smaller than the global parameter of the function, leading to
a bigger step in that region and then to a possibly faster convergence. In Section 3.4 we
explore this and other issues related to further optimize the convergence of the methods.

3.3.3 Application for Lasso

In this section we present the adaptation of the previous results to the Lasso problem.
We must note that the results and definitions were given supposing a smooth function f .
Since Lasso has a non-smooth regularization component it does not directly apply to the
generality of these schemes. Nonetheless, we want a sparse solution and we note that once
the non-zero basis of the solution has been identified we are loosely speaking minimizing a
quadratic form. Given this interpretation, we could expect that the conclusions at which
we previously arrived also apply to this kind of problems.

In the case of convex optimization problems we will not use the generic and first ac-
celerated schemes introduced by Nesterov but the FISTA algorithm we already explained
in detail, which is, essentially, a variation of these methods. For the case of Lasso, as we
explained in Chapter 2, the proximal operator is the known soft-thresholding operator

Tα(x) = sign(x) max(|x| − α, 0),

where all operations are applied element-wise.
It is easy to show that for the function restarting criteria we do not need an extra

application of the X matrix since we are already computing it in the gradient. On the
other hand, the gradient condition is expressed under the assumption of the existence
of such gradient, which is not the case in Lasso. Nonetheless, we can make use of the
subdifferential as a sort of generalized gradient to write our criteria as

xk+1 = Tλt(yk − tA · (A · yk − b)) = yk − t∂F (yk),

where F = f + g with f being convex and differentiable and g convex.
Under this setting the gradient restarting scheme amounts to restarting whenever

∂F (yk) · (xk+1 − xk) > 0 ≡ (yk − xk+1) · (xk+1 − xk) > 0,

which greatly simplifies the calculations, avoiding extra computational costs.
To experiment with these criteria we have generated synthetic data in the following way.

We first have generated a matrix X from a standard normal distribution and dimension
n×m, where n indicates the number of patterns and m indicates the number of predictors.
Then, we generated a random sparse vector w with m entries. We now set y = X · w + b,
where b is a white noise vector. We fix a step-size t = 1/λmax(XTX) for which we know
we should have an optimal convergence ratio of O(1/k2) (since the function is convex) and
run FISTA for two simple experiments, one with n = 2000 and m = 500 and the other
n = 2000 and m = 100. This experiment is extracted from [7].
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Figure 3.3.1: Comparison of FISTA algorithm convergence against adaptive restarting for
different synthetic settings.

In Figures 3.3.1a and 3.3.1b we can see the dramatic boost of the performance obtained
after running the algorithm for 5000 iterations (to show the full path towards convergence).
The y axis shows the difference between the cost function at iteration k and the optimal
value of f∗ normalized by the optimal f∗ itself.

Even if it is not clear in the figures, we can guess the rippling behavior on the FISTA
trajectory given its thicker line towards convergence in both experiments. We see that
the adaptive restarting schemes do not get any advantage during the first iterations of the
algorithm, and the first scheme to notice the bad dynamic is the gradient restarting one,
thanks to its more sophisticated criterion. While FISTA converges around iteration 1500,
both the gradient and function restarting schemes converge around iteration 500 with a
slight edge in favor of the gradient scheme, which is able to see the ascending trend earlier
than the function scheme condition.

Note that this is a synthetic experiment sampled from Gaussian data, so it is probably
not a good example of a real application and only serves theoretical purposes. In general,
both restarting schemes should show very similar performance. The condition we use
will depend on the specific problem we want to tackle, although, as explained earlier, the
gradient scheme seems to be not only better in terms of performance but also cheaper to
compute. In Chapter 4 we will see more realistic examples.

3.4 Further Accelerations

Following the lead set by O’Donoghue and Candes in [7] there has been recent attention in
the literature looking for approaches to further improve the performance boost achieved by
the restarting schemes described in Section 3.3. In this context, Ito et al. have proposed a
new algorithm named Fast Accelerated Proximal Gradient (FAPG) in [6], adding further
optimizations to the ones already described.

These strategies are focused on making the Accelerated Proximal Gradient (APG) a
practically efficient method. Some of these strategies have been already described in earlier
sections from another point of view.
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3.4.1 Bactracking Strategy

We have already seen that in many cases we do not know the exact value of the Lipschitz
constant of a problem and thus we are forced to estimate one. From that point of view, the
backtracking strategy is depicted as a trade-off on the optimization process. Nonetheless,
in Section 3.1 we already hinted that this backtracking estimation may actually be an
advantage. Since the global Lipschitz constant L is generally too conservative, we may
have a better estimate for some regions of the function, where the backtracking Lk may
actually perform better.

Thus, we adopt the backtracking strategy described in the FISTA algorithm (and ISTA)
in Section 3.2 given some constants ηu > 1, L0 > 0, that is

’bt’: While

F (xk) > QLk
(xk; yk)

update Lk+1 ← ηuLk and xk ← TLk
(yk).

This condition ensures that the convergence result for the convergence of the algorithm
is still O(1/k2).

3.4.2 Decreasing Strategy for Lk

The previous backtracking strategy ensures that the sequence Lk is non-decreasing. Actu-
ally, Lk must be non-decreasing to fulfill the conditions required for the complexity analysis
in [3]. However, it would be advantageous to decrease the value of Lk to allow for greater
gradient steps whenever possible.

In [10] the authors propose a modification in the original APG method to allow Lk to
decrease so that tk satisfies tk/Lk ≥ tk+1(tk+1−1)/Lk+1 (∀k ≥ 1). To achieve this we have
to recompute yk and tk in each step of the backtracking. Moreover, the new computation
of tk is done by

tk+1 =
1 +

√
1 + 4(Lk+1/Lk)t

2
k

2
(3.4.1)

The decreasing strategy in the algorithm is

’dec’: Set Lk+1 ← Lk/ηd for some ηd > 1.

Note that this is a somehow contrary strategy to the backtracking one we detailed in
the previous subsection. In this sense, this strategy forces Lk to be as small as possible to
allow for a greater step. In case the decreased Lk is too small, the backtracking strategy
will control for a sufficiently large estimation.

3.4.3 Restarting Strategy

We have extensively covered in Section 3.3 the restarting strategies proposed in [7] and
thus we will only summarize here the restarting criteria for the algorithm, supposing any
convex function F ≡ f + g.

’re’: If ∇f(yk) · (xk − xk−1) + g(xk) − g(xk−1) > 0 then update tk+1 ← 1, tk ← 0,
yk+1 ← xk−1 and xk+1 ← xk−1.
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Note that this criteria slightly differs from the pure strategies described earlier. This is
because in this case we are considering any convex function F instead of only differentiable
functions. However, the convergence for a general convex function is unknown. In this
context, as we mentioned before, there are other restarting techniques as such of [9], where
the authors model the APG method as a second-order ordinary differential equation.

3.4.4 Top-Speed Strategy

As we have explained, what the restarting strategy precisely does is to cancel high-
momentum and prevent overshooting on the performed step, which avoids taking big jumps
that may direct us into the wrong direction. Nonetheless, in neighborhoods near the op-
timum a high-momentum may be more effective rather than continuously restarting the
algorithm because large overshooting may not occur. For this, a heuristic optimization is
to put a prohibition period of restart for the Ki iteration after the ith restart occurs, where
Ki increases as Ki+1 = 2Ki for some K1 ≥ 2.

’mt’: If k ≤ kre+Ki then skip ’re’. If restart occurs, update kre← k, Ki+1 ← 2Ki.

Later on we will show that this modification ensures a convergence rate of O((log k/k)2)
under some assumptions.

3.4.5 Stability Strategy

This strategy is more of a practical addition and it does not affect the convergence analysis
that we show in Subsection 3.5. This optimization tries to correct the trade-off generated
between the decreasing strategy and the restarting one. We can see that both strategies
speed-up the practical convergence of the APG method, especially in early iterations and
near the optimum.

Nonetheless, they have opposing effects. Decreasing Lk enlarges the step 1/Lk, which
extends xk − xk−1, which inherently induces high momentum. On the other hand, the
restarting strategy cancels high momentum. As a consequence, combining these two strate-
gies triggers the restarting criteria frequently and makes the APG method unstable. In
order to avoid this instability we decrease the ηd so that in the limit we have that ηd = 1
and then near the optimum we do not decrease Lk and then the same convergence analysis
that perform [3] is equally valid.

’st’: Update ηd ← δ · ηd + (1− δ) when the restart occurs with δ < 1.

3.4.6 Skipping Extra Computations

We show the full modified algorithm in Algorithm 7. For practical efficiency we can add
the following algorithmic optimizations

On one hand, instead of computing tk and yk in the backtracking section, we can fix
them and store the value for f(yk) and ∇f(yk), which reduces the computation cost, as
pointed out in [3]. On the other hand, we see that the termination criteria involves the
extra computation of prox 1

Lk
g(x

k − 1
Lk
∇f(xk)). This termination criteria checks whether

the current solution is a fixed point of the proximal operator. Instead of checking this
condition we can check if Lk‖xk − yk‖ < ε at each iteration. As analyzed in [6], it follows
that if xk = yk then xk is an optimal solution. We can see that checking this is similar to
the actual termination condition because intuitively
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Algorithm 7: Modified APG Algorithm

Input : f convex and differentiable; g convex
Output : xk ' arg minx∈Rn {f(x) + g(x)}
Initialization: Take L0 > 0, ηu > 1, ηd > 1, K1 ≥ 2, x0 ∈ Rn, δ ∈ (0, 1)
y1 = x0

t1 = 1
kre = 0
for k = 1, . . . do

xk = prox 1
Lk
g

(
yk − 1

Lk
∇f(yk)

)
// backtracking

while F (xk) > QLk
(xk; yk) do

Lk = ηuLk

tk =
1 +

√
1 + 4(Lk/Lk−1)t2k−1

2

yk = xk−1 +
tk−1 − 1

tk

(
xk−1 − xk−2

)
xk = prox 1

Lk
g

(
yk − 1

Lk
∇f(yk)

)
end

if

∥∥∥∥Lk (prox 1
Lk
g

(
xk − 1

Lk
∇f(xk)

)
− xk

)∥∥∥∥ < ε then

break
end
Lk+1 = Lk/ηd

tk+1 =
1 +

√
1 + 4(Lk+1/Lk)t

2
k

2

yk+1 = xk +
tk − 1

tk+1

(
xk − xk−1

)
if k > kre and ∇f(yk) · (xk − xk−1) + g(xk)− g(xk−1) > 0 then

kre = k; Ki+1 = 2Ki

ηd = δ · ηd + (1− δ)
tk+1 = 1; yk+1 = xk+1 = xk−1

end

end



42 Chapter 3. Accelerated Proximal Descent

Algorithm 8: Final Modified APG Algorithm

Input : f convex; g convex
Output : xk ' arg minx∈Rn {f(x) + g(x)}
Initialization: Take L0 > 0, ηu > 1, ηd > 1, K1 ≥ 2, x0 ∈ Rn
y1 = x0

t1 = 1
kre = 0
for k = 1, . . . do

xk = prox1/Lkg

(
yk − 1

Lk
∇f(yk)

)
while F (xk) > QLk

(xk; yk) do
Lk = ηuLk

xk = prox 1
Lk
g

(
yk − 1

Lk
∇f(yk)

)
end

if Lk‖xk − yk‖ < ε then
break

end
Lk+1 = Lk/ηd

tk+1 =
1 +

√
1 + 4(Lk+1/Lk)t

2
k

2

yk+1 = xk +
tk − 1

tk+1

(
xk − xk−1

)
if k > kre and ∇f(yk) · (xk − xk−1) + g(xk)− g(xk−1) then

kre = k; Ki+1 = 2Ki

ηd = δ · ηd + (1− δ)
tk+1 = 1; yk+1 = xk+1 = xk−1

end

end

xk = prox 1
Lk
g

(
yk − 1

Lk
∇f(yk)

)
= yk − 1

Lk
G(yk),

where G is the generalized gradient. This equation holds only when we are in a region of
the proximal when the solution does not change. In this case it follows that

‖G(yk)‖ = Lk‖yk − xk‖, (3.4.2)

so we are checking whether this residual is small enough.
The final and more efficient version of the modified APG method is shown in Algo-

rithm 8.

3.5 Convergence Analysis

We now prove the convergence ratio of FAPG method taking into account all the acceler-
ations we just described. Let us use the following notation: assume that xk is generated
as step j within a restarting iteration i. That is,

xk = x(i,j), for some j = 0, . . . , J i
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where J i is the last iteration within the ith restarting cycle. Then we have the following
Lemma, which can be found in [6], Lemma 5.

Lemma 3.5.1. We have F (x(i,j)) ≤ F (x(i,0)), j = 0, . . . , J i and

F (x(i+1,0)) = F (x(i,Ji−1)) ≤ F (x(i,0)) ≤ F (x(i−1,0)) . . . ≤ F (x0) (3.5.1)

As a consequence, for any xk = x(i,j), we have that

F (xk) ≤ F (x0), ∀k ≥ 1. (3.5.2)

Proof. Assume that the restart does not occur until the kth iteration. From Lemma 2.3.3
we have

F (x1)− F (x0) ≤ −L1

2
‖x1 − x0‖2 ≤ 0. (3.5.3)

For all n = 1, 2, . . . , we also have

F (xn+1)− F (xn) ≤ Ln+1

2

{
‖yn+1 − xn‖2 − ‖xn+1 − xn‖2

}
=
Ln+1

2

{(
tn − 1

tn+1

)
‖xn − xn−1‖2 − ‖xn+1 − xn‖2

}
.

Summing over n = 1, 2, . . . , k − 1 we have

F (xk)− F (x1) ≤1

2

{
L2

(
t1 − 1

t2

)2

‖x1 − x0‖2

+

k−1∑
n=2

(
Ln+1

(
tn − 1

tn+1

)2

− Ln

)
‖xn − xn−1‖2 − Lk‖xk − xk−1‖2

}
.

Note that t1 − 1 = 0 and Ln+1

(
tn − 1

tn+1

)2

− Ln ≤ 0 for all n ≥ 1 because of

tn − 1

tn+1
=

2(tn − 1)

1 +
√

1 + 4(Ln+1/Ln)t2n
≤ 2(tn − 1)√

4(Ln+1/Ln)t2n
=

√
Ln
Ln+1

tn − 1

tn
.

Thus we have that

F (xk)− F (x1) ≤ 0.

Similarly, since the restart does not occur from x(i,0) to x(i,Ji) we have

F (x(i,j)) ≤ F (x(i,0)), ∀j ∈
{

0, 1, . . . , J i
}

because since we only restart whenever the function is not monotone, we have a monotone
behavior within each restarting cycle, and hence by definition

F (x(i+1,0)) = F (x(i,Ji−1)) ≤ F (x(i,0)).
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This Lemma essentially states that the initial value F (x(i,0)) of each restarting cycle
gives an upper bound of the subsequent function values and hence the sequence

{
F (x(i,0))

}∞
i=1

is non-increasing. For more details about this proof see [6], Lemma 5.

We now prove the convergence rate for the modified algorithm (see Algorithm 8) as
exposed in [6], Theorem 6.

Theorem 12. Let the sequence
{
xk
}

be the sequence generated by the modified APG
method. Let S∗ be the set of optimal solutions and B :=

{
x | F (x) ≤ F (x0)

}
be the level

set. Assume that there exists a finite R such that

R ≥ sup
x∗∈S∗

sup
x∈B
‖x− x∗‖. (3.5.4)

Then we have

F (xk)− F (x∗) ≤ 2ηuLfR
2

(
log2(k + 2)

k − log2(k + 2)

)2

, ∀k ≥ 3. (3.5.5)

Proof. From Lemma 3.5.1, we have xk ∈ B for all k ≥ 1. Let xk = x(i,j). We assume j ≥ 1
without loss of generality. From Theorem 11 we have

F (x(i,Ji))− F (x∗) ≤
2ηuLf‖x(i,0) − x∗‖2

J
2
i

.

Furthermore, for all i ≥ 1, Lemma 3.5.1 leads to

F (x(i,Ji))− F (x∗) ≤ F (x(i,0))− F (x∗)

= F (x(i−1,Ji−1−1) − F (x∗))

≤
2ηuLf‖x(i−1,0) − x∗‖2

(J i−1 − 1)2

≤
2ηuLfR

2

(J i−1 − 1)2
.

Note that ki ≥ Ki ≥ 2. Thus we obtain

F (x(i,j))− F (x∗) ≤
2ηuLfR

2

max
{
J ` − 1, 1 ≤ ` ≤ i

}2

F (x(i,j))− F (x∗) ≤
2ηuLfR

2

(max
{
J `, 1 ≤ ` ≤ i

}
− 1)2

Assume we are at iteration k = (i, j), 0 ≤ j ≤ J i. From

k ≥
i∑

`=1

K` =
K1(2i − 1)

2− 1
≥ 2i+1 − 2,

the number of restarts i is at most log2(k + 2) − 1. Hence, since the maximum is bigger
than the mean, we must have
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max
{
J `, 1 ≤ ` ≤ i+ 1

}
≥ k

i+ 1
≥ k

log2(k + 2)
,

which leads to

F (x(i,Ji))− F (x∗) ≤ 2ηuLfR
2 1(

k

log2(k + 2)
− 1

)2

≤ 2ηuLfR
2

(
log2(k + 2)

k − log2(k + 2)

)2

, ∀k ≥ 3.

3.6 The Group Lasso Extension

Group Lasso is a natural extension of the Lasso problem where we consider a grouped
structure nature on the predictors. This may not only help with getting a better estimation
and thus a better model but also to improve the interpretability of the model, which is
often a very important feature. Group Lasso first appears in [11] as a new way to model
and select grouped variables for regression problems. Nonetheless, this model has received
some recent attention in the literature and new models have been proposed for other tasks
such as classification by modifying the cost function. This group modeling appears as a
nice feature in cases where we want to select or discard a whole group of variables that
usually has some higher meaning than a single variable. This is achieved by applying the
`21 norm known as the regularization term, which translates to performing the `1 norm to
the `2 norm of each group.

For the purposes of the theoretical description, consider a linear regression model in-
volving J groups of predictors, where for j = 1, . . . , J , the vector Zj ∈ Rpj represents the
group of predictors in group j with dimension pj . Our goal is then to predict a real-valued
target Y ∈ R based on the collection of predictors. A linear model for this regression func-
tion takes the form w0 +

∑J
j=1 Z

T
j wj , where wj ∈ Rpj represents a group of pj regression

coefficients.

Given a collection of N samples {(yi, zi1, zi2, . . . , ziJ)}Ni=1 the Group Lasso model solves
the convex problem

arg min
w0∈R,w∈Rpj

1

2

N∑
i=1

(
yi − w0 −

J∑
j=1

zij · wj
)2

+ λ
J∑
j=1

‖wj‖2

 ,

where ‖wj‖2 is the well-known Euclidean norm of the group j.

Since this model is a group generalization of the Lasso, some interesting properties
remain

• Depending on the parameter λ ≥ 0, either the entire vector wj will be zero or all its
elements will be nonzero.

• When pj = 1 then we have that ‖wj‖2 = |wj |, which means that if all groups contain
a single element then this optimization problem reduces to the ordinary Lasso.
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Since each of the groups may have a different length, the authors of the original paper
recommend weighting the penalty term by a factor

√
pj . For simplicity, we will consider

here the case where all the groups have the same number of elements.
Similarly as we did in the Lasso problem, we calculate the zero-subgradient equations,

which take the form

−Zj ·

(
y −

J∑
`

Z`ŵ`

)
+ λŝj = 0, ∀j = 1, . . . , J,

where ŝj ∈ Rpj is an element of the subdifferential of the norm ‖ · ‖2 at ŵj .
We can easily calculate the subdifferential of the `2 norm as follows

∂`2 =

{
ŵj/‖ŵj‖2 if ŵj 6= 0

s ∈ Rpj such that ‖ŝj‖2 ≤ 1 if ŵj = 0
.

One method for solving these equations is by holding fixed all block vectors
{
θ̂k, k 6= j

}
,

and then solving for θ̂j . Doing so amounts to performing block coordinate descent on the
Group Lasso objective function. Furthermore, since the problem is convex and the penalty
is block separable, that is, we can write the penalty as a sum of its individual components,

then the problem is guaranteed to converge to an optimal solution [5]. With
{

ˆθk, k 6= j
}

fixed, we write

−Zj · (rj − Zj θ̂j) + λŝj

where rj = y −
∑

k 6=j Zkθ̂k is the jth partial residual.
The subdifferential of this penalty term looks very similar to the subdifferential of the

`1 norm, specially in the second case, when ŵj = 0, in the sense that any vector with norm
less than 1 is a valid subgradient, as happened in the `1 with any slope in the interval
[−1, 1]. From this we must have θ̂j = 0 if ‖Zj · rj‖2 ≤ λ, and otherwise

θ̂j =

(
Zj · Zj +

λ

‖θ̂j‖2
I

)−1

Zj · rj

As we can see, this form depends on θ̂j itself and so we need iterative methods. We
can find the form of these iterates by applying the proximal operator to the Group Lasso
problem. This leads to a proximal descent algorithm. To do this, we remember that the
proximal operator may be defined by

proxνg(θ) = arg min
θ∈Rp

{
1

2
‖θ − w‖22 + λνg(w)

}
.

In our case, we have g = ‖ · ‖2 and θ = wj − νZj · (rj −Zj), where rj is the partial residual,
and ν is the step-size parameter calculated as ν = 1/L, with L = λmax(XTX).

Applying the definition and differentiating with respect to wj in the previous equation
we can find that the iterates are

ŵj =

(
1− λν

‖θ‖2

)
+

θ.

We note that this algorithm is actually performing a proximal descent and we can
then plug this equation into the FISTA algorithm we described earlier to end up with an
accelerated version of these iterates, taking the form



3.7. Conclusions 47

xk+1 = prox 1
L
g

(
yk −

1

L
∇f(yk)

)
,

tk+1 =
1 +

√
1 + 4t2k

2
,

yk+1 = xk+1 +
tk − 1

tk+1
(xk+1 − xk).

As we saw in Section 3.2, this sequence F (xk) is guaranteed to converge for any tk ≤ 1/L
and for a suitable sequence of the tk.

3.7 Conclusions

In this Chapter we have introduced the advanced topics of this work, focused around
the ideas introduced by Nesterov on accelerating gradient methods in order to recover an
optimal convergence ratio. These ideas have received some recent attention in the literature
in multiple areas of the convex optimization theory, ranging from introducing this Nesterov
step in the SMO algorithm [12] to even deep learning applications [13].

We summarize next the main concepts we have presented in this Chapter

• We have first introduced the general framework of Nesterov accelerated gradient
methods, where we have seen that even if the performance boost these methods may
provide is large, there is no guarantee of monotone convergence, which, sometimes,
may lead to a non optimal performance.

• The first and probably most important accelerated algorithm in our field is FISTA,
a fast version of the ISTA algorithm we presented in Section 2.3. FISTA is a widely
used algorithm given its generality and performance for many problems.

• Nonetheless, our main interest in this chapter is related to how to avoid the non
monotone convergence of the FISTA algorithm. To address this issue we have pre-
sented the ideas of O’Donoghue and Candes in [7], introducing the restarting schemes
built upon the same ideas of Nesterov. We have shown that these restarting schemes
may have a dramatic impact in the performance of the algorithm, as we showed in
the case of Lasso.

• As further optimizations to the restarting techniques we have also studied the work
by Ito et al. in [6], the FAPG algorithm, a FISTA algorithm combined with several
optimizations. In Chapter 4 we will show an extensive experimental setup in order
to compare the performance of these optimized methods against standard FISTA.

• After this discussion we came to the Group Lasso model, a structured extension of
the Lasso, where the predictors are grouped. This is a very interesting feature for
many problems, such as the ones we are interested in, regarding renewable energy
prediction.
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Chapter 4

Experiments

After covering the concepts and ideas of Nesterov Accelerated Proximal Gradient and
some of its optimizations from a pure theoretical point of view, we will explore now its
applicability to real-world problems in day-to-day machine learning settings. We will study
the following applications

1. First, we will measure the convergence of standard FISTA against accelerated methods
in terms of iterations in a synthetic setup, being a natural extension of the experi-
ments we run for the Lasso problem in Section 3.3.3. In this case, though, we will use
the Group Lasso model we recently described and further complete the experiments
of Lasso.

2. Second, we will explore the application and usefulness of these methods in a wind
energy prediction problem. This is an interesting case since the data is naturally
grouped in terms of geographical grid points, where we have a set of variables defined
for each point. In this setting we will explore both convergence results and the models’
results themselves for Group Lasso, comparing them to other known linear models
such as Lasso and Ridge.

4.1 Synthetic Experiments

These first experiments are an enriched version of the ones we performed for the Lasso
problem in Section 3.3.3. In this case we will apply the same setting for the Group Lasso
model that we introduced in Section 3.6. Along with the analysis of Group Lasso we will
continue the previous experiment of Lasso by adding experiments running FAPG.

We first show the results for the Lasso experiments adding an extensive analysis of
FAPG’s performance on the following problem. We first have generated a matrix X from
a standard normal distribution with dimension n ×m, where n is the sample size and m
the number of predictors. Then, we generated a random vector w with m entries for which
we defined ten groups of predictors, each with a different mean (ranging from -5 to 5) and
all the same standard deviation σ = 0.25, in order to obtain a grouped structure. We now
set y = X · w + b, where b is a white noise vector. We fix a step-size t = 1/λmax(XTX)
for which we know we should have an optimal convergence ratio of O(1/k2) for the case of
Lipschitz convex functions and run the algorithm for a simple experiment with n = 2000
and m = 500.

For the convergence benchmark we will test FISTA, FISTA with the function restarting
scheme, FISTA with the gradient restarting scheme and the FAPG method proposed by
Ito et al. and adapted by us to our needs.

49
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Figure 4.1.1: Iterations taken to converge depending on the λ value for all methods for
Lasso.
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Figure 4.1.2: Detailed contribution of each of the optimizations on the FAPG method for
Lasso for optimal λ = 1, where bt refers to the backtracking strategy, dec to the decreasing
one, re to the restarting scheme, st to the stability strategy and mt to the maintaining
top-speed one.

4.1.1 Lasso Performance Benchmarking

Given the relevance of the chosen λ in the Lasso solution, that greatly impacts the per-
formance of the method, we have also run a benchmark comparing the performance of all
methods depending on the λ parameter. In Figure 4.1.1 we show a relation between the
iterations needed to converge for each method against the λ parameter for Lasso. This is
essentially a cross-validation setting, where we run a model for many possible parameters
and try to obtain the best ones. It would be very advantageous to optimize this process
since it is usually quite computationally expensive for complex problems. These λ are
sampled from a logarithmic interval

[
2−6, 220

]
, from which we take 27 values.

Here, in Figure 4.1.1, we see a great benefit from the optimization, particularly from
FAPG against standard FISTA. It is also interesting to note the similar performance of
the function restarting scheme and the gradient restarting scheme for λ at the end of the
interval. Overall, though, the gradient scheme performs much better. Interestingly, we
see that there is a certain value of λ around 1 (which is precisely the optimal, meaning
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Figure 4.1.3: Performance plots for several λ for Lasso
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Figure 4.1.4: Iterations taken to converge depending on the λ for all methods for Group
Lasso.

that is the value of λ for which the model shows the best validation error) for which the
performance of the methods improves, having for the last λ a lower difference in terms of
iterations across all methods. As we can see, these optimizations result particularly useful
in cross validation setups where we want to try tens, or even hundreds, of models.

In Figure 4.1.3 we show the evolution of the methods for 10 particular λ for Lasso. In
these figures we see a very similar shape for small λ, whereas for larger ones we see a bigger
difference between FAPG and the rest. Interestingly, the larger the λ the more ripples we
find, which may be explained because it is easier to exceed the momentum required in a
much simpler problem, and thus overestimate the step in each iteration.

For the optimal value of λ we have also run an experiment to analyze the exact con-
tribution of each of the different strategies of the FAPG method. We show this plot in
Figure 4.1.2. For this particular case we can appreciate that dec is the most helpful strat-
egy. The full FAPG method still shows a very good performance, but we think that it is
not the best due to the small number of iterations the method needs to converge, given
that some strategies such as mt or st show its potential in longer runs. Along this line, we
also appreciate that the re strategy is not particularly good on its own.

4.1.2 Group Lasso Performance Benchmarking

After the analysis of Lasso we show the same results for Group Lasso. Nonetheless, let us
briefly recall the Group Lasso model, that, for J groups, solves a problem of the form

arg min
w0∈R,w∈Rpj

1

2

N∑
i=1

(
yi − w0 −

J∑
j=1

zij · wj
)2

+ λ

J∑
j=1

‖wj‖2

 ,

where ‖wj‖2 is the well-known Euclidean norm of the group j.

In the case of our current setting we could set the number of groups to any arbitrary
quantity and we chose J = 10, which means that we will have ten groups of fifty predictors.
We next test the same methods as we did for Lasso: FISTA, FISTA with function restarting
scheme, FISTA with gradient restarting scheme and FAPG.

As we mentioned before, the specific performance of these methods is related to the
chosen λ. We show Group Lasso’s results for a benchmark comparing the performance
varying λ in Figure 4.1.4. The 27 values of λ have been selected as in the case of Lasso,
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Figure 4.1.5: Performance plots for several λ for Group Lasso
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Figure 4.1.6: Detailed contribution of each of the optimizations on the FAPG method for
Group Lasso for λ = 8.0, where bt refers to the backtracking strategy, dec to the decreasing
one, re to the restarting scheme, st to the stability strategy and mt to the maintaining
top-speed one.

from an evenly spaced logarithmic interval [2−6, 220] to explore a sufficiently wide range.
It is interesting to see how FAPG is outperforming the other methods for every λ we tried.
Nonetheless, we also note that there is a certain λ for which FISTA starts performing
better. This critical point seems to be around the optimal λ = 8. This suggests that,
even if for any λ FAPG outperforms FISTA in number of iterations, we could get an
even higher boost in performance for complex cross validation settings, which is a very
interesting conclusion. More interestingly, we see that the optimization of FAPG with
respect to standard FISTA is greater for small values of λ and that the difference between
methods decreases as we increase λ.

We can see that this intuition makes sense when we think of what each λ value means.
A small value would impose a very small penalty and then the region we have to explore
to find a solution for the problem is very wide. In this context the method has to work a
lot more and then it is reasonable to expect a higher benefit from the optimization. On
the other hand, a very large λ value would make the model very simple, taking only into
account the regularization term and forgetting about a good error. This makes the model
pretty much straightforward, resulting in a very small region to find a solution for our
problem, and then it is possible to not get such a good performance boost.

Given the relevance of λ for the model, in Figure 4.1.5 we show the detailed performance
path of all methods for 10 particular λs. We can see how FAPG is the best overall, as we
saw in previous figures. From these figures we can see several things. In the first place, we
note that the performance of the function restarting scheme is actually closer to FISTA’s
than to the gradient restarting scheme. Finally, we remark the very good performance of
the gradient restarting scheme, very close to FAPG for many λ.

Following the analysis of Lasso, we also analyze the exact contribution that each of
the explained strategies (see Section 3.4) have on the FAPG method for the optimal λ for
Group Lasso. In Figure 4.1.6 we show these results. We see that the method combining all
the strategies is not the best in terms of convergence but is very close to other combined
strategies such as bt + re + dec. Another interesting insight we extract from this figure
is that the key strategy that seems to accelerate the most is the decreasing of the Lk
estimation, in the sense that it is the strategy that helps most with respect to previous
strategies. We also highlight the very bad behavior of the bt strategy when it is run alone.
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Figure 4.1.7: Recovered weight structure for both Lasso and Group Lasso models.

In the second place, for this particular case, and probably caused by the low number of
iterations we need to converge, we also note that mt strategy does not seem to be very
important for the convergence. As we pointed out before, the method may benefit from it
in longer runs. Finally, we observe that the st strategy shows the best performance along
with bt + re + dec, interestingly. For this particular problem it seems that we can take a
significant advantage from decreasing Lk in a progressive way.

4.1.3 Recovered Weight Structure

A final aspect we will analyze of these models is the recovered structure of the coefficients.
We recall that for this synthetic example we introduced an artificial grouped structure in
the original weights by sampling each group from a Gaussian distribution with different
mean (from -5 to 5) and σ = 0.25. In Figure 4.1.7b we show the original against the
recovered weights by Group Lasso, where we can clearly see this very same structure. In
the title of the figures we also indicate the `2 norm of the difference of the original weights
against the recovered weights. Also as a result of the simplicity of the problem we note that
the weight structure recovered by Lasso is actually very similar to that of Group Lasso,
showed in Figure 4.1.7a.

As a summary, we see that both models behave very similarly and both recover the
expected group structure. Nonetheless, we may conclude that Group Lasso actually re-
covers a better fitted weights, as we can see by comparing the norm of the difference of
the weights of both models. Nonetheless, we must take into account that these results
correspond to the best parameter of both models, and thus its goal is not to recover the
best structure but to obtain the best error. In this sense, it is possible that with another
regularization (most likely with a higher one) we could recover a better fitted version of the
weights. Regarding the comparison between Lasso and Group Lasso, we recall that this is
a synthetic problem and thus in real problems the performance of both models would not
be so similar.
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4.2 Wind Energy Forecasting

In this Section we will perform a similar analysis as the one we described for the previous
synthetic experiment but with a more realistic and interesting problem, wind energy fore-
casting. The interest in renewable energies is increasingly growing due to, on one side, the
state of foil energy sources, whose availability is rapidly decreasing, such as petrol or gas,
and, on the other, the need for a stable electricity grid management. In this section we
will cover, essentially, the latter, which is directly related to the forecasting problem. The
forecasting problem tries to approach the energy prediction for medium to large horizons,
namely, one to up to several days in advance.

In this case we will work with a single wind farm in Peninsular Spain, Sotavento, located
in Galicia, Northwest Spain. The Numerical Weather Prediction data for our problem are
organized in a geographical grid where for each point we have defined several variables. Our
data source for this problem is the European Centre for Medium-Range Weather Forecasts
(ECMWF). Our dataset consists on the following variables that we directly download from
the ECMWF MARS data archive at an hourly frequency:

• U and V wind speed components at 10 and 100 meters.

• Pressure at surface.

• Temperature at 2 meters.

From these variables we will calculate the following ones

• Wind speed module at 10 and 100 meters.

These make a total of 8 variables for each of the grid points in the selected area. For
Sotavento we take a geographical grid of 120 points distributed evenly at a resolution
of 0.125◦ in a 8 × 15 rectangular grid whose corners are (−9.5, 44.0) and (−6.0, 42.25)
longitude, latitude. This amounts to 960 predictors with 8760 hours yearly. To build our
models we employ three years’ data: 2013 for training, 2014 for validation of the hyper
parameters of the model and 2015 for test. To split such datasets we also apply a zero
mean unit variance normalization.

In this context we are interested in two fundamental aspects:

1. First, as we did for the synthetic example, we will study the performance of the
different optimizations in a cross validation setup where we build models for several
values of the hyper parameters in order to select the best overall. We analyze these
results for both Lasso and Group Lasso models.

2. Second, we will compare the results of a Group Lasso model for wind energy fore-
casting with the related models of Lasso and Ridge Regression.

4.2.1 Performance Benchmarking

For the first of our purposes, that is, the analysis of the performance of the different opti-
mizations, we have essentially run the same cross validation setup focusing our attention
in convergence. In this aspect we will test both Group Lasso and Lasso.
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Figure 4.2.2: Detailed contribution of each of the optimizations on the FAPG method for
Lasso for λ = 0.090, where bt refers to the backtracking strategy, dec to the decreasing
one, re to the restarting scheme, st to the stability strategy and mt to the maintaining
top-speed one.
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Figure 4.2.3: Performance plots for several λ for Lasso
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4.2.1.1 Lasso Analysis

We first run the Lasso model and we show its results in two figures, similar to those we
showed for the synthetic example, in Figures 4.2.1 and 4.2.3.

In the first of them, in Figure 4.2.1, we show the iterations each method took to converge
while varying the λ parameter of the model. As we saw in the synthetic example, FAPG
is the clear winner for small values of λ, after which all methods seem to show a similar
performance, or at least they show a smaller difference (note the logarithmic scale). As
we described for the synthetic example, this is because small values of λ impose a very
low penalty and then FISTA has to explore a very wide area, where the optimizations
accelerate significantly the convergence of the method. For very large values of λ we have
to explore a smaller space, and thus the performance across the methods is similar. This
confirms our idea that FAPG would be very valuable in complex cross validation settings,
saving a lot of time in general and, overall, for small values of λ, where we often find the
best model.

In this sense, it is remarkable to see how FISTA starts showing a closer performance
to FAPG for the optimum λ around 0.1 and larger values (note the logarithmic scale).
As we hinted before, this may be caused because the optimum value of λ balances the
model and then FISTA finds a good path towards the solution more easily. We can also
see an exceptional performance on the side of the gradient restarting scheme, being the
closest method to FAPG for many λ, and much better than the function restarting scheme.
Finally, it is also remarkable how the function restarting scheme does not seem to work
well at all for this particular problem. We think that this is related to the very low non
monotonicity of FISTA in this case, which is not particularly strong and thus the function
restarting scheme would not be triggered.

On a side note, we see that the shape of Figure 4.2.1 is different from that of the
synthetic example (Figure 4.1.1), which is natural since for this case a small difference in
the value of λ affects more the shape of the problem and the path to the solution, resulting
in errors and solutions very different, where we can appreciate better the effects of the
optimization strategies. Take into account that we are only exploring here λ ∈

[
2−6, 26

]
in

logarithmic scale.

In Figure 4.2.3 we show 10 particular cases where we have detailed the evolution of all
methods towards convergence for a fixed λ. An interesting case is shown for λ = 0.216,
which is very close to the optimum (the optimum is λ = 0.0903). In this case we see that
FISTA converges very close to FAPG. We note that the optimum λ = 0.09 for FAPG is not
exactly the best for FISTA, but close enough. These results further confirm our intuition:
a good value of λ helps the model to find a good direction, even showing a non monotone
trajectory.

Finally, we also analyze the contribution of the optimizations method applied to FAPG
on Lasso in terms of convergence. In Figure 4.2.2 we show these results. We first note that
the restarting strategy alone does not work for this example and needs to be balanced with
more powerful accelerations. Interestingly, we also see that for this particular example the
full FAPG method does not show the best convergence for the optimal λ. This may be
explained because in such few number of iterations we can not get the best out of the mt
and st strategies, that tend to smooth the effects of all strategies in longer experiments.
For this particular example we see that the bt strategy performs very well, being the
best strategy. As we saw in previous examples, the dec strategy accelerates the most the
method and shows the best performance overall, tied with the bt strategy for this particular
example.
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Figure 4.2.4: Iterations taken to converge depending on the λ value for all methods for
Group Lasso.

4.2.1.2 Group Lasso Analysis

We now show the same results for Group Lasso. In Figure 4.2.4 we show the iterations
each method took to converge while varying the λ parameter of the model. As we saw
in the Lasso example for this same problem, FAPG is the winner for many λ, showing
pretty much the same performance as others or little difference for other λ. For this case
we see that the gradient restarting scheme also shows an outstanding performance, highly
competitive with FAPG for several λ. On the other hand, the function restarting scheme is
not just worse than the gradient restarting scheme, but also slower than FISTA for many
λ. From these results we see that the performance of the function restarting scheme is
highly dependent on the problem, while the other methods seem to be more consistent.

In Figure 4.2.5 we show the detailed evolution of all methods towards convergence
for 10 particular λ. An interesting case is shown for λ = 1.245 and λ = 2.988, which
are close to the optimum λ = 1.928. In these cases we see that FISTA converges earlier
than FAPG (although the difference is small) even being non monotone. As we remarked
before, these results confirm our previous intuitions about the effects that λ may have on
the performance of the method. It is clear that a good or large λ simplifies the problem
and we usually see a faster convergence. Interestingly, these intuitions are even more clear
in real and more complex problems than it were in the synthetic case.

To end our analysis of Group Lasso and its performance we also show the contribution
of each of the optimizations included in the FAPG method for an optimal λ. We see these
results in Figure 4.2.6. A first important difference is that Group Lasso seems to take
more iterations to converge than Lasso, obtaining a similar solution. This longer path to
convergence has several consequences. In the first place, we recall from Section 3.4.2 that
the key to the decreasing strategy is that in the limit we are actually not doing anything,
smoothing the effects of the decreasing. In this case, since the method converges around
iteration 200, the decreasing constant is already ηd = 1 and then we are not decreasing
any more. In the second place, given the longer run of the experiment, we see that the
methods show a closer performance. Particularly, it seems that the mt strategy is not
slowing the convergence as much as it did in previous cases, such as in Lasso. Still, the
best performance is shown by bt and dec strategies, although bt shows some ripples. We
also note that bt + re is the worst strategy, probably caused by restarting too frequently,
as we previously saw for Lasso, given that the st strategy seems to accelerate the method.
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Figure 4.2.5: Performance plots for several λ for Group Lasso
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Figure 4.2.6: Detailed contribution of each of the optimizations on the FAPG method for
Group Lasso for optimal λ = 1.928, where bt refers to the backtracking strategy, dec to
the decreasing one, re to the restarting scheme, st to the stability strategy and mt to the
maintaining top-speed one.

FISTA Function Scheme Gradient Scheme FAPG
L GL L GL L GL L GL

MAE Test 0.082 0.084 0.082 0.0823 0.082 0.0823 0.084 0.0824
Iters 214 166 717 685 625 685 60 178

Table 4.2.1: Results of Group Lasso and Lasso models for Sotavento where we indicate
the best model for each method.

Even if the full FAPG method seems to not have the best performance, a final insight
we would like to extract from these analysis is the consistently good convergence of the
bt + re + dec strategy, very often better than the full FAPG itself across several of the
experiments we have run in this chapter.

4.2.2 Best Model Comparison

For the second of our purposes, that is, the comparison of Group Lasso with other models,
we have run a cross validation setup taking as fixed folds 2013 for training, 2014 dataset
for validation and 2015 dataset for test. The best parameter is then used to build the final
model we use to calculate the test MAE error, that is, the Mean Absolute Error calculated
as 1

N

∑N
i=1 |yi − ŷi|, by training with both 2013 and 2014 datasets and predicting in the

2015 dataset. The results for the best models are shown in Table 4.2.1. In the table we
represent the MAE for the four methods we have tested: standard FISTA, FISTA with
the function restarting scheme, FISTA with the gradient restarting scheme and FAPG for
Group Lasso and Lasso. On the other hand, sklearn’s Ridge model obtains a MAE error
of 0.0824, very similar to the errors obtained for Lasso and Group Lasso. We note, again,
that for the optimum value of λ FISTA actually reaches convergence faster than FAPG
for Group Lasso and close in the case of Lasso (in terms of complexity order), which is
something we already hinted before.

We also note that in terms of MAE, even if the convergence we reach is not the same
for all methods, the difference is essentially negligible, given that the problem is convex
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and the solution is unique. It is also interesting to see how both function and gradient
restarting schemes reach the same solution in the same number of iterations for Group
Lasso, which is often not the case. Another interesting remark is that FAPG reaches a
much faster solution for Lasso than Group Lasso, achieving a similar MAE. This may be
caused by the shape of the regularization term, that somehow makes the problem a bit
more complex. For the rest of the methods we see essentially the same number of iterations
in both Lasso and Group Lasso.

In summary, we see that Group Lasso is highly competitive with other linear methods
such as Lasso and Ridge Regression, with a slight advantage in terms of interpretability,
which makes this a very interesting model. Nonetheless, if we want the best possible model
despite of computational cost or interpretability we may find it in a Gaussian SVR model,
whose non linear kernel allows for further flexibility. In a similar context, for a PV energy
prediction problem, we found ourselves that Gaussian SVR resulted in the best model
in [14] or even in [16].

In terms of interpretability we compare now the weights structure of both Lasso and
Group Lasso models. For this comparison we will plot the associated weights to each of the
variables of the model and grid points and, only for Group Lasso, a final plot considering
the norm of each group. It is particularly interesting to select full groups with a clearer
meaning than single variables. We recall that Sotavento is a local wind farm located at
(−7.75, 43.25) longitude, latitude and is marked with a blue dot in the maps.

This selection is different in the Lasso weights structure, as we can see in Figure 4.2.7,
where Lasso does not consider groups. At first sight stands out the generally homogeneous
weights of the Lasso model. We also see some sparsity geographically, and interestingly
we see some weights being zero at points where for other variables we have a nonzero
weight. This is because Lasso does not take into account any information at group level.
It actually does not even know about the existence of such groups and applies sparsity
globally. As a consequence of this, it is harder for Lasso to select points near Sotavento,
and instead selects those points that seem to result in a better model, regardless of their
interpretability. Also as a consequence of this we see that Lasso results in a sparser model,
since it has no other constraint.

In contrast, in Figure 4.2.8 we show the final weights for each of the grid points and
variables assigned by the best Group Lasso model for the Sotavento problem. In this sense
it is reasonable to expect higher weights around or near its location, which is the case of the
most important variables: v100, v10. We also note that variables such as temperature
or surface pressure do not seem to have the same effect in the wind energy output, as
we could expect. It is also interesting to see several points of no importance at all, since
Group Lasso selects only those points where all variables’ weights are greater than zero
(in absolute value). As a consequence of the grouped structure Group Lasso is somehow
forced to select some points that may not be that important, as is the case of the point in
the far right side of the map that is not particularly close to Sotavento as to be the most
important point.

A final interesting interpretation can be extracted from Figure 4.2.9, where we have
plotted a single map where each grid point represents the norm of each group according
to the Group Lasso weights. We see many white points, indicating points that are not
important as the weights are 0. On the other hand, we see about 5 very interesting points
located near the real location of Sotavento. Even though we can try to extract similar
interpretations from the Lasso model, it is easier and more natural to do so given the
already grouped structure of the Group Lasso weights. We can then conclude that for
problems with this kind of natural structure Group Lasso is an interesting model.
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Figure 4.2.7: Lasso best model’s weight structure
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Figure 4.2.9: Group Lasso model groups’ norms

As we mentioned before, when Group Lasso selects a point it sets all its variables to
some nonzero value, even if some variable cancels any other in the group. This is an
artificial constraint that may actually result in a worse model, both in terms of accuracy
and interpretability. To overcome this issue there are several alternatives, and one that we
like is proposed by Friedman et al. in [15]. In this paper the authors propose to add a `1
norm besides of the `2,1 norm of standard Group Lasso as the regularization term. This
added `1 norm would introduce sparsity globally to remove some non important points
that may be selected by standard Group Lasso. To balance the load of both penalization
terms we add an α parameter, in a somehow similar way to Elastic Net. We will approach
this and other alternatives in further work.



Chapter 5

Discussion and Further Work

The theory of convex optimization is core to the solution of many machine learning prob-
lems. Among them we find interesting models as those studied here, Lasso and Group
Lasso. Given their conditions and usually their non differentiable penalty terms we often
have to use iterative algorithms to find their solutions, and some of the most common are
ISTA and its fast version, FISTA.

In this sense, ISTA provides a generic solution to any composite convex problem by
easily changing the proximal operator of the corresponding penalty term. This is an inter-
esting solution when testing several convex models, even if it may not be the most effective
method for a particular model. In this context, Nesterov [1] proposed a modified algorithm
that accelerates the basic gradient descent method, on which ISTA is based, reaching an
optimal convergence ratio of O(1/k2) for Lipschitz convex functions that significantly im-
proves the ISTA convergence of O(1/k).

Nonetheless, even though FISTA reaches a faster theoretical convergence, in practical
problems it may show a non monotone behavior, resulting in a worse practical performance.
This has motivated many papers in the recent literature trying to recover the optimal
convergence ratio of FISTA through the application of many optimizations, some of which
have been studied in this work and applied to Lasso and, particularly, Group Lasso. We
summarize them next:

• Backtracking: the backtracking strategy allows to find a better suited Lipschitz con-
stant L for specific regions of the function to minimize, which may help to get a
better step.

• Restarting strategies: O’Donoghue and Candes [7] proposed two interesting options
to restart the FISTA’s Nesterov tk sequence whenever the algorithm overestimates
the momentum; that is, the behavior is non monotone. To detect this behavior the
authors proposed to restart if the value of the objective function increases or if the
direction of the gradient is ascending.

• Decreasing Lk: given that Lk defines the size of the step we take in each iteration,
it would be interesting to have the lowest possible Lk at each step, allowing to take
greater steps.

• Stability: the aforementioned decreasing strategy may show some instability issues
because it somehow cancels the backtracking strategy (ones tries to increase Lk and
the other to decrease it). In this sense, this stability strategy gradually stops the
decreasing of Lk, so that, in the limit, there is no decreasing.
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• Maintain top-speed: restarting is very interesting, overall, in the first iterations of
the algorithm, whereas it may cancel a good momentum near the optimum, where far
higher momentum is required to make the algorithm advance on the right direction.
This strategy, then, avoids restarting the algorithm near the optimum.

After the theoretical explanation we have performed some experiments focused on
studying the effect of these optimizations in the actual performance of FISTA. To do
so we have run the algorithms in two different problems: a synthetic and a real world one.
We summarize our conclusions next:

1. In general, we have observed that FAPG shows better performance than FISTA.

2. Among all the optimizations, the one that more greatly impacts the performance is
the decreasing strategy.

3. FAPG not only performs better in a single run, but its boost is even greater in
cross-validation setups. In these situations we have found that the benefit from the
optimizations is greater under low penalty conditions, where the algorithms need to
work more.

4. In the worst case the performance of FAPG is similar to FISTA.

5. With regard to Group Lasso, we have observed that it is competitive with linear
models such as Lasso and Ridge. Apart from this, it incorporates an advantage in
terms of interpretability, which makes it an interesting option for naturally grouped
problems.

This line of research leaves many possible directions to improve in further work, some of
which we are currently undertaking. In particular, we are currently pursuing the following
main ideas

1. When adding optimizations in order to accelerate the methods it is also very in-
teresting and important to perform a detailed study of the final complexity and
computational costs (time, iterations, etc). We are currently working on these issues
for Lasso and specially Group Lasso.

2. Along this line, we will also explore the Sparse Group Lasso [15] as an sparse alterna-
tive to standard Group Lasso. This may balance the final model and avoid selecting
some non important points and produce a more meaningful solution. Furthermore,
its proximal operator is a bit more complex than that of standard Group Lasso and,
as a consequence, including the optimizations studied here seems interesting and
promising.

3. As a natural follow up we are exploring conjugate gradient methods, also based on
momentum. The main difference between these and Nesterov accelerated gradient is
that in Nesterov we apply the gradient step over the momentum point, whereas in
conjugate gradient methods we perform the gradient over the previous x point and
then perform the momentum step.

4. Another natural extension of this work is to introduce Nesterov accelerations in other
problems, such as Generalized Lasso. Other more complex ideas include adding these
optimizations to the SMO algorithm to solve the SVM model or even to deep learning.
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5. On the applications side, we will continue to work on a follow up of [14] and [16], on
the field of renewable energies prediction, introducing Group Lasso as another model
or as a previous feature selection algorithm after adding more Numerical Weather
Prediction variables, which would increase the dimensionality of the problem.

Since some of the mentioned problems are also convex (SVM, Deep Learning) we can
think of adding these optimizations as a natural idea. Nonetheless, it also raises some issues.
In the case of the backtracking, it is usually intractable to compute in every iteration the
objective function for big problems such as SVM or deep learning. In these cases, we think
that strategies such as restarting are more likely to work and provide interesting results.
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