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Abstract

Quantum spin chain models have been a toy model for exploring more com-
plex theories since first times. In this work, in order to study this particular type
of models, numerical methods based on exact diagonalization algorithms are per-
formed. This allows to solve in a direct fashion a quantum many-body problem
and to confirm some predictions related to the connection between the lattice dis-
crete Hamiltonian and its continuum field theory limit. One of the most impor-
tant of these predictions is the statement that there exists a connection between
the Heisenberg XXX Hamiltonian and the SU(2)k=1 Wess-Zumino-Witten non-
linear σ model, which is related to a Conformal Field Theory with central charge
c = 1. Studies to prove this fact are performed, finding scalings for ground state
energies, structure of conformal towers and correlators. A bridge towards Quan-
tum Information ideas is built studying entanglement entropies. Moreover, a
connection between the systems studied and the Haldane-Shastry model is ex-
plored.
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Resumen

Las cadenas cuánticas de espín han sido un sistema físico sobre el que probar
teorías más complejas desde los comienzos de la física. En este trabajo, se desarro-
llarán métodos numéricos basados en algoritmos de diagonalización exacta con el
propósito de estudiar este tipo de sistemas físicos. Esto permite resolver directa-
mente un problema cuántico de muchos cuerpos y, a la vez, confirmar prediccio-
nes sobre la conexión entre los Hamiltonianos discretos en retículas y sus corres-
pondientes teorías de campos en el límite continuo. De las más importantes de
estas predicciones es la existente acerca de la conexión entre el Hamiltoniano iso-
trópico de Heisenberg y el modelo σ no lineal SU(2)k=1 de Wess-Zumino-Witten,
que a su vez está relacionado con una teoría conformal de campos de carga cen-
tral c = 1. Varios estudios para probar esta afirmación se han llevado a cabo,
hayando cómo las energías de los estados fundamentales escalan, las estructuras
de las torres conformes y algunos correladores. Además, se intenta construir un
enlace con ideas de información cuántica a través del estudio de entropías de en-
trelazamiento. También una posible conexión entre los modelos estudiados y el
modelo de Haldane-Shastry es explorada.
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1
Introduction

As great physicist of the epoch soon realized, macroscopic effects in the daily
world could be explained paying attention to the microscopic quantum level, as
how the interactions between the spins may lead to collective behaviours with
macroscopic effects. Particularly, in this work we will refer fundamentally to
one of the most studied ones since ancient times: magnetism. In the simplest
cases, we can characterize a material as ferromagnetic, where the spins line up
parallel to each other, or as anti-ferromagnetic, where neighbouring spins point
in opposite directions.

The source of such spontaneous magnetization is the so-called exchange in-
teraction, which has a quantum mechanical origin. It is the manifestation of the
Coulomb repulsion between the electrons and the Pauli exclusion principle, being
therefore strong and short range (consult [1] and references therein). A magne-
tic dipolar interaction is also present, but it is too small to explain magnetism at
room temperature. The exchange interaction between particles of spin 1/2 and
higher is usually described by the Heisenberg model, as a simplified version of
the well-known Ising model [2]. The former, due to its simplicity, has been wi-
dely studied and used as a toy model for other theories. Furthemore, physicists
have had an analytical solution, with which new results from other approaches
could be compared, since 1931, when Bethe derived an exact analytical solution to
the one-dimensional spin-1/2 Heisenberg model with coupling between nearest-
neighbours (NN) [3]. This was a breakthrough in the studies of exactly solvable
quantum many-body systems.
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1. INTRODUCTION

Whenever exact solutions of many-body problems like this one, with the in-
teraction of plenty of strongly-correlated particles, was not accessible, the other
approach was to reformulate these complicated interacting theories in a way they
could become weakly interacting [4, 5]. This was the idea behind the famous
1928’s paper by Jordan and Wigner [6] establishing an equivalence between the
model of interacting fermions and the anisotropic spin-1/2 Heisenberg model (to
which we will refer as the XXZ model), finding a particular case of this model
(the XY model) for which the model became non-interacting. However, even out
of this particular point, sometimes interactions could be effectively removed by
a second transformation, bosonization; turning the spin-1/2 Heisenberg model in
just a collection of harmonic oscillators. Such transformations hold in the conti-
nuum limit whenever the energy is much smaller than the bandwith.

This type of bosonization, Abelian bosonization, coined independently in 1975
by Coleman and Mandelstam and Mattis and Luther [4], showed that correlation
functions of Dirac fermions in (1+1)-dimensions could be expressed in terms of
correlation functions of free bosonic fields. This solved many problems in a very
easy manner, e.g. the Tomonaga-Luttinger case [4].

Afterwards, in 1983/4, non-Abelian bosonization was discovered and used by
Polyakov and Wiegmann (1983), Witten (1984), Wiegmann (1984), and Knizhnik
and Zamolodchikov (1984). It proved to be very useful for problems when spin
degrees of freedom were present (consult [2, 4, 5, 7] and references therein).

Those years also witnessed another two important contributions to the low-
dimensional physics: the Haldane’s conjecture about gap in spin systems, and the
birth of Conformal Field Theories (CFT) in Condensed Matter Physics.

Almost fifty years later from the Bethe Ansatz, in 1983, Haldane suggested
a remarkable difference between one-dimensional anti-ferromagnetic systems of
integer and half-integer spins [8–10], namely that the former should be gapped
while the latter gapless. This is of significant importance if we remember the
necessary condition for a material to be insulating: the existence of an energy
gap between the ground state and the first excited states. The importance of
this prediction, after its numerical and experimental confirmation together with
a rigorous proof [11], was one of the reasons that eventually led the Swedish
Academy to the concession of the Nobel Prize in Physics in 2016 to Thouless,
Haldane, and Kosterlitz.

Also in 1984, Belavin, Polyakov, and Zamolodchikov, published their famous
paper in which a unified approach to all models with gapless linear spectrum
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1. INTRODUCTION

in (1+1)-dimensions was provided [12]. They saw that if an action of a (1+1)-
dimensional theory is quantizable (i.e. only linear time-derivatives appear) the
linearity of the spectrum guarantees that the system has an infinite dimensio-
nal symmetry (conformal symmetry). Using these techniques, researchers like
Cardy, Blöte, Nightingale, Dotsenko, and Fateev, found in 1984 [13–16] important
connections between finite size scaling and conformal invariance. These results,
were put in connection afterwards with the Bethe ansatz by Affleck et al. [17].

CFT had been being used in other fields such as Statistical Physics, in which
they allowed to obtain the first formulae for entropies, derived by Holzhey, Lar-
sen, and Wilczek [18], who were interested in the study of black holes. However,
Vidal et al. soon realized those equations could be applied to low-dimensional
Physics, more concretely to spin chains [19]. It was one of the first applications
of Quantum Information concepts to quantum lattice systems in one dimension,
helping to improve our understanding about entanglement at a quantum level in
many-body systems like spin chains [20–23].

It is interesting to mention that many distinct numerical algorithms have been
used during the years in order to check the predictions of the theories. Although
in this work we will follow the route of exact diagonalization and Lanczos met-
hods started back in 1992 [24], nowadays, White’s DMRG algorithms [25, 26]
have been the preferred numerical methods to compute and simulate results due
to their efficiency and numerical accuracy.

In this work, we will restrict ourselves to the one-dimensional Heisenberg mo-
del with periodic boundary conditions (PBC) considering only interactions bet-
ween nearest-neighbours (NN) and next-to-nearest-neighbours (NNN). We will
study and reproduce some of the more important results found since the early
beginning of the understanding of the quantum spin chains until nowadays, rea-
ching the realm of Quantum Information. Furthermore, we will deal with specific
predictions for the Haldane-Shastry model due to its theoretical interest [27, 28].

This dissertation is distributed as follows. The theoretical framework about
general spin-s chains and the path towards it will be summarized in section 2.
It will be also in this section that more concrete results about the spin-1/2 case,
which will be used throughout the rest of this work and are the main goal of this
work, will be presented. Calculations, procedures and results, in sections 3 and
4, and discussion (section 5), will refer hence only to the spin-1/2 case. Finally,
conclusions will be derived in section 6.
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2
The Heisenberg spin chain

2.1 Models studied

We consider here the following physical system: a spin chain, which we define as
a collection of particles of a given nature, i.e. certain spin, that interact amongst
themselves in a given way, which is dictated by a Hamiltonian H. In order to be
more specific, we consider spin chains with L spin-s particles, i.e. with length
L. Now, let us use the symbol S(m)

i as the spin operator along direction i for the
particle at position m in the chain. Although additional detail is not needed so
far, a more practical definition for the operators S(m)

i will be given in equation 3.1
of section 3.1 in terms of tensor products of matrices. For instance, in the case of
spin-1/2 particles, they will be related to the traditional σi Pauli matrices.

One of the simplest models one could consider when studying spin chains is
the usual Heisenberg XXZ model, which is

HXXZ =
L−1∑

m=0

{
S(m)
x S(m+1)

x + S(m)
y S(m+1)

y + ∆S(m)
z S(m+1)

z

}
, (2.1)

where we have assumed s = 1/2 and took into account that for a ring (periodic
chain) the periodic boundary conditions (PBC) imply that S(0)

i ≡ S
(L)
i for all di-

rections, i.e. i ∈ {x, y, z}. Note that in this model, the exchange interaction is
only considered between nearest neighbours (NN) and a coefficient ∆ is added
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2. THE HEISENBERG SPIN CHAIN 2.1. Models studied

in order to describe the possible anisotropy of our system. Normally, in the lite-
rature this Hamiltonian appears written with a pre-factor J which we are taking
equal to unity, which is sometimes called the clean Heisenberg model [29]. This
is important, since for the whole discussion in this work, J > 0 will be taken
for granted, in order to describe an anti-ferromagnet. Classically, this kind of
magnets has a Néel state as its classical ground state, which can be described as
the superposition of two ferromagnetic sub-lattices with magnetization along the
same direction but with opposite sense:

↑ ↓ ↑ ↓
↓ ↑ ↓ ↑
↑ ↓ ↑ ↓

.

If one forgets about anisotropy (which would lead to the so-called XXX model
in the equation above) and extends the interaction to next-to-nearest-neighbours
(NNN) one arrives to the J2/J1 model

HJ2/J1 =
L−1∑

m=0

{
~S

(m)
i

~S
(m+1)
i +

J2

J1

(
~S

(m)
i

~S
(m+2)
i

)}
, (2.2)

with ~S(i) = (S
(i)
x , S

(i)
y , S

(i)
z ). Here, the ratio J2/J1 describes the importance of the

interaction between NNN with respect to NN. This model has the important pro-
perty that is critical for a value of J2/J1 ≈ 0.2411, since it is a fixed point Hamil-
tonian under renormalization flow (its β-function vanishes). As previously in the
XXZ model, we have assumed that J1 = 1, but still keep writing J2/J1 to make it
easier for the reader to consult bibliography.

These models, and all their variants (namely, different points in the ∆ and
J2/J1 spaces), may be easily visualized in a map or phase-diagram.

Firstly, we can characterize different systems according to the value of the
anisotropy parameter ∆ in equation 2.1. Some interesting points are the free-
fermion point (∆ = 0) and the isotropic point (∆ = 1). For ∆ > 1, a spin gap opens
and the system enters an anti-ferromagnetic Ising phase; otherwise, for ∆ < −1,
the chain becomes a gapped Ising ferromagnet. The region with ∆ ∈ (−1, 1] is
critical, and in the isotropic point, it is SU(2) invariant, which means that the
HamiltonianH commutes with the total spin operator ~S defined as

~S ≡
L−1∑

m=0

~S(m). (2.3)

5



2. THE HEISENBERG SPIN CHAIN 2.2. Theoretical framework

Moving up in length of interaction and reaching the isotropical J2/J1 mo-
del of equation 2.2, there is a magnetically disordered spin-rotation-invariant
quantum phase in the region of strong frustration 0.44 . J2/J1 . 0.6. Alt-
hough the semi-classical ground state phases of the model, namely the Néel Anti-
Ferromagnetic long-range order (NAF LRO) at J2/J1 . 0.44 and the Collinear
Anti-ferromagnetic (CAF) LRO at J2/J1 & 0.66 are well-understood, very recent
calculations using Density Matrix Renormalization Group (DMRG) with expli-
cit implementation of SU(2) spin-rotation symmetry have found a gapless spin
liquid for 0.44 < J2/J1 < 0.5 and a gapped plaquette valence bond phase for
0.5 < J2/J1 < 0.61, as is explained in [30] and references therein.

2.2 Theoretical framework

2.2.1 The Haldane map and the O(3) non-linear σ-models

It is easy to see that the quantum ground state for a Heisenberg XXZ model of
equation 2.1 is not the classical Néel state if one notices first that each spin opera-
tors pair can be rewritten as

1

2

(
S

(m)
+ S

(n)
− + S

(m)
− S

(n)
+

)
+ S(m)

z S(n)
z , (2.4)

which allows us to separate very clearly the diagonal S(m)
z S

(n)
z from the off-diagonal

ones. Note that the traditional definition of the raising/lowering operator was
used, namely S(m)

± ≡ S
(m)
x ± iS(m)

y .
If one perturbs away from a limit in which the Néel state becomes exact, as

occurs for the spin-sHeisenberg anti-ferromagnet when s→∞, one finds that the
Néel state is destabilized by quantum fluctuations in one dimension, no matter
how large the spin s is. This is due to the fact that the spin representation used,
in terms of boson operators which eventually will describe spin-waves, shows
that excitations correspond to infinitesimal deviations of the spins away from the
Néel state. The two boson operators, which are Goldstone modes corresponding
to the breaking of SO(3) down to SO(2), are connected to infra-red divergences
and are precisely the cause why the destabilization occurs. Thus, we cannot take
the Néel order for granted, even for the pure nearest neighbour Heisenberg XXZ
model, at s = 1/2.

The interest in developing a low-energy continuum limit of quantum anti-
ferromagnets is which led Haldane to derive the so-called Haldane’s map between

6



2. THE HEISENBERG SPIN CHAIN 2.2. Theoretical framework

theHXXX Hamiltonian and the O(3) non-linear σ-model:

HO(3)−nlσm =
v

2

{
g2

(
~l − θ

4π
~ϕ′
)2

+
~ϕ′2

g2

}
, (2.5)

with velocity, coupling constant, and topological angle:

v = 2Js, g = 2/s, θ = 2πs.

The Haldane’s map is obtained after “integrating-out” the high-energy mo-
des, keeping just the Fourier modes of ~S(m) near the problematic wave vectors, as
~k = 0, and assuming

~S(m) ≈ s~ϕ(m) +~l(m), (2.6)

where ~ϕ and ~l are fields that vary slowly on the lattice scale. This allows one to
use a gradient expansion (~ϕ′) to obtain equation 2.5 after making the arbitrary
choice of combining each spin on an even site (at 2m) with the spin to its right
(2m+ 1).

It can be seen that theHO(3)−nlσm Hamiltonian follows from the Lagrangian:

LO(3)−nlσm =
1

2g
∂µ~ϕ∂

µ~ϕ+
θ

8π
εµν ~ϕ · (∂µ~ϕ× ∂ν ~ϕ), (2.7)

with ~ϕ2 = 1, being hence a vector in a two dimensional sphere S2 with unitary
radius. We now see that the term proportional to the topological angle θ is a total
derivative, whose integral (which appears in the action) measures the winding
number of the map from the sphere onto the sphere. If we denote the (integer)
integral by Q to keep in mind its origin as a topological charge, we can write the
action as

SO(3)−nlσm = S0 + iθQ. (2.8)

Since θ = 2πs, we will have θ = 0 or θ = π for spin s an integer or a half-
odd-integer respectively, which allows us to see that we will always have parity
conservation in the continuum limit. It took some years to completely under-
stand what this separation in spin sectors led to, eventually finding that terms
with θ = 0 (π) describe gapped (gapless) systems and map to different field the-
ories. The non-linear σ-model with θ = 0 was solved by Polyakov, who showed
that the model was asymptotically free and a gap was generated dynamically
in the spectrum. This was the result that Haldane used to predict that whene-
ver the spin s was an integer, the Heisenberg Hamiltonian would have a gap

7



2. THE HEISENBERG SPIN CHAIN 2.2. Theoretical framework

in the spectrum. This is, among many others, another example of the intimate
connection between High Energy Physics and Condensed Matter.

2.2.2 θ = π field theory approaches

Although the XXX Heisenberg model for spin-1/2 particles had been already sol-
ved analytically in 1931 by Bethe as said in section 1, and the XXZ model was
solved by Yang and Yang in 1966 [31–33], it was not yet understood how field
theories could apply to them.

One approach, followed by Affleck [34] and only valid for s = 1/2, was based
on using Jordan-Wigner transformations, to represent spin operators as spinless
fermions ψ via

S
(m)
+ = ψ(m) exp

[
iπ

m−1∑

l=0

(
ψ(l)
)†
ψ(l)

]
, (2.9)

to the free-fermion point of the XXZ Heisenberg model (∆ = 0 in equation 2.1)
and perturb the system away in order to obtain the anti-ferromagnetic case (∆ =

1). He found that his Hamiltonian described a Lorentz-invariant massless Dirac
fermion field theory in the low-energy approximation. It contained an interaction
term with chiral currents JL,R, whose Lagrangian was exactly the one of the Thir-
ring model:

LThirring = −i
(
ψ†L∂−ψL + ψ†R∂+ψR

)
− 4∆JLJR, (2.10)

solvable by bosonization.
His results were verified afterwards by a more general approach followed by

Affleck and Haldane [9], in which they use a generalized Hubbard model represen-
tation with Hamiltonian

HHubbard =
∑

n6=m

(
ψ(m)†αψ(n)

α + h.c.
)
− U

∑

m

~S(m) · ~S(m), (2.11)

where
~S(m) =

1

2
ψ(m)†ασβαψ

(m)
β, (2.12)

and t is the probability for transitions between neighbouring atoms for electrons
in well-localized atomic orbitals, and U represents a highly screened Coulomb
repulsion between electrons.

Their goal was to use non-Abelian bosonization to argue that the critical the-
ory for generic half-odd-integer spin anti-ferromagnets (as the XXZ and J2/J1

models described in the previous section of this chapter) is the Wess-Zumino-
Witten model with topological coupling k.

8



2. THE HEISENBERG SPIN CHAIN 2.2. Theoretical framework

2.2.3 The SU(2)k=1 WZW model

After the non-Abelian bosonization of the model of equation 2.11, they found [9,
34] that the free-fermion theory (i.e. U = 0), which has charge U(1) (ψL,Riα →
eiθψL,Riα) and spin SU(2) (ψL,Riα → gβαψL,Riβ) symmetries, was equivalent to de-
coupled theories for the fields ϕ and g:

LWZW (ϕ) =
1

2
∂µϕ∂

µϕ, (2.13)

SWZW (g) =
1

8π

∫
d2xTr∂µg

†∂µg +
k

12π

∫
d3xεµνλTrg†∂µgg

†∂νgg
†∂λg, (2.14)

where g is the WZW matix representing the SU(2) degrees of freedom and ϕ(x) is
a single scalar field representing the U(1) degrees of freedom. Models with U 6= 0

were found to flow to the U = 0 case under renormalization.
One can also study a generalized Hubbard model representation for the spin

chain in which a strong Hund’s rule coupling between the electrons at different
orbitals in each atom of the chain was added. We will refer to the orbital index
as the color, whose number nc satisfies that nc = 2s, so in our case nc = 1. They
found that the topological coupling of the WZW models fulfilled k = nc and they
finally proved that this was the low energy theory for a large total spin-s chain
described by a O(3) non-linear σ-model at the topological point θ = π.

Also, the k = 1 WZW model represents a stable fixed point for many SU(2)

invariant systems due to a type of topological stability. In particular, the Bethe
ansatz integrable spin-s Hamiltonian is attracted to the k = 2s multicritical point
[17].

The energy-momentum tensor TWZW of this model can be written in a form
quadratic in the currents J and it is chiral1, i.e. we have a chiral SUL(nc)×SUR(nc)

symmetry in our system. The expression for its left or chiral part TL is given by

TL =
π

2nc
vJLJL +

(
2π

nc + 2

)
v ~JL · ~JL +

(
2π

nc + 2

)
vJAL J

A
L , (2.15)

with v the velocity of light and A being the color index. Its structure suggests
that the theory can be separated into charge U(1), spin SU(2), and color SU(nc)

sectors. Constructing the chiral part of the energy-momentum tensor using the
currents of the field theory is called the Sugawara construction, which is inspired
in the algebra followed by the currents in the field theory2.

1Consult section A.3 for more details.
2Consult equations A.43,A.44 and A.45 and the explanations of section A.3.
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2. THE HEISENBERG SPIN CHAIN 2.2. Theoretical framework

However, up to this point, no mention to the reason why these models should
occur as the critical theories has been given. The answer is perfectly given in the
lecture given at Les Houhes in 1988 by Affleck [34]:

This can be understood by realizing that any theory invariant un-
der parity (which generally holds for lattice models as the ones consi-
dered in this work) and a continuous symmetry group G, will neces-
sarily have a chiral symmetry group (usually GL×GR) at any possible
critical point. The reason in simply that only chiral symmetries are
compatible with conformal invariance.

Note how perfectly the requirements are fulfilled as it is explained in the pa-
ragraph just before the quotation. The fact that critical points under renormali-
zation accept a description by a CFT is due to its lack of scale, since in a critical
point long-range order and correlations occur in the physical system. Being able
to describe our system by CFT’s allows us to find the critical exponents for fi-
nite size scalings and expressions for the correlators in a more direct way. This
shows the perfect 1-to-1 correspondence between the CFT and the QFT, in which
a particular state of a representation of the algebra corresponds to a field.

2.2.4 CFT with c = 1 for the SU(2)k=1 WZW model

Considering commutation relations obeyed by the currents appearing in TL, de-
fined in equation 2.15, we find that the SU(2) currents obey a Kac-Moody algebra3

with central charge k = nc, which is also the algebra obeyed by the currents in the
WZW model with topological coupling constant k, which appears in the action
of equation 2.14.

Before going any further, the reader without familiarity with the general fe-
atures of CFT’s is encouraged to read the appendix A for a brief introduction,
coming back here to this point afterwards 4.

The WZW model with topological coupling constant k represents the minimal
conformal theory for a given value of k in the sense that, given any conformal
invariant theory with SU(2) currents obeying a Kac-Moody algebra with central
charge k, we may define an energy-momentum tensor T quadratic in currents
as the one that appears in equation 2.15. This tensor is not necessarily the full
energy-momentum tensor of the theory, because, although it does generate the

3Consult equation A.20 in appendix A for the definition of a Kac-Moody algebra.
4Hereinafter, all the new concepts that are explained in the appendix A are written in italic

formating, and will not be explained in this section.

10



2. THE HEISENBERG SPIN CHAIN 2.2. Theoretical framework

spatial and time translations of the currents, a full and more general T could
still be defined adding to the actual part a new term that commutes with all the
currents, i.e. [TL, T

(new)
L ] = [T

(new)
L , ~JL] = 0. This explains why, in order to obtain

the smallest possible conformal anomaly parameter c (and hence fewest massless
particles and a more dominant long-range interaction) of the equivalent CFT, this
additional contribution T

(new)
L must be null, since the total c will be the sum of

that for TL, and that for T (new)
L .

A complete classification of primary fields and of the spectrum has been perfor-
med for the WZW models [35]. It was found that there exists one operator with
scaling dimension x, which can be written in terms of the spin of the operators that
must have specific values, namely sL = sR = 0, 1

2
, . . . , k

2
. The expression for x is

as follows:
x = 2

sL(sL + 1)

2 + k
. (2.16)

In our case of interest, nc = k = 1, only non-relevant operators are permitted,
since sL = 0 is the identity 1 and sL = 1

2
is the energy-momentum tensor of

the system, with dimension (for k = 1) x = 1/4. While the former correspond
to states with momentum near 0, the latter has momentum close to π, given the
parity of the operators.

We can use the chiral and anti-chiral components of the energy-momentum
tensor T constructed with the currents, namely TL and TR, to define the momen-
tum P and HamiltonianH operators:

P = TL − TR, (2.17)

H = v(TL + TR), (2.18)

with v being the velocity of light, which for the XXX Heisenberg model is equal
to π/2.

Since the raising operators are in general the Laurent modes of the energy-
momentum tensor T , in CFT’s with conserved currents we can also use as raising
operators the Laurent modes of the currents. Using this fact and the relations de-
rived from the Kac-Moody algebra for the SU(2)k=1 WZW model, it can be pro-
ven [17] that two distinct conformal towers (for momentum P = 0 and for P = π)
emerge, as will be explained in sections 4.2 and 4.1 and seen in the corresponding
results of section 5.2.

Due to the Sugawara construction of the energy-momentum tensor in the field

11
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theory, the central charge of the CFT is given by the following equivalent expres-
sions

c =
kdim(G)

cν + k
, (2.19)

c =
π

4

JaJa

(cν + k)
, (2.20)

with G = SU(2) (and hence dim(G) = 3) and cν being a quadratic Casimir opera-
tor in the adjoint representation satisfying

cνδ
cd =

∑

a,b

fabcfabd, (2.21)

with fabc being the structure constants of the symmetry group (in our case εabc).
The equivalence between equations 2.19 and 2.20 can be proven using equations
A.18 and A.19 of section A.2. It is easy to show also that, given the structure
constants of the SU(2) group, cν = 2, yielding the formula appearing in [17]

c =
3k

2 + k
, (2.22)

which equals 1 when k = 1. It is interesting to remark that, in order to have an
unitary representation of the Kac-Moody algebra, we must have k > 0 (which
yields c ≥ 1) [36].
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3
Numerical and theoretical methods

In order to study numerically any of the systems discussed so far, we need their
Hamiltonians H, whose generation and diagonalization has not been mentioned
yet. It will be explained in sections 3.1 and 3.2. Although many fast and powerful
algorithms have been developed until today (e.g. the outstanding results obtai-
ned by DMRG [37]) in this work we take a more humble path: exact diagonaliza-
tion. It is a route which, although constrains us to sizes relatively small, allows
us to obtain the full spectrum without having to be worried about approximati-
ons or assumptions as low-entanglement-entropy, etc. These DMRG algorithms
led afterwards to what nowadays are called Tensor Networks, being the DMRG
the first example of a particular subclass, the Matrix Product States or MPS. Their
generalization to two dimensional models are the Projected Entangled-Pair States
or PEPS, and were firstly proposed by Verstraete and Cirac [38–40].

Furthermore, apart from the construction of the Hamiltonian matrix and its
diagonalization, it is also important to explain the completely original algorithm
(according to the author’s knowledge) used in the construction of the reduced
density matrices (section 3.3) to trace over subspaces.

3.1 Building the Hamiltonian

When we defined the XXZ and the J2/J1 models in equations 2.1 and 2.2 of
section 2.1, we used the symbol S(m)

i to describe the spin operator along direction

13



3. NUMERICAL AND THEORETICAL METHODS 3.1. Building the Hamiltonian

i for the s−spin particle at position m in the chain without giving any further
information.

If, as in the rest of this work, one takes s = 1
2
, one possible description is to

use the mapping |↓〉 →
(

1
0

)
and |↑〉 →

(
0
1

)
in order to describe these operators in a

matrix fashion:

S
(m)
i ≡ 1

2

m︷ ︸︸ ︷
12×2 ⊗ . . .⊗ 12×2⊗σi ⊗

L−m−1︷ ︸︸ ︷
12×2 ⊗ . . .⊗ 12×2 . (3.1)

Note that due to the fast exponential growth of the size of the Hilbert space for
a chain of L sites (2L) this definition is only formally useful, given that in order
to obtain the spectrum of the Hamiltonian, one would have to diagonalize a 2L

sparse hermitian square matrix. Instead, it is more convenient, and consumes less
resources, to look at the action of the Hamiltonian on a particular state using the
alternative equivalent description of equation 2.4.

While the diagonal term (S(m)
z S

(n)
z ) leaves invariant a pair of spins adding just

a positive (negative) 1
4

prefactor for parallel (anti-parallel) spins, the off-diagonal
terms (the rest) only act yielding non-null result for anti-parallel spins, exchan-
ging the spins and adding a positive 1

2
prefactor. We can use this to simplify a lot

the construction of the Hamiltonian by iteration over the distinct states confor-
ming the basis instead of Kronecker-multiplying very large and sparse matrices,
although its size has not been yet reduced.

However, we have not yet used symmetries. Before doing so, let us define a
following suitable notation for the basis: |0〉b ≡ |↓〉 and |1〉b ≡ |↑〉. This trivially
defines the translation of a particular state of the chain into a binary basis. Take,
e.g. L = 3 and the state |↓↑↓〉. With this new notation it would be written as
|010〉b ≡ |2〉, with |010〉b ≡ |0〉b ⊗ |1〉b ⊗ |0〉b = (01000000)T. We used the subscript

b to refer to the binary basis only.
It is important to note that the treatment and discussion summarized here cor-

respond to the one discussed in the exceptional book by Sandvik [41] about the
many subtleties around the Heisenberg spin chain. Together with the explinati-
ons, a pseudo-code to guide them will added. If one is instead interested about
the actual implementation used by the author in C++ language, the reader is en-
couraged to take a look at the code, included in appendix B.

14
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3.1.1 Use of symmetries

The fact that the Hamiltonian of the J2/J1 model contains terms of the form of
equation 2.4 which are SU(2) invariant (together with additional symmetries) me-
ans that there exist a set of operators Ô that commutes with the Hamiltonian H
and allow us to define a common basis and write the Hamiltonian as a block-
diagonal one.

3.1.1.1 Fixed total Sz sector

We can start choosing a small but very powerful symmetry, the conservation of
the magnetization M , i.e. conservation of the total spin of a given state along one
particular direction:

M ≡
L−1∑

m=0

S(m)
z . (3.2)

Note that above, without loss of generality, we chose the z−direction to define the
magnetization, as it is usually done. This symmetry physically means that, after
acting with a HamiltonianHmade up of terms of the form of equation 2.4 over a
particular state |s〉 (using the notation aforementioned), the number of spins up
and down does not change.

This clearly shows that the first step to reduce the size of the Hamiltonian
matrix is to determine which of all the states conforming the natural basis of a
chain of length L, i.e. |x〉with x ∈ [0, 2L−1], are in the block of fixed magnetization
M , which can take values between [−L/2,−L/2 + 1, . . . , L/2].

It can be easily carried out by the following pseudo-code:

1 for x in (0,...,2^(L-1)):

2 state = binary(x,L)

3 counter = 0

4 for i in (0,...,L-1):

5 if state[i] = 1:

6 counter++

7 if counter = M + L/2:

8 add x to basis

9 sort basis

Firstly, we use the function binary(s,L) to create a binary array state of
length L whose bits form the binary representation of the number s. For in-
stance, binary(3,5)=[0,0,0,1,1]. Then, we simply iterate over its elements
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and count the number of ones we find (i.e. spins up). Checking each entry of the
binary array can be understood via

state[i] = 〈x|
(
S(i)
z +

1

2

)
|x〉. (3.3)

After counting them, if the number satisfies the condition to belong to the se-
lected fixed magnetization sector (this condition comes from the fact that both
M = 1

2
(n↑ − n↓) and L = n↑ + n↓ hold) we store this number in the basis list,

which will contain the whole basis. Finally, we sort the elements of the basis from
smaller to higher with the function sort basis. Hence, our reduced Hamilto-
nian with fixed magnetization HM will be a square matrix of dimension equal to
the length of the basis set. For example, for (L,M) = (4, 0) the basis would be
(3, 5, 6, 9, 10, 12) and the Hamiltonian HM will have 6× 6 = 36 entries, instead of
22×4 = 256, which is an important reduction.

Once the basis is computed, we generate the Hamiltonian matrix entries by
acting over each element of the basis in the following manner:

1 for i in (0,...,length(basis)-1):

2 state = binary(s[i],L)

3 for ii in (0,...,L-1):

4 if state[ii] = state[ii+1 mod L]:

5 H[i,i] += 1/4

6 else:

7 H[i,i] -= 1/4

8 state’ = flip(state,ii,ii+1 mod L)

9 j = index(state’, basis)

10 if j >= 0:

11 H[i,j] += 1/2

where we have already taken into account the way an operator of the form of
equation 2.4 acts over a particular state as mentioned previously. The program
goes through the elements of the basis, generating a binary array state for each
element via the function binary as before, and starts checking whether or not
the bits ii and ii+1 mod L are equal. Note here how the nature of the PBC
present in our model emerges, since we consider the bit ii+1 mod L instead
ii+1.

In the first case scenario, when the bits are equal, only the diagonal part,
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S
(m)
z S

(n)
z , acts, while in the other case both parts play their role. While the dia-

gonal does not change the vector, the off-diagonal term S
(m)
+ S

(n)
− + . . . flips the

bits, turning the bit ii into ii+1 mod L and viceversa generating thus a new
binary array state’.

Finally, we check which state this new array represents, searching in the basis
via the function index(state’,basis). This function retrieves the position
j of the state represented by state’ in the set basis, which allows us to fill
the entry [i,j] of the Hamiltonian. In the case this state is not in the base, it
returns -1, which explains the if statement in line 10 of the pseudo-code. For
instance, if our basis is made up of the states {|3〉, |6〉, |9〉, |12〉}, represented by
the already sorted array basis=[3,6,9,12], then index(6,basis)=1. One
can also understand this index function as the inverse of retrieving one element
from the basis array, since the following is fulfilled: if basis[a]=state then
index(state,basis)=a.

Note that in this example we only consider NN interaction. In order to go
beyond, one would just have to add a new for loop that iterates over the values
of the interactions (for instance, 1 and 2 for NN and NNN as in the J2/J1 models)
modifying the contributions to the entries if anisotropies or different couplings
were to be considered.

Furthermore, since our Hamiltonian matrix is hermitian (actually, real and
symmetric) we could just store the elements above the diagonal, which will make
faster the procedure and will make lower the memory requirements. This is in
fact what has been done in the actual code.

However, for a ring of e.g. 12 spins, the Magnetization = 0 sector, in which
our ground state lives, is still of dimension

(
12
6

)
= 924. This, although not too big,

could slow us a lot if many different models had to be computed and necessary
diagonalizations procedure had to be carried out. To move down in the size of
the Hamiltonian, we can use additional symmetries, as it is explained next.

3.1.1.2 Fixed momentum P sector

Thanks to our periodic boundary conditions (PBC), any state of the ones confor-
ming the basis with fixed Magnetization will be invariant under the Translation
operator T . This operator, when acting over a particular state |s〉 exchanges each
one of the spins with his righ-neighbour (it may have also been defined with the
left-neighbour). For instance, in a chain of 4 spins: T |5〉 = T |0101〉b = |1010〉b =

|10〉. Obviously, we have that TL = 1 by PBC. However, note that depending
on the state considered, we may need a power less than L to leave a particular
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state invariant under the consecutive action of T . To continue with the previous
example: T 2|5〉 = T |10〉 = |5〉. Since, by rotation of the chain using the translation
operator T and keeping in mind PBC both states |5〉 and |10〉 are related, we may
think that they form a particular set closed under the action of T . For example,
this means that we will never be able of getting the state |3〉 acting over |5〉 with
any power of T , i.e. they fell into different classes.

Thus, whenever a closed set under the action of T is found, we may define a
new state as a linear combination of the elements of this closed set. This new state,
after properly-fixing the coefficients in the linear combination, will be invariant
under T , which means that total momentum P of this state will be conserved.
Given that our Hamiltonian HJ2/J1 , defined in equation 2.2, commutes with T ,
we can find a common basis of momentum states |Ψ(P )〉 such that

T |Ψ(P )〉 = eiP |Ψ(P )〉. (3.4)

Here, the allowed momenta are P = 2πn
L

, with n = 0, . . . , L−1, following from the
fact that TL = 1. In order to construct this new basis {|Ψ(P )〉} with momentum
P well defined, we will use each of these classes closed under the action of T as
we illustrated before. Since any of the states of a class can be reached using T

from any other belonging to the same class, it seems reasonable to only store the
smallest integer state |a〉 as its representative, and construct the rest by using T .
This can be done implementing the following pseudo-code:

1 for state in basis_with_fixed_M:

2 if state is not in any class yet:

3 create new class

4 add state to the class

5 state’ = T(state)

6 multiplicity = 1

7 while state’ != state:

8 add state’ to the class

9 multiplicity++

10 state’ = T(state’)

11 representative = min(class)

We start by iterating over all the states state inside the already built basis with
fixed value of the Magnetization basis_with_fixed_M. If the state considered
is not in any class yet (initially there is no class constructed), we create a new
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class adding the state to it. Then, we act with the translation operator over the
state and form a new state state’ by the function T(state) and initialize its
multiplicity to 1. By repeating this procedure acting more times with T over
the states generated until we reach the initial one, we can generate a whole class
closed under T with its multiplicity. This multiplicity will be the minimum power
of T we have to use to leave a particular state |x〉 invariant, and all the states inside
the same class will have the same multiplicity. Finally, once the whole class is
generated, we only store the minimum integer a of the class as its representative,
which we will refer to as the state |a〉.

Having all the representatives of the different classes inside a fixed Magneti-
zation sector of our Hilbert space, we can now generate the basis of well-defined
momentum via the equation [41]:

|Ψ(P )〉 =
1√
Na

L−1∑

r=0

e−iPrT r|a〉, (3.5)

which clearly satisfies (as it should) the condition of equation 3.4 that defines
the action of the operator T . The constant Na is a normalization constant that
takes care of the fact that states belonging to different classes may have different
multiplicities and appear more than once in the sum, and its value is given by:

Na =
L2

Ra

, (3.6)

where Ra is the multiplicity of the representative state |a〉. Note that, if Ra = L,
i.e. we have to use TL to go from the representative to itself, Na = L, as it should,
and each state T r|a〉 only appears once in the sum. Besides, it is important to note
that not all momenta are compatible with a given representative and hence not
allowed, since they must fulfil

P =
2π

Ra

m, m = 0, 1, . . . , Ra − 1. (3.7)

After all this, we can construct our basis of well-defined momentum via:

1 for a in set_of_representatives:

2 condition = check(a,P)

3 if condition:

4 create new P_state

5 P_state = sqrt(multiplicity(a))/L * ...

6 sum(exp(-IPr) * T^r(a),r in (0,...,L-1))
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7 add P_state to basis_with_fixed_P&M

We iterate over the set of representatives computed before and check whether
each a is allowed by the momentum P chosen, using the function check(a,P),
that returns a boolean variable true or false. When the representative is al-
lowed and the condition is fulfilled, we create a new momentum state P_state
and add it to the basis basis_with_fixed_P&M.

Finally, now that our well-defined momentum basis is created, it is time to
construct the Hamiltonian. We can split the pair-terms appearing in our Hamil-
tonians as suggested by equation 2.4:

H0 =
L−1∑

n=0

S(n)
z S(n+1)

z , (3.8)

Hm =
1

2

(
S

(m)
+ S

(m+1)
− + S

(m)
− S

(m+1)
+

)
, (3.9)

where we took NN interaction just as an example since the following discussion
should be easily generalizable by the reader to further interactions. Thus, H =∑L

m=0Hm. Let us set m = 1 for a bit. The state resulting when H acts on the
momentum state 3.5, since [H, T ] = 0 is:

H|Ψ(P )〉 =
1√
Na

L−1∑

r=0

e−iPrT rH|a〉 =
1√
Na

L∑

m=0

L−1∑

r=0

e−iPrT rHm|a〉, (3.10)

and we need to operate with the Hamiltonian operators Hm only on the repre-
sentative state |a〉. For each operation, we get a different state, or, in the diagonal
(m = 0) case, the same state. In either case we can write Hm|a〉 = hm(a)|b′m〉,
where hm(a) is the matrix element coming from equations 3.8 and 3.9, and we do
not, for simplicity of the notation, include any explicit indicator that |b′m〉 also de-
pends on |a〉. The prime in |b′m〉 is there to indicate that this new state is not neces-
sarily one of the reference states used to define the basis and, therefore, a momen-
tum state should not be written directly based on it. If it is, instead, compatible
with the momentum P , there should be a number lm such that |bm〉 = T lm|b′m〉 is
fulfilled. Using this requirement, we can write

Hm|a〉 = hm(a)T−lm|bm〉, lm ∈ {0, . . . , L− 1}, (3.11)
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where we have again simplified the notation by not making explicit the depen-
dence of lm on |bm〉 (and thus on |a〉). We can now write equation 3.10 as

H|Ψ(P )〉 =
L∑

m=0

hm(a)√
Na

L−1∑

r=0

e−iPrT r−lm|bm〉, (3.12)

which after shifting summation indices and taking into account the possible diffe-
rent normalization factors, we can extract the matrix elements of the Hamiltonian
operatorsHm:

〈Ψ(P )|H0|Ψ(P )〉 =
L∑

m=1

S(m)
z S(m)

z , (3.13)

〈bm(P )|Hm>0|Ψ(P )〉 = e−iP lm
1

2

√
Ra

Rbm

, |bm〉 ∝ T−lmHm|a〉, (3.14)

where we have already substituted hm(a) for the specific Heisenberg model con-
sidered here. For a deeper discussion, consult [41].

This procedure is done by a program similar to the one used in section 3.1.1.1
but with several changes:

1 for i in (0,...,length(basis)-1):

2 a = basis[i]

3 Ra = multiplicity(a)

4 state = binary(a,L)

5 for ii in (0,...,L-1):

6 if state[ii] = state[ii+1]:

7 H[i,i] += 1/4

8 else:

9 H[i,i] -= 1/4

10 state’ = flip(state,ii,ii+1)

11 b = representative(state’)

12 Rb = multiplicity(state’)

13 l = needed_to_reach(state’,b)

14 j = index(b, basis)

15 if j >= 0:

16 H[i,j] += 1/2 * sqrt(Ra/Rb) * exp(-IPl)

where we have already taken into account the matrix elements of equations 3.13
and 3.14. The program goes through the elements of the basis (of well-defined
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momentum), generating a binary array state for each element via the function
binary as before, and starts checking whether or not the bits ii and ii+1 are
equal. In the first case scenario, only the diagonal part ∝ Sz acts, while in the
other both parts play their role. While the diagonal does not change the vector,
the off-diagonal term S+S− + . . . flips the bits, turning the bit ii into ii+1 and
viceversa generating thus a new binary array state’ as previously in section
3.1.1.1. However, we now have to find the representative of the class in which this
new state state’ is (we may have jumped to another different class) as well as
its properties. This is done via the functions representative, multiplicity
and needed_to_reach, which compute, respectively, the representative b of
the class in which the state state’ is, its multiplicity Rb and how many times
we need to use T to reach the representative b from state’. We then search in
the basis via the function index(b,basis) that retrieves the position j of the
representative b in the set basis unless it does not exist (it may not be allowed
by the current chosen momentum, which would yield j=-1). This allows us to
fill the entry [i,j] of the Hamiltonian in the case the j>=0. Note that in this
example we only consider NN interaction as in the section 3.1.1.1. In order to go
beyond, one would just have to add a new for loop that iterates over the values
of the interactions (for instance, 1 and 2 for NN and NNN as in the J2/J1 models)
modifying the contributions to the entries if anisotropies or different couplings
were to be considered. Furthermore, as in the case of section 3.1.1.1, since our
Hamiltonian matrix is in general hermitian (except when P = 0 or π, when it is
real and symmetric) we could just store the elements above the diagonal, which
will make faster the procedure. This is in fact what has been done in the actual
code.

3.1.2 Additional symmetries

Apart from the symmetries already considered, there are a bunch more that, alt-
hough have not been used in this work, are interesting to mention at least for the
sake of completeness.

The first one is due to the commutation of the reflection R operator with any
Hamiltonian made up of Heisenberg-like terms of the form of equation 2.4. This
symmetry is the parity, defined by:

R|S(0)
z , S(1)

z , . . . , S(L−1)
z 〉 = |S(L−1)

z , . . . , S(1)
z , S(0)

z 〉. (3.15)

Its eigenstates |Ψ(p)〉 satisfy that, under the action of the translation operator T
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on them we get: R|Ψ(p)〉 = p|Ψ(p)〉, with p = ±1 since R2 = 1. Note, however,
that this symmetry can only be used in a sub-space of the full Hilbert space, since
the commutation condition, namely [R,H] = 0, is not always fulfilled. This leads
to some subtleties, as the definition os the so-called semi-momentum states. The
reader interested in it is encouraged to take a look at section 4.1.3 of [41]. Note
also that in a system with open boundaries (not treated in this work) T is not well
defined, while R−symmetry can still be exploted.

Another important symmetry coming from the fact that equation 2.4 is SU(2)
spin-rotationally invariant is the spin-rotation symmetry, which makes our Ha-
miltonian to commute with the quadratic spin operator ~S · ~S defined via

~S · ~S =
L−1∑

m=0

~S(m) · ~S(m). (3.16)

The action of this operator on its eigenstates is

~S · ~S|Ψ(S)〉 = S(S + 1)|Ψ(S)〉, (3.17)

with S being the magnitude of the total spin of the many-body state. The fact that
this operator can be cast in a Heisenberg-like form (meaning equal strength for
interactions at all lengths) as follows

~S · ~S =
L−1∑

m=0

L−1∑

n=0

~S(m) · ~S(n) = 2
∑

m<n

~S(m) · ~S(n) +
3

4
N, (3.18)

makes the implementation of this symmetry a bit tricky and not as useful as one
may imagine.

Finally, for the special (and most important since it is where the ground state
lives) case null-magnetization sector (for evenN ), we can block-diagonalize using
a discrete subset of all the possible rotations in spin-space: the spin-inversion
symmetry, i.e. invariance with respect to flipping all the spins. This is defined
formally by an operator Z such its action is

Z|S(0)
z , S(1)

z , . . . , S(L−1)
z 〉 = |−S(0)

z ,−S(1)
z , . . . ,−S(L−1)

z 〉. (3.19)

Similarly to the reflection operator, we again have R2 = 1 and hence z = ±1.
Although of easy implementation, it could not be added to the program due to
lack of time and it will remain as a possible future extension to the work presented
here in order to compute the ground state energy of higher size chains.
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3.2 Diagonalization: Krylov space and the Lanczos

procedure

Firstly, let us motivate the use of the Lanczos method using the words stated by
Sandvik in [41]:

The number of operations needed to diagonalize an M ×M ma-
trix generally scales as M3, and the memory required for storage is
≈M2 (even for a sparse matrix, as intermediate steps normally do not
maintain sparsity).[. . .] Calculations aiming at just the ground state,
and possible some number of excited states, can be carried out in ot-
her ways for larger systems, using, e.g. the Lanczos method.

Before entering into the rough explanation of the Lanczos method, we need
to define the Krylov space. It is a sub-space of the full Hilbert space such that the
low-lying eigenstates of a Hamiltonian H are well approximated within it. It is
constructed by acting Λ times with H on an initial randomly-generated state |Ψ〉
in a M−dimensional Hilbert space. This procedure, if Λ is sufficiently large, will
leave basically just the eigenstate with maximal eigenvalue Emax, since in

HΛ|Ψ〉 =
M−1∑

n=0

cnE
Λ
n |Ψn〉 = cmaxE

Λ
max

[
|Ψmax〉+

∑

n6=max

cn
cmax

(
En
Emax

)Λ

|Ψn〉
]
, (3.20)

only the term ∝ |Ψmax〉 will survive provided that cmax 6= 0, which is always
feasible. If, as we want, we aim at the computation of the ground state |Ψ0〉 we
can just use (H− c1)Λ (with c > 0 large enough to ensure the convergence to the
desired state) or usingH−1, since the maximum eigenvalue of a matrix is also the
minimum of its inverse.

The Lanczos method’s strength resides in the construction of an orthogonal
basis, constructed by using linear combinations of the Krylov space states, such
that the (symmetric) Hamiltonian written in this basis is tridiagonal (or, at least, it
constructs a similar tridiagonal matrix to it). This makes the diagonalization pro-
cedure very fast and small-resource-demanding by, e.g. the Thomas algorithm.

In the computations done for this work, the author used an already built
function called eigsh, developed for the scipy.sparse.linalg. package
in Python 3.0. This function is, as stated in its documentation1 a wrapper to

1 The documentation for the scipy.sparse.linalg.eigsh can be found in
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.linalg.eigsh.html
(consulted on 19/08/2017).
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the ARPACK2 SSEUPD and DSEUPD functions which use the Implicitly Restar-
ted Lanczos Method to find the eigenvalues and eigenvectors [42]. Previous work
specifically designed for spin chains in Fortran77 as TITPACK can be found at
[24].

3.3 Density matrices and tracing over subspaces

After using the Lanczos method implemented by the built-in function eigsh

in Python’s package scipy, we get the expression of the ground state |Ψ0〉
in terms of the well-defined momentum basis {|Ψ(P )〉}, so the first step is to
convert it back to the computational 2L-dimensional basis using the function
to_spinbasis which is defined as follows:

1 to_spinbasis(state,P,L,S,R):

2 for i in (0,...,length(S)-1):

3 for ii in (0,...,L-1):

4 state’[T^ii(S[i])]+= ...

5 state[i] * sqrt(R[i]/L^2) * exp(-I P)))

6 return state’

We pass to the function a vector S containing the representatives of the different
classes and a vector R with their respective multiplicities. They both will be used
to convert the initial ground state in the momentum basis state to the computa-
tional 2L−dimensional basis state state’ iterating over the elements of the basis
and using the translation operator T ii times. Once we have the array state’

containing the ground state |Ψ0〉 as we want, we form the whole density matrix ρ
just using its general definition for an arbitrary state |ψ〉:

ρ = |ψ〉 ⊗ 〈ψ|. (3.21)

From this monstrous matrix describing the whole system S, we define the redu-
ced density matrix ρA over the subspace A by tracing over its complementary
subspace B, that is A ∪B ≡ S, as

ρA = TrBρ. (3.22)

Although formally perfect, this amounts to say that we write the components

2 Consult the ARPACK page: http://www.caam.rice.edu/software/ARPACK/ (retrieved on
19/08/2017).

25

http://www.caam.rice.edu/software/ARPACK/


3. NUMERICAL AND THEORETICAL METHODS 3.3. Density matrices and tracing over subspaces

of the state |ψ〉 as tensor products made up by states of the subspace A with
states of the subspace B and only keep the components that, after performing the
Kronecker product of equation 3.21, are diagonal. This procedure, although easy
to work out by hand and pencil, is not as simple for a computer. The function
that computes a reduced density matrix rhof for a subchain of length l given a
whole density matrix rho of a chain of length L is the following:

1 rho_red(rho,L,l):

2 position = (0,0)

3 for i in (0,...,2^L-1):

4 for j in (0,...,2^L-1):

5 n = i*2^L + j

6 condition = extract_pos(n,l,L,position)

7 if condition:

8 rhof[position[0],position[1]] += rho[i,j]

9 position = (0,0)

10 return rhof

This function iterates over all the entries of the whole matrix rho and decides
whether or not each entry must be added (and where to do so) to the final reduced
density matrix rhof. This process is done via the sub-process extract_pos
that returns a boolean variable condition for the decision-making process and
changes the value of the pair position to know which entry of rhof must be
modified. The sub-process extract_pos is described by:

1 extract_pos(n,l,L,position):

2 V = to_bin(n,2L)

3 v = zeros(2l)

4 a = zeros(L-l)

5 b = zeros(L-l)

6 for i in (0,...,L-l-1):

7 a[i] = V[2L-1-l-i]

8 b[i] = V[L-1-l-i]

9 condition = 0

10 if(want_it(a,b)):

11 condition = 1

12 for j in (0,...,l-1):

13 v[j] = V[2L-1-j]

14 v[j+l] = V[L-1-j]
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15 position[0] = floor(to_dec(v)/(2^l))

16 position[1] = mod(to_dec(v),2^l)

17 return condition

This function starts by creating some null arrays of different lengths and creating
a binary array with 2L entries with its bits describing the number n in a binary
basis using a simple to_bin function (which is included in most of the program-
ming languages and will not be described here). This number n computed pre-
viously in the function rho_red is precisely the one that once is translated into
the spin basis yields the chain of bits formed by the product of equation 3.21. Let
us see this with an example. Take L = 3 such that ρ is a 8 × 8 square matrix and
chose, e.g. the entry at row 0 and column 5 (we are using here the convention
followed by most of the programming languages), yielding n = 0 × 23 + 5 = 5.
Converting it into a binary basis using a chain of 2L = 6 bits gives (000101), which
is exactly the origin of this entry when looking at the definition of the ρ matrix
in equation 3.21, i.e. |000〉b ⊗ 〈101|b. Now, it takes the first L-l bits of each set
of L (with l being the length of the subchain for which we want to compute ρred)
and stores them into the two arrays a and b. Once both arrays are filled pro-
perly, we decide whether this entry must be consider when doing the trace over
the subspace, which is decided by the sub-process want_it that simply checks
whether the arrays a and b are exactly equal or different, which will lead to keep
it or not respectively, returning the value 1 or 0 for each case respectively. If a=b,
the function sets the boolean variable condition to 1, which will be used in the
main process rho_red, and computes the position of the entry of the reduced
density matrix ρred to which the considered entry of the full density matrix ρ will
be added, using for this computation the remaining bits extracted from V and
neither stored in a nor in b previously. For this final part, the function uses the
well-known commonly built-in functions in most programming languages mod
and floor that compute the modulus and the integer part of a division respecti-
vely. It also uses a simple function to_dec with which the binary chain v is
transformed into a decimal number.
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4
Theoretical predictions and formulae

4.1 Finite size scaling

In the rather important paper by Affleck et al. [17], whose ideas were introduced
and briefly reviewed in section 2.2.4, it is stated that a spin-1/2 Heisenberg anti-
ferromagnetic chain described by a typical J2/J1 ≈ 0.25 model of equation 2.2 (in
comparison to XXX Hamiltonian of equation 2.1 with ∆ = 1) is well described by
a CFT with central charge c = 1 that can be identified with a SU(2)k=1 WZW non-
linear σ-model. This confers a characteristic nature to the energies of the ground
and excited states.

It can be proved that, even though the ground state energy is not universal,
their corrections are, and the scaling of the energy of any state in a chain of length
Lwith Fermi velocity v and described by a CFT with central charge c and primary
fields with conformal weights h and h̄ is given by:

E(L) = e0L− c
πv

6L
+

2πv

L

(
h+ h̄

)
, (4.1)

where e0 is just a constant. In our case, as explained in [17] and summarized
in section 2.2.4, the primary fields are given in terms of the left and right spin
Casimirs: h = S2

L and h̄ = S2
R.

Following from here, it can be shown that the ground state energy E0(L) of a
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chain of L spins described by these theories is given by

E0(L) = e0L− c
πv

6L
+ . . . , (4.2)

with the . . . meaning higher-order corrections and the constant e0 expected to be
fitted numerically and agreed with the Bethe Ansatz prediction for the XXX mo-
del (J2/J1 = 0): e0 ≈ ln 2 − 1/4 ≈ 0.44315. Affleck et al. also give a complete
formula for E0(L) in [17] that takes into account the higher-order terms, namely:

E0(L) ≈ e0L−
( π

6L

)[ 3k

2 + k
+

3k2

8 (lnL)3

]
. (4.3)

Note how the central charge c appears via equation 2.22 inside the bracket. Sub-
stituting k = 1 into equation 4.3 and dividing by the length L:

E0(L)

L
≈ e0 −

( πv
6L2

)[
1 +

3

8 (lnL)3

]
, (4.4)

which will be the equation that will be verified numerically, whose results appear
in section 5.1. The corrections ∼ 1/(L (lnL)3) to the energy are due to the pertur-
bations originated by a marginally irrelevant operator1, which induces a flow away
from the universality class of the CFT corresponding to the WZW SU(2)k=1 mo-
del, which is the continuum limit of the XXX Heisenberg model as it has been
discussed previously in this work. We will see this flow away from the universa-
lity class by obtaining the energy of the ground state E0(L) for various lengths L
and values of J2/J1 in the range [0, 0.25], given that both points are well described
by the continuum limit CFT.

4.2 Spectrum and Conformal towers

Going back now to equation 2.18, in which the Hamiltonian is written in terms of
the chiral components of the energy-momentum tensor, and taking into account
the expression 4.1 of the previous section for the energy of excited states in a
spin chain of length L, it can be argued that the scaled-differences in energy of
the first excitations with respect to the ground state energy E0(L) are distributed
along spin multiplets with different degeneracies. This, following the discussion
of [17], introduced in 2.2.4, can be seen in tables 4.1 and 4.2.

1Consult section A.1 to find the definition of this type of operators in the context of renorma-
lization.
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∆E(L/(2πv)) s = 0 s = 1 s = 2
4 2 3 1
2 1 1 1
0 1

Table 4.1: Degeneracies of total spin multiplets for k = 1 and P = 0.

∆E(L/(2πv)) s = 0 s = 1 s = 2 s = 3
9/2 2 4 3 1
5/2 1 1
1/2 1 1

Table 4.2: Degeneracies of total spin multiplets for k = 1 and P = π.

As it is said in 2.2.4 related to the discussion of equation 2.16 for the scaling
dimension x of the primary fields, the case P = 0 (P = π), of table 4.1 (4.2),
corresponds to conformal towers formed by applying lowering operators to the
heighest-weights states with spins sL0 = sR0 = 0 (sL0 = sR0 = 1/2).

Note that in both cases the Fermi velocity v appears. Although in the XXX
model (solvable by the Bethe Ansatz [3]) has a value of π/2 in the limit L→∞, in
our case has to be numerically fitted to obtain the values of the table (as explained
in section 5.2), something which is not normally mentioned in the literature, as
in [17]. The variation of this velocity v will be studied in the results related to
the scaling of the energies, of section 5.1. The numerical results that confirm
completely the structure of the conformal towers can be seen in section 5.2.

4.3 Correlators and exchange-size dependence

The first logarithmic corrections to the scaling of the energies and to the corre-
lation functions, being the latter what concerns us in this section, were obtained
by Affleck et al. in 1989 [17] applying CFT to WZW non-linear σ-models as ex-
plained in sections 2.2.3 and 2.2.4. As it is said in [43], although this theoretical
development soon motivated numerical analysis, they were inconsistent between
the different results.

Some notorious ones, carried by Kaplan and co-workers [44] or Lin and Camp-
bell [45] among others, obtained the following formula:

〈S(0)
i S

(r)
i 〉 ≈

(−1)r lnσ(r)

r
, (4.5)

with i = {x, y, z}, and r being the exchange interaction distance. Here, σ was
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found to be in the interval 0.2 < σ < 0.3. However, better numerical results
obtained by the DMRG procedure developed by White [26], allowing higher sizes
of the chains non-reachable previously by Lanczos methods, confirmed finally
the formula predicted by Affleck et al. in his 1989’s paper [11], whose version
was improved afterwards and written as [29]:

〈S(0)
z S(r)

z 〉 = C(−1)r
√

ln r

r
− 1

4π2

1

r2
+ . . . , (4.6)

with the expectation value (the correlator) computed at the ground state |Ψ0〉 and
C being just a constant to be determined numerically. Note that due to rotational
invariance, 〈~S(0)~S(r)〉 = 3〈S(0)

z S
(r)
z 〉.

Equation 4.6 corresponds to the limit L→∞. If one instead wants, as it is our
case, a finite-size PBC formula, one must do the substitution

r → L

π
sin

rπ

L
, (4.7)

valid for r � 1. With this substitution, equation 4.6 converts into

〈S(0)
z S(r)

z 〉 = C(−1)r

√
ln
(
L
π

sin rπ
L

)

|L
π

sin rπ
L
| − 1

4π2

1
(
L
π

sin rπ
L

)2 + . . . , (4.8)

which will be the equation that will be verified numerically in section 5.3, by
exact diagonalization results. This will allow us to see how the correlators vary
when we move away from the critical CFT c = 1 point, i.e. J2/J1 ≈ 0.25 in J2/J1

model of equation 2.2, and determine the importance of the corrections. These
variations of the correlators are due to the fact that at the XXX model or isotropic
point ∆ = 1 for the XXZ model, irrelevant operators become marginal, yielding
logarithmic corrections [34].

4.4 Entanglement entropies and Quantum Informa-

tion

The α-Rényi entropies S(α)
R of a system described by a density matrix ρ can be

used as a measure of the degree of entanglement present in a system. They are
defined as:

S
(α)
R ≡ 1

1− α ln Trρα =
1

1− α ln

(∑

i

λαi

)
, (4.9)
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with λi being the eigenvalues of ρ. This is somehow a general extension of the
well-known Von Neumann entropy defined by

SV N = −Tr (ρ ln ρ) , (4.10)

since for α→ 1 in equation 4.9, we recover the Von Neumann entropy SV N .
As mentioned in the introduction, in 1994, Holzhey, Larsen, and Wilczek [18],

who were interested in the study of black holes, derived the first formula for
entropies of a system of finite size l described by a CFT with central charge c:

S(l) ' c

3
ln l (4.11)

However, Vidal et al. soon realized those equations could be applied to low-
dimensional Physics, more concretely to spin chains [19]. They used the substi-
tution previously mentioned in equation 4.7 to obtain instead:

S(l) ' c

3
ln

[
L

π
sin

(
πl

L

)]
. (4.12)

Some years latter, this formula was generalized by Calabrese et al. [22] for
the α-Rényi entropies S(α)(l) of the subchain with integer length l to incorporate
parity effects, obtaining:

S(α)(l) = S
(α)
CFT (l) + corrections, (4.13)

S
(α)
CFT (l) =

c

6

(
1 +

1

α

)
ln

[
L

π
sin

(
πl

L

)]
, (4.14)

corrections = c′α + fα cos (2kF l)

∣∣∣∣2
L

π
sin

(
πl

L

)
sin (kF )

∣∣∣∣
−pα

, (4.15)

with c being the central charge of the CFT in the critical point (given in our case by
2.22) and c′α and fα being two parameters to be determined by numerical fitting
of the points. In our case, as explained in the reference [22], they are given by

kF = π/2, (4.16)

K = 1/2, (4.17)

pα = 2K/α. (4.18)

The parameters K and kF are the Luttinger liquid parameter and the Fermi momen-
tum respectively [22], and pα is a universal critical exponent of the theory.

Substituting these results into equations 4.14 and 4.15 and fixing c = 1 one
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obtains for α = 2, which is the simplest case one can study, the formula:

S(2)(l) =
1

4
ln

[
L

π
sin

(
πl

L

)]
+ c′2 + f2

(−1)l√∣∣2L
π

sin
(
πl
L

)∣∣
, (4.19)

which will be verified numerically in section 5.4 and used to obtain the different
fitting parameters c′2 and f2 and their variations in the range J2/J1 ∈ [0, 0.25],
whose extrema are well described by a CFT with c = 1.

4.5 Haldane-Shastry model and its relation to J2/J1

model

The Haldane-Shastry model is an interesting case of study by itself, since it is one
of the cases in which one can find an analytical solution for a many-body problem
in Quantum Mechanics [46]. It is described by the following Hamiltonian [27, 28]:

HHS = J
∑

i<j

(π
L

)2 ~S(i) · ~S(j)

sin2
(
π(i−j)
L

) . (4.20)

The term i − j inside the argument of the sine appearing in the denominator
of each individual term plays the role of a distance, that weights proportionally
the interactions to simulate a more realistic case in which the further two spins
are from one another, the weaker their interaction is.

The analytical solution for the ground state of this Hamiltonian can be obtai-
ned [46]. If a generic state of a spin-1/2 chain with L particles has the form

|Ψ〉 =
∑

s0,...,sL−1

Ψ(s0, . . . , sL−1)|s0, . . . , sL−1〉 (4.21)

when expressed in a local spin basis {|sm〉}, where sm = ±1/2 and m ∈ [0, L− 1],
the coefficients that yield the ground state wavefunction |Ψ(HS)

0 〉 of the Haldane-
Shastry HamiltonianHHS of equation 4.20 can be shown to be:

Ψ
(HS)
0 (s0, . . . , sL−1) ∝ exp

[
iπ
∑

odd i

(si − 1/2)

]
L−1∏

n<m

[
sin

(
π(n−m)

L

)]2snsm

, (4.22)

where we assumed that the ground state lives in the Hilbert subspace of null
magnetization, i.e.

∑L−1
m=0 sm = 0.

A schematic view of how the terms are included in the sum of equation 4.20
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Figure 4.1: Schematic showing how the interaction goes in the Haldane-Shastry
model defined in equation 4.20 for a spin chain of length L = 8. Spins appear
numbered by their index i in the sum, and terms for i = 1 (2) appear denoted as
dashed coloured blue (red) lines connecting the interacting spins.

appears in figure 4.1, in which the terms for i = 1 and i = 2 appear denoted by
dashed lines of blue and red colours respectively. Note that in the i = 2 case, no
red line appears for the 1− 2 interaction, since it was already taken into account.

One very interesting property of the Hamiltonian HHS , using definition 4.20,
is that when the distance is very small (naturally speaking of a very large ring),
namely. π

L
(i− j) ≈ 0, one can take sin(x) ≈ x for x ≈ 0, which allows us to write

equation 4.20 as

HHS ≈ J
∑

i<j

~S(i) · ~S(j)

(i− j)2
= J

L−1∑

i=0

(
~S(i) · ~S(i+1) +

1

4
~S(i) · ~S(i+2) + . . .

)
, (4.23)

which resembles us a lot to the Hamiltonian HJ2/J1 of the J2/J1 model (equation
2.2) with the very particular value J2/J1 = 0.25, which is approximately equal
to the critical point where this model is described by a CFT with central charge
c = 1. This leads us to think that we should see some kind of logarithmic scaling
behaviour [46] of the overlap between the ground states of the Heisenberg XXX
model and the Haldane-Shastry model while the overlap between the latter and
the ground state of the J2/J1 = 0.25 model should be close to unity, namely:

|〈Ψ(XXX)
0 |Ψ(HS)

0 〉| −→ 0, (4.24)

|〈Ψ(J2/J1=0.25)
0 |Ψ(HS)

0 〉| −→ 1. (4.25)

The tendency of the first equation could be ∼ 1/Lx with x a critical exponent, or
even slower: ∼ 1/(lnL)x. These overlaps will be studied numerically in section
5.5 for a range of values of J2/J1. Note that the tendencies discussed here would
only apply for a limited value of lengths, given that in the thermodynamic limit,
overlaps from many-body wavefunctions as the ones used here, always go to 0,
so in principle, we may not find the tendency of equation 4.25.
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5
Results and discussion

In this section, the numerical results obtained in order to verify the different equa-
tions and predictions appearing all throughout this work are presented and dis-
cussed. It will be found that, indeed, the description of XXX spin chains and
J2/J1 = 0.25 models are correctly represented by the corresponding field theory
in the continuum limit, i.e. the SU(2)k=1 WZW model.

5.1 Finite size scaling

In order to prove that the identification of the critical theory as well as the general
principles of conformal field theory, one of the most accessible things one can do
is to see whether the prediction for the ground state energy from the theory match
those of real computations. To do so, we generate the Hamiltonian HJ1/J1 for
different values of the ratio J2/J1 and for different total lengths L of the chains,
using the methods described in section 3. Once it is done, we find their minimum
eigenvalue via the Lanczos method, and hence the different ground state energies
per site E0(L)/L can be computed.

The results appear in figure 5.1, where two curves from the prediction of equa-
tion 4.4 have been plotted to show how good the agreement with the theory is.
The purple solid curve has as its parameters e0, k and v the predictions from the
Bethe Ansatz, i.e. e0 ≈ 1/4 − ln 2 ≈ −0.443, k = 1 and v = π/2 ≈ 1.57, and
match perfectly the points of the XXX model (J2/J1 = 0). The red dashed curve

35



5. RESULTS AND DISCUSSION 5.2. Spectrum and Conformal towers

tries to fit (not almost perfectly as it can be seen due to the point of smallest L)
the data points for the J2/J1 = 0.25 case, which is also another critical point. The
values obtained in this case for (e0, k, v) were (−0.4007, 1, 1.08), as appears (toget-
her with all the remaining cases) in table 5.1. As it is understandable, the term
proportional to k2 in equation 4.4, which yields the 1/(lnL)3 correction, played a
minor role due to the small sizes reached in this work, and hence no appreciable
differences were seen in the curves and fits varying the value of k, so it remained
k = 1 in all the cases.
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Figure 5.1: Ground State energy scaling with the length of the ring for different
J2/J1 models. The purple solid curve is computed using the values obtained
from the Bethe Ansatz as discussed in [17], i.e. e0 = 1/4− ln 2 ≈ −0.44315, k = 1,
and v = π/2, while the red dashed one has numerically-fitted parameters, as
appearing in table 5.1

5.2 Spectrum and Conformal towers

The results presented here in figure 5.2 are completely consistent with the results
obtained by Affleck et al. in [17], showing in a more detailed manner the distinct
spin-multiplets and the conformal structure of the low-excitations of a Heisen-
berg ring of spin-1/2 particles whose interaction is governed by two different
Hamiltonians, the so-called XXX model (equation 2.1 with the anisotropy coeffi-
cient ∆ = 1) and the J2/J1 model (2.2) with a particular value for the ratio of the
two couplings.
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Figure 5.2: Spectrum showing the Conformal Towers of a 20 spin ring governed
by a Hamiltonian of the form of equation 2.2. The left (right) panel shows the
difference in energy with respect to the ground state energy for states with mo-
mentum P = 0 (P = π), scaled by a coefficient L

2πv
, where L is the length of the

chain (i.e., 20) and v being the Fermi velocity, fitted numerically. The hollow blue
spheres (black squares) are the values obtained for the J2/J1 = 0.25 (J2/J1=0)
case. The values of v that are used appear in table 5.1.

To obtain the data, we generated momentum-fixed-Hamiltonians for the cited
models in all the possible magnetization sectors, and obtained their minimum
eigenvalue. Due to the almost perfect degeneracy of some multiplets, it is difficult
to see the different states. For instance, the predictions of the CFT with c = 1 of
table 4.1, which says that we should have three states of spins 0,1, and 2, with
∆E L

2πv
= 2, agree with our results, since 1+3+5=9 states appear in the left plot.

In order to fit the data to the corresponding CFT predictions in the J2/J1 case,
remember that for the XXX case v = π/2, the coefficient v was fixed. However,
the fitting required in the previous section to study the scaling of the ground state
energy per site E0(L)/Lwas seen to agree with the value obtained independently
for the conformal towers.

As it is discussed in [17], the large degeneracy of states at higher energies is
due to the SU(2)× SU(2) symmetry of the critical theory. The small splittings of
the supermuliplets are not determined by marginal operators but by marginally
irrelevant ones, that induces a flow away from the critical point.
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5.3 Correlators and exchange-size dependence

One of the most important results of a CFT is how easily correlators of physical
operators can be computed. In particular, in our case, given that the operators
S

(r)
z have a quick-to-compute action on a given state, it is easy to simulate it nu-

merically once one has the corresponding state over which one wants to act. The
correlators are computed using the ground state wavefunction, which is obtai-
ned as the eigenvector with lowest eigenstate of the Hamiltonian matrix genera-
ted. We obtained results for a range of total lengths L varying between 4 and 22,
begin the latter the case presented in this section in figure 5.3.
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Figure 5.3: Variation of the correlators 〈Ψ0|~S(m) · ~S(m+r)|Ψ0〉 with respect to the
distance of correlation r for a chain of length L = 22 in different J2/J1 models.
The values were computed using the Lanczos-method-computed ground state
|Ψ0〉 from the Hamiltonian for the reduced Hilbert space of fixed magnetization
and momentum. Purple solid (red dashed) curve is a numerical fiting to equation
4.8 for J2/J1 = 0 (0.25).

The purple solid (red dashed) curve is the numerical fit to equation 4.8 of the
data points for different values of the ratio J2/J1 obtaining hence the constant
parameter C, whose values appear in table 5.1. It is interesting to note that the
points do not seem to diverge a lot from different values of the ratio J2/J1, and
that the fits match better the oscillations the higher the distance of correlation r

is. Once again, as in the previous sections, the predictions of the theory seem to
agree very well with the numerical results, showing an almost linear behaviour
for the parameter C as a function of the ratio: C(J2/J1) ≈ 0.1114− 0.1122 (J2/J1).
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5.4 Entanglement entropies and Quantum Informa-

tion

Following a procedure similar to the one described in the previous section, we
obtained the eigenfunction corresponding to the minimum eigenvalue of the ge-
nerated Hamiltonian matrices for different lengths L and ratios J2/J1. However,
only the results of the maximum allowable size, L = 12, will be presented, since
the agreement with the predictions of the theory are better the higher L is. Note
that although in the previous case the maximum allowable size was L = 22, now
L is smaller. This is due to the fact that in order to compute the entropies, once
the eigenfunction is obtained in the basis of fixed magnetization and momentum,
we must construct the density matrix ρ. This density matrix is built in the spin
basis of size 2L, and memory requirements soon start to be too demanding on
the resources available for this work. Thus, although higher total L sizes were
reachable, it was not possible to construct the corresponding ρ matrix.

0 1 2 3 4 5 6 7 8 9 10 11 12

Length l of the subchain

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

2-
R

én
yi

en
tr

op
ie

s
S

(2
) (
l)

J2/J1 = 0

J2/J1 = 0.0125

J2/J1 = 0.02375

J2/J1 = 0.025

J2/J1 = 0.05

J2/J1 = 0.075

J2/J1 = 0.1

J2/J1 = 0.125

J2/J1 = 0.15

J2/J1 = 0.175

J2/J1 = 0.2

J2/J1 = 0.225

J2/J1 = 0.25

Figure 5.4: Entropy of entanglement between different length subchains of a ring
of length L = 12 in different J2/J1 models. The panel shows the 2-Rényi en-
tropies obtained by exact diagonalization of the density matrix for the ground
state. Purple solid (red dashed) curve is a numerical fiting to equation 4.19 for
J2/J1 = 0 (0.25). Note the oscillations and how well they fit to the theoretical
curve proposed in [22], i.e. equation 4.19.

In the case presented here, i.e. L = 12, completely diagonalizing the den-
sity matrix ρ associated to the ground state allows us to compute its eigenvalues,
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with which the different Rényi and Von Neumann entropies of equations 4.9 and
4.10, respectively, can be calculated. The results are presented in figures 5.4 and
5.5 respectively for a variety of J2/J1 ratios, containing both the limiting cases
J2/J1 = 0 (the XXX model) and J2/J1 = 0.25 that admit a description by a CFT
with c = 1.

While in the former case the oscillations due to parity effects [22] are perfectly
seen, they do not exist in the Von Neumann case. In both cases, the purple solid
(red dashed) curves stand for the fit to equation 4.19 (4.12), obtaining values for
the parameters c′2 and f2 (c and shift). The parameter shift is just a constant
that is being added to equation 4.12 in order to fit the points. It is interesting to
note that in the Rényi entropies case, we kept fixed c = 1 and obtained the other
parameters since the action of c was very subtle, while in the Von Neumann case
we use c as a parameter. As one can see by rapid inspection of the values of c
in table 5.1, we could in principle take instead c = 1 for the Von Neumann case,
and argue that the difference could be due to marginal operators appearing when
moving out of the critical theory.
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Figure 5.5: Entropy of entanglement between different length subchains of a ring
of length L = 12 in different J2/J1 models. The panel shows the Von Neumann
entropies obtained by exact diagonalization of the density matrix obtained from
the ground state. Purple solid (red dashed) curve is a numerical fiting to equation
4.12 for J2/J1 = 0 (0.25). Note that in this case, compared to that one of figure
5.4, no oscillations are present. However, we still find an acceptable fit by the
finite version of the first equation proposed by Holzhey et al., i.e. equation 4.12
by Vidal et al.
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Concerning the results for the fits in both cases (and all the numbers appearing
in table 5.1), we can say that the predictions of the theory agree with the results.
However, it is in both cases that when considering the smallest possible subchain,
i.e. of length l = 1, the data points are harder to adjust, and one must pay more
attention to the oscillations in the central area than to the external ones.

5.5 Haldane-Shastry model and its relation to J2/J1

model

The discussion that led to equation 4.23 in section 4.5 induced us to think that the
overlap between the ground state wavefunction of the Haldane-Shastry Hamil-
tonian with that one of the J2/J1 model should be close to 1 for J2/J1 = 0.25 and
much smaller for the XXX case.

In this work, we followed two distinct paths: generating the Haldane-Shastry
Hamiltonian matrix and use the Lanczos method to obtain its ground state, or
generating the ground state via the analytical solution of equation 4.22. The re-
sults are presented in figure 5.6 for the first case, while in figure 5.7 for the second
one. Note that the maximum size reached following the first approach is only
12 due to similar reasons discussed when speaking about the results of entangle-
ment entropies and the generation of the density matrix. Besides, notice that the
agreement between the two approaches is excellent, what allows us to convince
ourselves that the analytical solution holds.

Using the results from the overlap with the numerical generation of the analy-
tical solution, we could analyse whether or not the behaviour predicted in equa-
tions 4.24 and 4.25 for the respective overlaps appears. Although it is easy to see
that there is indeed a decay law, it does not have any of the forms already menti-
oned, namely ∼ 1/Lx or ∼ 1/(lnL)x. We can instead, fitting the data for the two
extremal points J2/J1 = 0 (corresponding to the XXX model) and J2/J1 = 0.25 to
a polynomial ansatz of the form:

|〈Ψ(J2/J1)
0 |ΨHS

0 〉| =
∑

i∈Z

aiL
i. (5.1)

Doing so, we obtain the parameters {a, b, c, d} that appear in table 5.1 for a whole
range of values of J2/J1, which are used in the extremal cases mentioned above
to plot the purple solid and red dashed curves. It is notorious that they cross each
other at L = 14, which was not expected. Note also that no terms with i > 3 in
the sum 5.1 were required.
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Figure 5.6: Variation with respect to the value of J2/J1 for the overlap between
ground states of the Haldane-Shastry Hamiltonian HHS defined in equation 4.20
and the J2/J1 Hamiltonian computed via the formula |〈Ψ(J2/J1)

0 |ΨHS
0 〉| for different

J2/J1 models. These results were obtained using a numerical diagonalization for
the computer-generated HamiltonianHHS .
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Figure 5.7: Scaling with the length L of the chain of the overlap between ground
states of the Haldane-Shastry Hamiltonian HHS defined in equation 4.20 and the
J2/J1 Hamiltonian computed via the formula |〈Ψ(J2/J1)
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0 〉| for different J2/J1

models. These results were obtained using the analytical solution for |Ψ(HS)
0 〉, i.e.

equation 4.22. The purple solid (red dashed) curve is the numerical fitting of the
data for J2/J1 = 0 (J2/J1 = 0.25) based on the ansatz of equation 5.1.
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Furthermore, one can see that there appears an unexpected behaviour for the
two cases of interest J2/J1 = 0 and J2/J1 = 0.25, that not only they both decay
more or less with the same intensity, but they also cross each other at around
L = 14, as seen by the continuum fitting curves of figure 5.7. In order to visualize
these effects more clearly, we plotted the overlaps with respect to the values of
the ratios J2/J1 used, for fixed lengths, finding the results presented in figure 5.8.
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Figure 5.8: Variation with respect to the value of J2/J1 for the overlap between
ground states of the Haldane-Shastry Hamiltonian HHS defined in equation 4.20
and the J2/J1 Hamiltonian computed via the formula |〈Ψ(J2/J1)

0 |ΨHS
0 〉| for diffe-

rent J2/J1 models. These results were obtained using the analytical solution for
|Ψ(HS)

0 〉, i.e. equation 4.22.

The fact that the overlap |〈Ψ(J2/J1=0.25)
0 |ΨHS

0 〉| does not behave as expected, or
at least in the range of lengths L we have been able to probe, could be due to
the approximation that led to equation 4.23 not standing true in this regime, ma-
king non-negligible the terms of larger interaction (i.e. next-to-next-to-nearest
neighbours and so on). As shown by figure 5.8, the overlaps of all lengths used
seem to reach very close and highest values for a ratio J2/J1 ≈ 0.15, instead of
J2/J1 = 0.25. However, there is not in principle any reason why this happens,
and remains as an open question. Here, it is believed that an intermediate value
for the ratio J2/J1 lying between 0 and 0.25 could take into account the effects of
discarded terms in the expansion of equation 4.23. It would be also of interest to
find out whether for a wide range of lengths and J2/J1 values any kind of pattern
could emerge.
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6
Conclusions and Outlook

In this work, a numerical method based on exact diagonalization has been deve-
loped from the beginning using first principles, allowing us to study Hamiltonian
lattices relevant in the Condensed Matter Physics area. This, permitted to form
a connection with the world of High Energy Physics passing through the foun-
dations of Quantum Field Theory. Besides, the numerical simulations of these
systems are of experimental interest, since they allow researchers to understand
better how possible physical realizations of these models could be performed.
This is nowadays a rapid developing field, concerning e.g. the experimental con-
firmation of the results obtained throughout this work using quantum macrosco-
pic systems as optical laser lattices.

Being able to probe the realm of quantum many-body physical systems such
as spin chains models, which is a rather fascinating and valuable outcome in
itself, has provided results with which confirmation of those obtained in 1989
by Affleck et al. was possible. Hence, it has been verified that indeed the conti-
nuum limit of the well-known and widely studied Heisenberg Hamiltonian is the
SU(2)k=1 Wess-Zumino-Witten non-linear σ-model, which has a direct correspon-
dence with Conformal Field Theory with central charge c = 1. This confirmation
made reasonable to extend the study to a whole class (the J2/J1 models) and dis-
cuss in which cases a valid description by a CFT still holds and what the effects
of moving away from the critical points are. Furthermore, the relation amongst
the models studied here and Haldane-Shastry’s one, has been explored, finding
unexpected results that waits still for an explanation and further study.

45



6. CONCLUSIONS AND OUTLOOK

From the basic results, as the visualization of the conformal towers and the
scaling of the ground state energy are, one can proceed to study correlations of
operators and entanglement entropies in order to understand better how the dis-
tinct parts conforming a spin chain talk to each other. This path showed to be
very fruitful in this work, allowing a connection of, a priori well-known Physics,
as spin chain models, with one more recent, as Quantum Information ideas are,
what seem to be an important field of research in the coming years.

Some of the possible ways this work could be extended would be improving
the numerical algorithms, in order to reach larger sizes and thus probe corrections
predicted by the theory that here was not possible to study. Particular methods
of doing so would be adding reflection (parity) and inversion symmetries in the
construction of the Hamiltonian matrix. It would also be interesting to study the
advantages of the numerical methods used in this work with respect to others
also well-established as DMRG or quantum Monte-Carlo algorithms. In particu-
lar, this comparison could be done when studying the entanglement entropies of
not only the ground state but excited ones too, since there are analytical formulae
and predictions that come from Quantum Information ideas.
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A
Representation theory and CFT

explained in detail

Mostly of this section is a brief summary of concepts needed to keep the cohe-
rence in this work at an understandable level without rising its extension too
much. For the formal reader, we would suggest to consult the many concepts
included here in the excellent standard book by Di Francesco et al. of reference
[36].

A.1 Why CFT’s are relevant?

In general, in Physics, we are interested in theories that describe the behaviour of
some fields of interest. These theories may contain symmetries, which are power-
ful allies as the great scientist Emmy Noether proved in her famous theorem. A
symmetry appears whenever a specific type of transformation of our fields leaves
the Lagrangian of our theory invariant. A particular kind of these transformati-
ons are scale transformations, which for a field φ are defined as:

φ̃(x) = sξφ(sx), (A.1)

with s being the dilation factor, and ξ the scaling dimension of the field φ.
For a given action S[φ] for the field φ, we assume there exists a fixed-point action

S0[φ] at some point in parameter space. In the neighbourhood of this point we can
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write:
S[φ] = S0[φ] +

∑

i

ui

∫
dxÔi(x), (A.2)

with Ôi(x) being local operators, and ui the couplings of these operators, which
must be small if we are close to the fixed point.

Thus, under renormalization-group (scale) transformations

S̃[φ] = S0[φ] +
∑

i

ũi(s)

∫
dxÔi(x), (A.3)

and hence ˜̂
Oi(x) = sξiÔi(sx), which leads to

ũi = uis
d−ξi . (A.4)

This equation tells us how the couplings of each of the local operators appearing
in the expansion of the action in the neighbourhood of its fixed point vary un-
der renormalization-group (scale) transformations. We can differentiate several
possible behaviours for the couplings depending of the value of the scaling di-
mension with respect to the actual dimension d:

relevant: grow under renormalization: ξi < d,

irrelevant: vanish under renormalization: ξi > d,

marginal: stay constant or vary logarithmically under renormalization: ξi = d.

These definitions are of significant importance, since they give terminology to
speak about the behaviour of the theories near critical points and how, when con-
sidering renormalization flows, new operators and terms appear in correlators.
It is important to keep in mind that the nature of the scaling of the couplings de-
pends not only on the form of these operators in terms of φ, but also on the fixed
point considered, which in our case was taken to be without loss of generality as
the origin.

Fixed points under renormalization are invariant under scalings, i.e. zooming
in/out. This particular type of transformations belong to a more general class
that defines a Conformal Field Theory (CFT).
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A.2 Transformations in a CFT and algebras of their

generators

A CFT has conformal transformations, which preserve angles between vectors:

gµν → g̃ρσ = ∆(x)gµν , (A.5)

where ∆(x) > 0 is a local rescaling. Generally, conformal transformations are ge-
nerally formed by the full Poincaré group (translations, rotations, boosts) which
has ∆ = 1 and scalings and special conformal transformations. A generic trans-
formation of the metric g(x) at point x can be written in terms of the coordinates
as

g̃ρσ(x′) =
∂x′ρ

∂xµ
∂x′σ

∂xν
gµν(x). (A.6)

This expression gives a coordinate-dependent expression for the rescaling para-
meter ∆(x). If one considers a generic mapping

x′
ρ

= xρ + ερ(x) +O(ε2), (A.7)

infinitesimally close to the identity (ερ(x) ≈ 0), and substitutes into equation A.6
one finds that, after expanding ∆(x) to first order in ε, conformal means

∂µεν + ∂νεµ = κ(x)ηµν , (A.8)

where ηµν is the Minkowski metric and

κ(x) =
2

d
∂µε

µ = 0, (A.9)

and d is the dimension of our space-time. Using both last two equations, who are
called conformal Killing equations (CKE) in the literature, one can prove that

(d− 1)∂ν∂
ν (∂µε

µ) = 0. (A.10)

In the particular case that concerns us the most (d = 1+1 = 2) something very re-
markable happens. Switching momentarily to Euclidean (namely ε =

(
ε0
ε1

)
) lets us

see that the conformal equations A.8,A.9, and A.10, are simply Cauchy-Riemann
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equations:

∂0ε0 − ∂1ε1 = 0, (A.11)

∂1ε0 + ∂0ε1 = 0, (A.12)

so conformal transformations in d = 2 are just holomorphic (∂z̄ε = 0 with ε =

x0 + ix1) transformations, which are analytic over the hole space.
Belavin, Polyakov, and Zamolodchikov [12], realised that this two-dimensional

group could be enhanced into an infinite-dimensional one, turning holomorphic
into meromorphic, i.e. holomorphic in an open set of the complex plane, allo-
wing it to have divergences (poles) so they admit a Laurent expansion: ε(z) =∑

n∈Z εn (−zn+1). The generators
{
ln, l̄n

}
associated to this transformations satisfy

a Witt algebra:

[ln, lm] = (m− n)lm+n, (A.13)

[ln, l̄m] = 0 (A.14)

and similarly for l̄. This algebra is the local conformal algebra, since not all transfor-
mations generated are invertible. It contains the global conformal algebra, generated
by a subset of these generators {l−1, l0, l+1}. Note how the generators map into
the conformal transformations (and similarly for l̄):

complex translations: l−1 = −∂z,

scalings and rotations: l0 = −z∂z,

special conformal transformations: l+1 = −z2∂z.

We are now in position of defining the Virasoro algebra, which is the central ex-
tension of the Witt algebra. This means that we add some extra generators to the
algebra, doing a direct sum with a complex, being this complex element repre-
sented by the central charge c, and the Virasoro algebra is defined:

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0, (A.15)

where the generators {Lm} refer only to the subset of global conformal genera-
tors, i.e. {lm} with m = {−1, 0,+1}. This algebra satisfies the requirements to be
a Lie algebra.

In general, a Lie algebra g with generators Ja is a vector space equipped with
an anti-symmetric binary operation [·, ·], called a commutator, mapping g×g into

54
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g, and further constrained to satisfy the Jacobi identity

[[X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0 for X, Y, Z ∈ g. (A.16)

We can construct a generalization of a Lie algebra g in which we admit that
the generators {Ja} are also Laurent polynomials in some variable z. The set of
such polynomials is denoted by C[z, z−1]. This generalization is called the loop
algebra g̃:

g̃ = g⊗ C[z, z−1], (A.17)

with generators {Jan} defined as Ja ⊗ zn. The algebra multiplication rule extends
naturally from g to g̃ as

[Jan, J
b
m] =

∑

c

ifabc J
c
n+m. (A.18)

We can still do a central extension g̃⊕ Ck̂ as follows:

[Jan, J
b
m] =

∑

c

ifabc J
c
n+m + k̂nδabδn+m,0, (A.19)

where we took that [Jan, k̂] = 0 and that the generators Ja of g are orthonormal
with respect to the Killing form, which for two generators Ja and J b is defined
as Tr(adJaadJ b), with ad(Ja)J b ≡ [Ja, J b] being the adjoint representation. From
the algebra of equation A.19, we can again do another central extension with the
addition of the operator L0 (corresponding to the previous l0 defined in terms of
z when speaking about scalings and rotations) to obtain an affine Lie algebra ĝ:

ĝ = g̃⊕ Ck̂ ⊕ CL0. (A.20)

This extension is done in order to have all the generators of the maximal Cartan
subalgebra, which is the algebra made up by the set of all commuting hermitian
operators [36]. It is the expression of equation A.20 that precisely defines what a
Kac-Moody algebra is. It is clearly an infinite dimensional algebra, given that it has
an infinite number of generators {Jan}, with n ∈ Z.

A.3 Quantum field theories with conformal invariance

in a two dimensional theory

Now that the transformations present in our theory are correctly defined, we can
act with them on our fields. Our goal is to find what the implications of conformal
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invariance in a quantum field theory are. Our fields will be functions of the space-
time coordinates (x0, x1), that can be written as functions of the conformal ones
(z, z̄) by

x0 =
1

2
(z + z̄), (A.21)

x1 =
1

2i
(z − z̄). (A.22)

Note that in principle, z̄ is different from the conjugated of z, z?. However, from
all possible transformations generated from the generators studied in the previ-
ous part of this section, only the physical ones will be of interest. Two impor-
tant examples of this will be the time translations generated by the Hamiltonian,
H = L0 + L̄0, and the spatial translations, generated by the momentum opera-
tor, P = i(L0 − L̄0). Using these physical operators guarantees that the physical
surface z? ≡ z̄ will be conserved. This will be taken for granted hereinafter, since
only physical operators are of interest.

We can classify our fields using their dependence on their variables, saying
that a field φ(z, z̄) is chiral/holomorphic/left (anti-chiral/anti-holomorphic/right) if it
contains only dependence on z (z̄).

Another possible classification is based on looking at the way the fields trans-
form under a generic mapping z → f(z) (which will be eventually related to the
initial discussion around equation A.1 and scale transformations):

φ(z, z̄)→ φ̃(z, z̄) =

(
∂f

∂z

)h(
∂f̄

∂z̄

)h̄
φ
(
f(z), f̄(z̄)

)
, (A.23)

where the conformal weights of the field φ are defined as

(h, h̄) =
1

2
(ξ + s, ξ − s) (A.24)

and ξ and s are respectively the scaling dimension and the spin of the field φ. Note
that h̄ 6= h?. The conformal weights h (h̄) and are also called (anti-)holomorphic
conformal dimensions.

If equation A.23 is fulfilled by all the global conformal transformations, ge-
nerated by the Virasoro algebra of equation A.15, we say the field is a primary
field. If, instead, we need the full local conformal algebra, we say the field is a
quasi-primary field. It is easy to see hence that all primary fields are quasi-primary,
while the reverse is not true in general.
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Under an infinitesimal transformation xµ → xµ + εµ(x), a primary field trans-
forms as

φ(z, z̄)→ φ(z, z̄) + (h∂zε+ ε∂z)φ(z, z̄) + a.c., (A.25)

with a.c. standing for anti-chiral. Thus, the variation of the field can be written as

δε,ε̄φ(z, z̄) = (h∂zε+ ε∂z + a.c.)φ(z, z̄). (A.26)

One field whose variation has exactly this form, i.e. it is a quasi-primary field,
is the energy-momentum tensor Tµν itself, which can be understood as the response
of the theory to changes in the metric gµν → gµν + δgµν . This is related to the
conservation of a quantity, via the Noether’s theorem. What is conserved due to
conformal symmetries? Take the following ansatz for a conserved current jµ:

jµ = Tµνε
ν . (A.27)

If εν is due to a conformal transformation, using that the current jµ must have
null divergence we arrive to

∂µTµν = 0. (A.28)

It can be proven that the CKE’s A.8 and A.9, together with the fact that the current
jµ is conserved, imply that

∂µjµ =
1

2
Tµν (∂ρε

ρηµν) = 0, (A.29)

and hence
T µµ = 0 (A.30)

must be true for any CFT. Note that the case d = 2 was already taken, otherwise a
factor 2/d would appear in equation A.29 multiplying the parenthesis. Thus, one
finds that the energy-momentum tensor expressed in the conformal coordinates
(z, z̄), defined by the inverse to the equations A.21 and A.22, satisfies

∂zTz̄z̄ = 0, (A.31)

∂z̄Tzz = 0. (A.32)
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This means that the tensor T can be decomposed into chiral and anti-chiral com-
ponents:

T =

(
T (z) 0

0 T̄ (z̄)

)
=

(
1
2
(T00 − iT10) 0

0 1
2
(T00 + iT10)

)
. (A.33)

Using this energy-momentum tensor and the current of equation A.27 we can
finally found the conserved chargeQε,ε̄ used in quantum field theories to compute
the Ward identities (δε,ε̄φ = −[Qε,ε̄, φ]):

Qε,ε̄ =
1

2πi

∮

C
[dzε(z)T (z) + a.c.] (A.34)

with Q =
∫

dx1j0 as usually. The integral is defined over a circuit evaluated at
equal time x1. This is done via the process called radial quantization, in which we
define the CFT over a cylinder with different times meaning different sections
perpendicular to the axis of revolution of the cylinder. This quantization proce-
dure allows us to radial order the operators via the radial-ordering operator R(·)
to find that the Ward identity derived from the charge of equation A.34 is

δε,ε̄φ(w, w̄) =

∮

C(w)

dzε(z)R (T (z)φ(w)) + a.c. (A.35)

with C(w) being a circuit encircling the point w and with

R (T (z)φ(w, w̄)) =
h

(z − w)2
φ(w, w̄) +

1

z − w∂wφ(w, w̄) + non-singular terms.

(A.36)
Equation A.36 (and similarly its anti-chiral counterpart) defines what the operator
product expansion (OPE) of a field is. The OPE’s allow us to compute correlation
functions. For instance, it can be proven that

T (z)T (w) =
c/2

(z − w)4
+ 2

T (w)

(z − w)2
+
∂wT (w)

z − w . (A.37)

Notice that the term proportional to the central charge c is a non-primary con-
tribution, spoiling the primary character of the energy-momentum tensor. This
is precisely the reason behind referring to c as the conformal anomaly parameter.
Notice that if c = 0 the energy-momentum tensor would be a primary field with
conformal weight h = 2. The central charge term can be seen to describe the
short-distance behaviour of the theory, being the cause of imposing a scale in our
system.
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In order to do a consistency check of equation A.37 one could remember that
the job of T (z) was generating the conformal transformations. The generators
of the global conformal group were the Virasoro generators fulfilling equation
A.15, so they cannot be independent of the energy-momentum tensor. In fact, the
Virasoro generators are the Laurent modes of the energy-momentum tensor:

T (z) =
∑

n∈Z

Lnz
−n−2. (A.38)

Having done this correspondence, we can now proceed to mention some im-
portant remarks about representation theory of minimal models.

A.4 Minimal models and highest-weight representa-

tion

In a CFT we expect the energy eigenstates (i.e. eigenstates of L0+L̄0) to fall within
representations of the global conformal algebra (the Virasoro algebra) much in
the same way as the energy eigenstates of a rotations-invariant system fall into
irreducible representations of su(2).

As in the theory of angular momentum, we use a highest-weight representation
choosing a single generator, L0, since no pair of generators commute in the Vira-
soro algebra of equation A.15. This construction, also called a Verma module, will
be diagonal in the representation space. We will denote it by V(c, h), with c the
central charge, and h the eigenvalue of the heighest-weight state |h〉, namely

L0|h〉 = h|h〉, (A.39)

and |h〉 being the asymptotic state created by applying a primary field operator
φ(0) of dimension h on the vacuum |0〉. These states fulfil that Ln|h〉 = 0 for n > 0,
reason for which we say that the generators {Ln>0} are raising operators. The states
obtained by applying the lowering operators {Ln<0} on |h〉 are called descendant
states for obvious reasons, and they form the so-called conformal towers, being
each row of the tower (of a priori different widht) called the level of the descendant.

In general, the Hilbert space is a direct sum of tensor products of the Verma
modules over all conformal dimensions of the theory:

∑

h,h̄

V(c, h)⊗ V̄(c, h̄). (A.40)
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If the number of Verma moduli V(c, h) is finite, it means that the holomorphic cha-
racters follow a particular transformation law under a given modular transforma-
tion. This allows to reorganize an in principle infinite number of primary fields
into a finite number of blocks. This would correspond to a extended symmetry
algebra, and the CFT’s that satisfy this are called rational conformal field theories
(RCFT’s) [36].

It may happen that a descendant state |χ〉 in a Verma module V(c, h) would
also be a primary state of hχ > h, decoupling from the other fields. If this hap-
pens, the operator algebra changes and presents a particular structure, and we
call the state |χ〉 a null state. This has been used [47] to develop, via the characters
of the moduli, an easy procedure to construct quantum Hamiltonians for RCFT’s
with SU(2)k Kac-Moody algebras.

The case of highest interest to us in this work is k = 1, for which the Kac-
Moody algebra defined in equation A.20 can be written in terms of the Laurent
modes (see equation A.38) of the energy-momentum tensor of the theory (see
equation 2.15), which happen to be the currents of the field theory:

[Jan, J
b
m] = i

∑

c

εabcJ
c
n+m +

k

2
nδabδn+m,0, (A.41)

where Jan are the modes in a Laurent expansion of the Ja(z) chiral left (L) or right
(R) currents, namely

Ja(z) =
+∞∑

−∞

Janz
−n+1. (A.42)

Note how the typical SU(2) structure constants of the algebra appear in the first
term of equation A.41. The zero modes of the currents, Ja0 , form a closed SU(2)

algebra, which in the standard spin basis is given by the following commutation
relations:

[J0
n, J

0
m] =

k

2
nδn+m,0, (A.43)

[J0
n, J

±
m] = ±J±n+m, (A.44)

[J+
n , J

−
m] = 2J0

n+m + knδn+m,0. (A.45)

To construct a valid unitary representation theory of this Kac-Moody algebra,
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one associates a primary state |φj〉 to each of these primary fields, satisfying

|φj〉 = φj(0)|0〉, (A.46)

Ja0 |φj〉 = ta|φj〉, (A.47)

Jan|φj〉 = 0 for n > 0, (A.48)

where the ta are the 2j+1-dimensional matrices of the j-spin representation of the
SU(2) group. These are precisely the conditions required to construct a heighest-
weight representation of the algebra, as explained in the beginning of this sub-
section.
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B
Programs used and codes

Due to the long extension of the written programs used in this work in order to
compute numerically the different quantities appearing throughout this disserta-
tion, the author has decided to omit them and not include them here.

However, due to its importance as well as to its original value, the author will
be more than eager to send the codes developed to any one who is interested.

To do so, please contact him using the following e-mail direction:

hector.bermudezcastro@gmail.com.
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