
MÁSTERES
de la UAM
Escuela Politécnica

Superior / 16-17

Exploiting
subsequence
matching
in Recommender
Systems
Pablo Sánchez Pérez

Investigación e Innovación
en TIC

978-84-8344-6215

UNIVERSIDAD AUTÓNOMA DE MADRID

ESCUELA POLITÉCNICA SUPERIOR

TRABAJO FIN DE MÁSTER

Exploiting subsequence matching
in Recommender Systems

Máster Universitario en Investigación e

Innovación en Tecnoloǵıas de la Información y las

Comunicaciones (i2-TIC)

Autor: Pablo Sánchez Pérez

Tutor: Alejandro Belloǵın Kouki

Ponente: Fernando Dı́ez Rubio

FECHA: Junio, 2017

ii

Resumen

Desde su surgimiento al inicio de la década de los 90, los sistemas de recomendación han
experimentado un crecimiento exponencial empleándose en cada vez más aplicaciones de-
bido a la utilidad que tienen para ayudar a los usuarios a elegir art́ıculos en función de
sus gustos y necesidades. Actualmente son indispensables en un gran número de empresas
que ofrecen su servicio a través de Internet, el medio de intercambio de información más
importante que existe. Por esta razón, la continua innovación en estos sistemas resulta im-
prescindible para poder efectuar recomendaciones que sean capaces de seguir sorprendiendo
a los usuarios y mejorar las ya existentes.

En este Trabajo Fin de Máster hemos realizado un estudio e investigación acerca del es-
tado actual de estos sistemas, prestando especial atención a los sistemas de filtrado colabo-
rativo basados en vecinos y los basados en contenido. No obstante, debido a las desventajas
que puede tener cada sistema por separado normalmente en aplicaciones reales se emplean
combinaciones de varios sistemas, creando recomendadores h́ıbridos. Como apoyo a este
estudio, se propone como aspecto novedoso el uso del algoritmo de la subcadena común
más larga (LCS) para ser utilizada como medida de similitud entre usuarios, introduciendo
además una técnica general y transparente para generar secuencias haciendo uso tanto de
información de contenido como de información colaborativa, pudiendo generar recomen-
dadores h́ıbridos de manera sencilla. Complementando a estos nuevos recomendadores,
también detallamos otros parámetros auxiliares (confianza, preferencia, normalizaciones
y distintas ordenaciones) que tienen como fin mejorar el rendimiento de estos sistemas
basados en LCS.

Por otro lado, además de la definición de estos nuevos recomendadores, el trabajo
se complementa con resultados experimentales haciendo uso de tres conjuntos de datos
conocidos en el área: Movielens, Lastfm y MovieTweetings. Cada uno de ellos estará
orientado a explotar un aspecto espećıfico de la generación de secuencias. Los resultados
han sido obtenidos haciendo uso de métricas de ranking (Precisión, Recall, MAP o nDCG)
y de novedad y diversidad (α-nDCG, EPC, EPD, Aggregate diversity, EILD y Gini). Los
resultados han tenido como fin comparar el rendimiento de los recomendadores basados en
la subsecuencia común más larga frente a otros recomendadores conocidos en el área.

Como resumen, se ha observado que los recomendadores propuestos resultan altamente
competitivos en las pruebas realizadas siendo incluso mejores en algunas ocasiones a otros
recomendadores conocidos en el área, tanto en términos de métricas de ranking como
de novedad y diversidad. No obstante, también se ha observado que, en algunos casos,
el uso de recomendadores h́ıbridos basados en la subsecuencia común más larga obtiene
unos resultados peores que otras versiones puramente colaborativas. En cualquier caso,
consideramos que es una propuesta con potencial para seguir siendo investigada.

Palabras Clave
Sistemas de recomendación, subsecuencia común más larga, novedad y diversidad, métricas

de similitud.

iii

Abstract

Since their inception in the early 1990s, recommender systems have experienced expo-
nential growth as they are being used in a large number of applications because of their
usefulness in helping users choose items based on their tastes and needs. Nowadays, they
are indispensable in many companies that offer their service through the Internet, the
most important method for information exchange. For this reason, continuous innovation
in these systems is essential to make recommendations that are able to continue surprising
users, while improving the existing ones.

In this Master’s Thesis, we have studied and researched on the current state of these
systems, paying special attention to collaborative filtering based on neighborhood and
content-based algorithms. However, due to the disadvantages that each system may have
separately, combinations of these systems are often used in real applications, creating hy-
brid recommenders. To support this study, we propose the use of the longest common
subsequence (LCS) algorithm as a novel aspect to be used as a similarity metric between
users, also introducing a general and transparent technique to generate sequences using
both content and collaborative information, allowing us to generate hybrid recommenders
in a simple way. Complementing these new recommendations, we also detail other auxil-
iary parameters (confidence, preference, normalization functions, and different orderings),
whose main goal is to improve the performance of these LCS-based systems.

On the other hand, in addition to the definition of these new recommenders, the study
is complemented with experimental results using three well-known datasets in the area:
Movielens, Lastfm and MovieTweetings. Each one of them will be oriented to exploit a
specific aspect of the sequence generation process. The results have been obtained by using
ranking metrics (Precision, Recall, MAP, or nDCG) and novelty and diversity metrics
(α-nDCG, EPC, EPD, Aggregate diversity, EILD, and Gini). With these experiments,
we aimed at comparing the performance of recommenders based on the longest common
subsequence against other well-known recommenders in the area.

As a summary, we have observed in the experiments performed that the proposed
recommenders are highly competitive, and sometimes they are even better than other
recommenders known in the area, both in terms of ranking quality metrics, and novelty and
diversity dimensions. However, we have also observed that, in some cases, the use of hybrid
recommenders based on the longest common subsequence results in worse performance than
other purely collaborative versions. In any case, we believe this is a proposal with enough
potential to be worthy of further investigation.

Keywords
Recommender systems, Longest common subsequence, novelty and diversity, similarity

metrics.

v

Acknowledgments

I would like to express my gratitude to my director Dr. Alejandro Belloǵın for the support
provided throughout the year. His guidance has been indispensable to be able to accom-
plish this work successfully.

My sincere thanks are also for Dr. Pablo Castells, who allow me to join his team and
use his laboratory for the research project. Without these facilities it would have been
impossible to make this work.

I thank my master’s mates for all the time spent working together finalizing lab assess-
ments, especially Alejandro Catalina. Without his help, it would have been even harder. I
am also grateful to other colleagues who although I have not shared classes with them this
year, I have also shared very good moments, especially with Guillermo Sarasa and Sergio
Sanz.

Last but not the least, I would like to thank my family, especially my parents and my
brother, for supporting me throughout writing this thesis and in my life.

vii

viii

Contents

Contents viii

List of figures xi

List of tables xiii

Acronyms xv

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 3

1.3 Document structure . 3

2 State of the art 5

2.1 Sequence matching . 5

2.2 Recommender Systems . 6

2.2.1 Problem definition and notation . 8

2.2.2 Content-based recommenders . 8

2.2.3 Nearest neighbors collaborative-filtering recommenders 10

2.2.4 Matrix factorization models . 12

2.2.5 Hybrid recommender systems . 13

2.2.6 Sequential recommenders . 14

2.3 Evaluation . 15

2.3.1 Error metrics . 16

2.3.2 Ranking quality evaluation . 16

2.3.3 Novelty and diversity . 17

2.4 Datasets . 18

3 LCS as a similarity metric 21

3.1 Representing users as sequences . 21

3.2 Preference and confidence . 24

3.3 Normalization functions . 25

3.4 Sequence ordering . 25

3.5 Toy example . 26

3.6 Relation with other metrics . 27

4 Experiments 29

4.1 Experimental setup . 29

4.1.1 Evaluation Methodology . 30

4.1.2 Baselines . 31

ix

x Contents

4.2 LCS as a similarity metric . 33
4.3 Sensitivity to confidence, preference and normalization parameters 34

4.3.1 Sensitivity to the confidence filter parameter 34
4.3.2 Sensitivity to the preference filter parameter 35
4.3.3 Performance when combining both confidence filter and preference

filter parameters . 36
4.3.4 Sensitivity to normalization functions 38

4.4 Temporal ordering . 39
4.5 Impact on beyond-accuracy metrics . 42
4.6 Performance comparison against other algorithms 44

4.6.1 Performance comparison in MovielensHetRec 45
4.6.2 Performance comparison in MovieTweetings dataset 46

4.7 Discussion . 47

5 Conclusions 49
5.1 Summary and discussion . 49
5.2 Contributions of this work . 50
5.3 Future work . 50

Bibliography 53

Appendices 57

A Implementation details 59
A.1 Comparing RankSys and Mahout . 59
A.2 Evaluation using the libraries . 60

B Performance of LCS using genres 61

C Performance results in Lastfm dataset 67
C.1 Results for Lastfm dataset . 67

List of Figures

3.1 Example of different user’s rating history. 26

4.1 Results of LCS-based similarity for MovielensHetRec dataset. Transforma-
tions based on items (pure collaborative-filtering), directors, and genres us-
ing δ = 0 and δ = 10. 33

4.2 Results of LCS-based similarity for MovielensHetRec dataset. Different val-
ues of confidence filter parameter τ using δ = 0 and δ = 10. 34

4.3 Results of LCS-based similarity for MovielensHetRec dataset. Different val-
ues of preference filter parameter using δ = 0 and δ = 10. 35

4.4 Results of LCS-based similarity for MovielensHetRec dataset. Combination
of different values of preference and confidence filtering using δ = 0 and
δ = 10. 36

4.5 Results of LCS-based similarity for MovielensHetRec dataset. Different nor-
malization functions using δ = 0 and δ = 10. 37

4.6 Results with the best confidence and preference filters and normalizations
for MovielensHetRec dataset. Top row shows results using δ = 0, bottom
row using δ = 10. The ∗ symbol denotes the best value among the previously
reported ones is being used in the combination. 39

4.7 Results of LCS-based similarity for MovielensHetRec dataset. Different nor-
malization functions using δ = 0 and δ = 10, and sequences ordered by
timestamp (sT). 40

4.8 Results of LCS-based similarity for MovieTweetings dataset using a global
temporal split. Different normalization functions using δ = 0 and δ = 10.
Ordering by timestamp (sT) and item id (si). 41

B.1 Results including genres of LCS-based similarity for MovielensHetRec dataset.
Different values of confidence filter parameter τ using δ = 0 and δ = 10. . . 62

B.2 Results including genres of LCS-based similarity for MovielensHetRec dataset.
Different values of preference filter parameter using δ = 0 and δ = 10. . . . 62

B.3 Results including genres of LCS-based similarity for MovielensHetRec dataset.
Combination of different values of preference and confidence filtering using
δ = 0 and δ = 10. 63

B.4 Results including genres of LCS-based similarity for MovielensHetRec dataset.
Different normalization functions using δ = 0 and δ = 10. 63

B.5 Results including genres with the best confidence and preference filters and
normalizations for MovielensHetRec dataset. Top row shows results using
δ = 0, bottom row using δ = 10. The ∗ symbol denotes the best value
among the previously reported ones is being used in the combination. . . . 64

xi

xii List of Figures

B.6 Results including genres of LCS-based similarity for MovielensHetRec dataset.
Different normalization functions using δ = 0 and δ = 10, sequence ordered
by timestamp (sT). 65

C.1 Results of LCS-based similarity for Lastfm dataset. Pure collaborative-
filtering approach with δ = 0 and δ = 10. 68

C.2 Results of LCS-based similarity for Lastfm dataset. Different values of con-
fidence filter parameter τ using δ = 0 and δ = 10. 68

C.3 Results of LCS-based similarity for Lastfm dataset. Different values of pref-
erence filter parameter using δ = 0 and δ = 10. 70

C.4 Results of LCS-based similarity for Lastfm dataset. Combination of different
values of preference and confidence filtering using δ = 0 and δ = 10. 71

C.5 Results of LCS-based similarity for Lastfm dataset. Different values of nor-
malizations using δ = 0 and δ = 10. 72

C.6 Results with the best confidence and preference filters and normalizations
for Lastfm dataset. Results using δ = 0 and δ = 10. 73

List of Tables

2.1 LCS Example Matrix. The circled number represents the length of the LCS
found by the algorithm. 6

2.2 Advantages and disadvantages of recommender systems. 8

2.3 Hybridization methods from [10]. 14

2.4 Statistics about the datasets used in the experiments. 19

3.1 Summary of parameters described. 24

3.2 Toy example. Items consumed by user u1. 27

3.3 Items consumed by user u2. 27

3.4 Toy example. User representation as sequences and LCS-based similarity for
different transformation functions, matching thresholds (δ), and preference
(γ) and confidence (τ) filters. 28

4.1 Configuration of the baselines used in each dataset. 32

4.2 Performance of some of the most representative configurations of the pro-
posed approach in MovielensHetRec dataset in terms of ranking quality
(nDCG, P, R, MAP), novelty (EPC, EPD), and diversity (AD, α-nDCG,
EILD, and Gini) at cutoff 5. The configuration for each recommender is
denoted as (sim, f, δ, τ, γ), that is: normalization function, transformation
function, threshold for δ-matching, confidence filter, preference filter. The
neighborhood size in every case is k = 100. 42

4.3 Performance of some of the most representative configurations of the pro-
posed approach in MovielensHetRec dataset in terms of ranking quality
(nDCG, P, R, MAP), novelty (EPC, EPD), and diversity (AD, α-nDCG,
EILD, and Gini) at cutoff 5. The configuration for each recommender is de-
noted as (sim, f, δ) using sT (ordering sequences by timestamp), that is: nor-
malization function, transformation function, and threshold for δ-matching.
The neighborhood size in every case is k = 100. 43

4.4 Performance LCS-based recommenders in MovieTweetings dataset in terms
of ranking quality (nDCG, P, R, MAP), novelty (EPC, EPD) and diversity
(AD, α-nDCG, EILD and Gini). The neighborhood size in every case is
k=100. Recommenders labeled with si and sT generated their user sequences
by ordering the items either by item id or timestamp, respectively. 44

4.5 Performance of baselines in MovielensHetRec dataset in terms of ranking
quality (nDCG, P, R, MAP), novelty (EPC, EPD), and diversity (AD, α-
nDCG, EILD, and Gini). The best configuration for LCS-based approach is
also included for comparison. 44

xiii

xiv List of Tables

4.6 Performance of baselines and some configurations of the proposed approach
in Movielens 10M dataset in terms of ranking quality (nDCG, P, R, MAP),
novelty (EPC, EPD), and diversity (AD, α-nDCG, EILD, and Gini). 45

4.7 Performance of baselines in MovieTweetings dataset in terms of ranking
quality (nDCG, P, R, MAP), novelty (EPC, EPD) and diversity (AD, α-
nDCG, Gini). The best configuration for LCS-based approach is also in-
cluded for comparison. 46

B.1 Performance of some of the most representative configurations of the pro-
posed approach in MovielensHetRec dataset including genres in terms of
ranking quality (nDCG, P, R, MAP), novelty (EPC, EPD), and diversity
(AD, α-nDCG, EILD, and Gini) at cutoff 5. The configuration for each
recommender is denoted as (sim, f, δ, τ, γ), that is: normalization function,
transformation function, threshold for δ-matching, confidence filter, prefer-
ence filter. The neighborhood size in every case is k = 100. 65

C.1 Coverage of Lastfm dataset. Different values of confidence (τ). The config-
uration for each recommender is denoted as (f, δ, τ). 69

C.2 Coverage of Lastfm dataset. Different values of preference (γ). The config-
uration for each recommender is denoted as (f, δ, γ). 70

C.3 Coverage of Lastfm dataset. Different values of confidence (τ) and prefer-
ence (γ). The configuration for each recommender is denoted by the follow-
ing order (f, δ, τ, γ). 71

C.4 Performance of baselines in Lastfm dataset in terms of ranking quality (nDCG,
P, R, MAP), novelty (EPC, EPD) and diversity (AD, α-nDCG, EILD, Gini). 74

Acronyms

• AD: Aggregate Diversity. Diversity metric.

• ALS: Alternating Least Squares. Learning algorithm for MF.

• EILD: Expected Intra-List Diversity. Diversity metric.

• EPC: Expected Popularity Complement. Novelty metric.

• EPD: Expected Profile Distance. Novelty metric.

• IB: Item-Based Collaborative Filtering. k-NN strategy where similarities are com-
puted between items.

• IDF: Inverse Document Frequency.

• k-NN: k Nearest Neighbors.

• LCS: Longest Common Subsequence.

• LDA: Latent Dirichlet Allocation.

• MAE: Mean Absolute Error. Error metric.

• MAP: Mean Average Precision. Ranking evaluation metric.

• MF: Matrix factorization.

• nDCG: Normalized Discounted Cumulative Gain. Ranking evaluation metric.

• pLSA: Probabilistic Latent Semantic Analysis. Matrix factorization technique.

• RMSE: Root Mean Square Error. Error metric.

• RS: Recommender System.

• SGD: Stochastic Gradient Descent. Learning algorithm for MF.

• TF: Term Frequency.

• UB: User-Based Collaborative Filtering. k-NN strategy where similarities are com-
puted between users.

• VSM: Vector Space Model. Spatial representation of text documents.

xv

Chapter 1

Introduction

1.1 Motivation

Recommender Systems (RS) are software tools that allow users finding the items and
information they need in a simple and direct way. These items are related to the specific
domain of the recommender system, although movies, books, and music are some of the
most studied domains in the scientific community. In order to predict the most interesting
items for each user in the system, these methods analyze the tastes and interests of the
users to make personalized recommendations [36].

Although the rise of the Internet dates back to the early 1970s, the research in these
systems has taken place especially in the last 20 years, due to the global spread of infor-
mation and communication technologies. The antecedents of these systems can be found
in the early 1990s, in the Tapestry [20] and Grouplens [35] projects, co-occurring with
the rise of the Internet. However, they are especially relevant today as they have now
become essential to filter the large amount of data available in the cloud. A large number
of important companies offering online services make use of recommendation algorithms
to expand their economic activity and improve the user experience. Some examples are
Amazon (online store), Youtube (videos) or Netflix (streaming audiovisual content). This
last company became very popular in 2006 for a three-year contest with a prize of 1 million
dollars to the research group who managed to improve its prediction algorithm by 10% [31].
The team “BellKor’s Pragmatic Chaos” ended up winning this contest and putting these
technologies in the spotlight.

User recommendations can be obtained by many different ways, depending on how the
system works with the data. Traditional approaches like content-based and collaborative-
filtering recommenders were the first systems being implemented and deployed in industry,
and they still remain the core of many applications. Nevertheless, other recommendation
techniques like knowledge-based (which requires specific knowledge about the items and
users preferences) or demographic (that makes recommendations analyzing features of the
population around the user) have emerged and they are worth of further research [36], even
though they are out of the scope of this work. Herein we shall focus on k-NN algorithms,
where the users closer to the target user – in terms of a specific similarity metric – are
used in the recommendation process. This type of technique is very intuitive and simple to
implement, which allows for richer explanations and justifications of the recommendations,
however it typically suffers from limited coverage and lower accuracy. Nonetheless, it is
worth noting that every technique has its own advantages and drawbacks, which motivates
the definition of hybrid systems combining the recommendations coming from any number
of techniques in order to achieve a better performance than each system individually [10].

1

2 Chapter 1. Introduction

In this scenario, some researchers are using the so-called context information to train
the recommendation algorithms to adapt better to the user needs. In the end, making
good recommendations entail the success of the companies, as regular customers will keep
on trusting them and new customers looking for new products may emerge. Among the
different possibilities to gather contextual information from, temporal data is one of the
most interesting contexts to be integrated into the recommendation approaches, due to its
facility to be captured (normally, when a user purchases or consumes an item, a timestamp
is created, so it is not difficult to find datasets with this information) and it usually discrim-
inates better than other dimensions [1]. Nonetheless, to be able to work with temporal
data, the classical recommendation task needs to be redefined, since the users are now
represented as a sequence of actions, and the objective is, hence, to predict which action
s/he will do next, requiring changes in the algorithms but also in the way the evaluation
is performed (e.g., training/test splits should be temporal). Markov Chain methods (and
derivations) are widely used to model these stochastic transitions [22], whereas recom-
menders based on neighborhood have been mostly modified in ad-hoc fashions to integrate
temporal information, but no formal approaches for this kind of methods have been pro-
posed so far [11].

Although in the Netflix prize the objective was to achieve a lower error between the
predicted ratings and the real ones (more specifically, the goal was reducing the RMSE by
a 10%), this evaluation approach has been displaced by the use of ranking evaluation met-
rics, some of them adapted from the Information Retrieval (IR) field, where these metrics
seek to measure the relevance of a ranking of articles provided for the user. However, in the
last years, recommender systems evaluation has acknowledged complementary dimensions
such as coverage or serendipity, but the two most relevant ones are, at the moment, novelty
and diversity [13]. These new dimensions aim to measure other aspects besides accuracy
of the recommendations received by the user. A paradigmatic example where these met-
rics evidence its potential is when a popularity recommender (that recommends the most
popular items in the system) is evaluated: despite its simplicity, this (non-personalized)
method usually obtains good results in terms of ranking quality metrics such as Precision
or nDCG; however, since the recommended items are the most popular in the system, they
are well-known to the user (lack of novelty) and the same for every user (low diversity).
In this context, the main concern in the community is to obtain a recommender with a
good balance between accuracy, novelty, and diversity, since it is generally accepted that
outperforming every other recommender in all dimensions is a very difficult problem to
solve [21].

Taking all of the above as a starting point, in this Master’s Thesis we propose a new sim-
ilarity metric to be integrated in k-NN collaborative-filtering recommenders. This metric
exploits the item sequences generated by the users when they interact with the recom-
mender system by means of the Longest Common Subsequence (LCS) algorithm [3]. As
this algorithm cannot be applied directly to the recommendation context, a general method
to transform users into sequences is formulated. Its generality allows us to work with both
collaborative-filtering and content-based information, creating a new hybrid recommender
in a simple and direct way with different options to order the items in the sequences. Be-
sides, we will also define some configurable parameters (confidence filter, preference filter,
and normalization functions) that can be used to reduce the computational time and in-
crease the recommender performance. To evaluate this approach, we make use of three
datasets (MovielensHetRec, Lastfm, and MovieTweetings) that contain different informa-
tion (pure collaborative-filtering, content-based, and temporal data) in order to see if there
are any advantages over the traditional algorithms. We report the results of our proposals

1.2. Goals 3

on these real-world datasets (using offline evaluation) comparing them against other state-
of-the-art recommenders in order to check the validity of our approach. The results are
presented in terms of ranking quality (Precision, Recall, MAP, and nDCG) and novelty
and diversity (EPC, EPD, α-nDCG, Aggregate diversity, and Gini) evaluation metrics.

In summary, the research proposed in this Master’s Thesis aims to answer the following
questions:

• Can state-of-the-art similarities be extended to take advantage of user sequences
generated from user interactions with the system?

• Is it possible to create a recommender system taking advantage of these sequences?
If so, which configurations and parameters work best in this case? In other words,
which ones are better aligned to the recommendation problem?

• How can we adapt sequence-aware recommenders to work with temporal information?
What advantages and disadvantages can be found when introducing this new context
in recommendation?

• What is the performance of these new approaches in terms of both ranking quality
and novelty and diversity metrics?

1.2 Goals

Taking into account the questions formulated above, the main objective of this work is to
investigate if it is possible to define new similarities exploiting the subsequence matching
problem between users. This main objective is divided in the following goals:

• Investigate different ways to build user sequences based on preference data, in par-
ticular, using the Longest Common Subsequence algorithm.

• Reformulate the traditional similarities to take advantage of the sequences of items
consumed by the users.

• Integrate content-based features or any other additional information into the user
sequence generation process.

• Test these new approaches and analyze them in terms of ranking quality and novelty
and diversity metrics.

• Obtain conclusions about the algorithms based on LCS and how different configura-
tions and parameters affect their performance, using empirical results obtained with
real-world datasets.

1.3 Document structure

The structure of this Master’s Thesis is as follows:

• In the second chapter (State of the Art) we present some important concepts about
recommender systems and the main references and studies are introduced. We first
categorize the different types of recommenders along with the definition of the rec-
ommendation problem, then we describe the most common metrics used to evaluate
the performance of the recommender systems.

4 Chapter 1. Introduction

• In the third chapter (LCS as a similarity metric) we formally define the method
proposed to obtain user sequences from the data. Some other additional parameters
whose objective is to improve the quality of the recommendations are also described.
These explanations are supported by some examples in order to help understanding
the approach.

• In the fourth chapter (Experiments) we describe the evaluation methodology we fol-
lowed in order to test the recommendation algorithms. Furthermore, empirical results
of both ranking quality and novelty and diversity metrics of different recommenders
based on LCS and other state-of-the-art algorithms are also presented and discussed.

• In the last chapter (Conclusions) we summarize the main contributions of this re-
search, as well as different ideas for future research.

• Finally, in the appendices we present specific details about the implementation used
in our work (Appendix A) and additional results regarding another content-based
feature (Appendix B) and another dataset (Lastfm, Appendix C) which, for the sake
of space and length of Chapter 4, were not included in that chapter.

Chapter 2

State of the art

2.1 Sequence matching

The Longest Common Subsequence (LCS) problem is specifically defined as follows: given
a string x over an alphabet Σ = (σ1, · · · , σs), a subsequence of x is any string w that can
be obtained from x deleting zero or more (not necessarily consecutive) symbols. The LCS
problem for input strings x = x1 · · ·xm and y = y1 · · · yn (assuming m ≤ n) consists of
finding a third string w = w1 · · ·wl such that w is a subsequence of x and also a subsequence
of y, and w is of maximum possible length. In general, such w is not unique. This problem
arises in a number of applications, from text editing to molecular sequence comparisons,
and has been extensively studied [3]. The standard dynamic programming solution to
compute the LCS can be seen in Algorithm 1. It has a complexity of O(mn) for both time
and space, where n and m are the length of the two input sequences. If only the length
of the LCS is needed, then the algorithm can be adapted to use only linear space. The
reason for this is that the computation of each row of matrix L only needs the preceding
row (this implementation is presented in Algorithm 2). However, if we want to retrieve the
full LCS, the matrix computation is required. In Table 2.1 the reader can see an example
of a computation of the LCS for the strings “BACBAD” and “ABAZDC”, whose LCS is
“ABAD” with a length of 4.

Algorithm 1 Longest Common Subsequence

1: procedure LCS(x, y) . The LCS of x and y
2: L[0 · · ·m, 0 · · ·n]← 0
3: for i← 1,m do
4: for j ← 1, n do
5: if xi = yj then
6: L[i, j]← L[i− 1, j − 1] + 1 . There is a matching
7: else
8: L[i, j]← max(L[i, j − 1], L[i− 1, j])
9: end if

10: end for
11: end for
12: return L[m,n] . L[i, j] contains the length of an LCS between x1 . . . xi and

y1 . . . yj
13: end procedure

5

6 Chapter 2. State of the art

Algorithm 2 Longest Common Subsequence. Optimizing space.

1: procedure LCS OS(x, y) . The LCS of x and y computed using linear space
2: prev[0 · · ·n]← 0
3: cur[0 · · ·n]← 0
4: for i← 1,m do
5: for j ← 1, n do
6: if xi = yj then
7: cur[j]← prev[j − 1] + 1 . There is a matching
8: else
9: cur[j]← max(prev[j], cur[j − 1])

10: end if
11: end for
12: for j ← 1, n do
13: prev[j]← cur[j]
14: end for
15: end for
16: return cur[n]. cur[n] contains the length of an LCS between x1 . . . xi and y1 . . . yj
17: end procedure

Table 2.1: LCS Example Matrix. The circled number represents the length of the LCS
found by the algorithm.

0 B A C B A D

0 0 0 0 0 0 0 0
A 0 0 1 1 1 1 1
B 0 1 1 1 2 2 2
A 0 1 2 2 2 3 3
Z 0 1 2 2 2 3 3
D 0 1 2 2 2 3 4

C 0 1 2 3 3 3 4

2.2 Recommender Systems

Recommender Systems (RS) are tools whose purpose is to make item recommendations to
users. Depending on how these recommendations are obtained we distinguish the following
systems [36, 9]:

• Content-based (CB): suggestions are done by analyzing the features of the items the
user liked in the past. For example, in the movie domain, if a person likes movies
of an specific genre or director, the system will recommend more movies of the same
genres/directors.

• Collaborative-filtering (CF): recommendations are made by exploiting the users’ pref-
erences in order to find other users that have similar tastes. CF techniques can be
divided in two groups: k-NN and model-based recommenders.

• Demographic: they assume that users with the same demographic profile tend to
have common interests. For example, it is not strange to see that people from a
given country will have more interests on news about that country.

2.2. Recommender Systems 7

• Knowledge-based: they normally do inference between user preferences or needs in
order to make recommendations. They recommend items to the users trying to solve
a specific problem.

• Community-based: they analyze the preferences of friends/relatives of the user in
order to make suggestions. They are widely used in some social networks.

• Hybrids: all the systems that have been defined before have advantages and disad-
vantages (see Table 2.2). To avoid these individual drawbacks, in real applications
combinations of them are implemented in order to achieve a global improvement.

Main advantages and drawbacks of each of the aforementioned systems are shown below
and summarized in Table 2.2. According to [10] and [5] the most common problems of each
system are:

• Overspecialization (OP): recommendations are very similar to other items the user
has consumed before. Suggested items are usually already known by the user.

• Cold start (CSP): problem with new users/items. It is difficult to recommend items to
new users if there is no previous activity from them, as they are difficult to categorize.
In the case of new items, if they have not been rated by many users, recommending
them is not a trivial task.

• Gray sheep (GSP): some users have specific or unusual preferences, so finding neigh-
bors in order to make useful recommendations becomes a difficult task.

• Knowledge-engineering (KEP): some special knowledge either by the product or by
the user is required.

• Demographic information (DIP): it is necessary to process demographic data where
we must take into consideration legal aspects.

• Large-data (LDP): in order to make good recommendations, a large amount of data
is required.

And the general advantages:

• Not data-domain knowledge (DDA): it is not necessary a specific knowledge about
the data domain as it is transparent for the recommender.

• Improvement over time (ITA): this normally depends on the algorithm that is being
used in the system. It will be indicated if this feature is available for the most
extended algorithms.

• Implicit-data (IDA): it can make recommendations with data that is not directly
indicated by the user but obtained analyzing her/his activity (e.g., server logs or the
number of listenings of a song).

• User-sensitive (USA): it is sensitive to the changes of the user’s taste over time.

• More features (FA): it can include other features of the products like distribution
dates, product value, availability, etc.

Among all, content-based and collaborative-filtering are two of the most widely deployed
recommendation approaches. In this work we will make special emphasis on these two types
of recommendation systems, showing a more exhaustive description in the next subsections.

8 Chapter 2. State of the art

Table 2.2: Advantages and disadvantages of recommender systems.

RS Advantages Disadvantages

Content-based ITA, IDA OP, LSP, LDP
Collaborative-filtering ITA, IDA, DDA CSP, LDP, GSP
Knowledge-based USA, FA KEP
Demographic DDA DIP, LDP, GSD
Community-based DDA, ITA CSP, GSP

2.2.1 Problem definition and notation

In order to help the reader throughout this document, we introduce now the following
notation for the recommendation task. The set of users in the system will be denoted
as U and the set of items as I. The set of ratings will be R and the values of possible
ratings as F (normally F=[1,5] or F={I like/I dislike}). When F is known, we say that
the data is explicit and implicit otherwise (e.g., server logs). Normally it is easier to
work with explicit data as the provided ratings have a valuable interpretation of the users’
interests/preferences. We will also consider that a user u ∈ U cannot make more than one
rating to a particular item i ∈ I. The subset of items that has been rated by a user will
be denoted as Iu and the users that have rated an item will be Ui. Furthermore, the items
rated by two users Iu ∩ Iv will be abbreviated as Iuv.

In [1] it is presented the fundamental recommendation problem by making use of a
function g(u, i) that indicates the usefulness of an item to a user. This utility function is
of the form g : U × I → Dg and is represented in this way:

∀u ∈ U , i′u = arg max
i∈I

g(u, i) (2.1)

Thus, for each user u ∈ U , we want to choose items i ∈ I maximizing function g.
However, the target domain Dg can be defined in different ways depending on the problem
we are solving. The most well-known tasks in recommendation are rating prediction and
top-N recommendation [19]. Rating prediction aims to determine what rating a user will
give to an item that has not been rated by her/him. In this case Dg would correspond to F ,
for instance, the interval [1, 5]. Nevertheless, sometimes we only know the items that the
user has consumed (without using ratings) or we do not want to return a predicted rating
but a ranking list, or an utility value representing the user interests. In this case we consider
the top-N recommendation task in which we recommend a list of items hypothetically
relevant to the user, changing the domain D to another one that may be less bounded (up
to the number of items in the system), or bounded to different intervals depending on the
utility function used. There are several ways to evaluate the recommendation based on the
aspect that we want to analyze; the most important approaches and metrics are presented
in Section 2.3.

2.2.2 Content-based recommenders

Content-based recommender systems (CB) analyze the items the user liked in the past
and recommend items having similar features. The main process of making recommenda-
tions using a content-based approach consists in matching users preferences and interests
obtained in the users’ record, with the attributes of the items [29]. Since CB systems
recommend items analyzing the user profile, the utility function g can be defined as:

g(u, i) = sim(UserProfile(u), Content(i)) (2.2)

2.2. Recommender Systems 9

where Content(i) will be the item profile (attributes that characterize item i). As CB
recommenders tend to use articles represented by text, the content is normally represented
by keywords using simple retrieval models like the Vector Space Model (VSM). A VSM is a
spatial representation of text documents in which each document d ∈ D is represented by
an n-dimensional vector, where n will be the size of the vocabulary of keywords (usually
the number of keywords should not be too broad in order to create manageable vectors).
Although VSM is normally used with text documents, it can also be used in the context
of movies or songs, the keywords could be the genres or specific tags. In this approach,
every item is represented as a vector of term weights. Let us denote T = {t1, t2, · · · , tn}
as the terms in the system. Each item j can be represented as

#»
ij = {w1j , w2j , · · · , wnj},

in which each weight wnj represents the degree of association between the item j and the
term/keyword n [17]. Recalling Equation 2.2, UserProfile(u) can be represented in the
same way. In this case, the keywords or terms belonging to the user can be obtained by
adding the terms of all the articles this user has consumed.

However, this definition is incomplete, as we still need a method to compute the weights
of the terms and another one to measure the vector similarity. The most extended mecha-
nism for term weighting is TF-IDF (Term Frequency-Inverse Document Frequency) which
assumes that unusual terms may be more relevant than usual ones, that terms that appear
multiple times in a document are more important than others appearing less times, and
that short documents tend to be better for the users than longer ones [17]. The TF-IDF
function will be defined as:

TF − IDF (tk, dj) = TF (tk, dj) · IDF (tk) (2.3)

where

TF (tk, dj) =
fk,j

maxz fz,j
(2.4)

IDF (tk) = log
|D|
nk

(2.5)

In these equations, TF (tk, dj) takes into account the frequency of term k by dividing
such frequency by the maximum of the frequencies fz,j of all keywords kz that appear in
document dj . The other part of Equation 2.3, IDF (tk), will penalize keywords that appear
in many documents as they do not help in distinguishing between useful and non-useful
items. In this case, |D| denotes the total number of documents of the system and nk is the
number of documents where the term k occurs at least once.

In order to bound the weights between [0,1], the TF-IDF function is usually normalized
as follows:

wki =
TF − IDF (tk, di)√∑|T |
s=1 TF − IDF (ts, di)2

(2.6)

Nevertheless, as mentioned before, a similarity measure is needed to find the proximity
between two vectors. Cosine similarity is the most widely used similarity measure. We will
consider # »wu the user vector and # »wi the item vector:

cos(# »wu,
»wi) =

∑k
j=1wujwij√∑k

j=1w
2
uj ·
√∑k

j=1w
2
ij

(2.7)

which represents the utility function defined above. For example, in the context of books, if
a user consumes many horror books, the content-based recommendation system will make
recommendations of this style, matching the description of such books with important

10 Chapter 2. State of the art

keywords like “ghosts”, “zombies”, “curses”, and so on. The cosine similarity will be
higher with books having such keywords than other ones related to romantic stories.

Moreover, there are other techniques for CB recommendation. One of the most impor-
tant techniques is Bayesian classifiers. These approaches estimate the posterior probability
P (c | d) of a document belonging to a specific class c based on the prior probability of the
class P (c), the probability of observing the document in class c (i.e., P (d | c)) and the
probability of observing the document d denoted as P (d) [17]. Normally, the classes have
two possible values, the user likes the document or the user dislikes it. Applying the Bayes
theorem:

P (c | d) =
P (c)P (d | c)

P (d)
(2.8)

The estimation of P (d | c) is complicated, thus it is common to use the näıve Bayes
classifier, as shown in [30] for book recommendation and in [33] for classifying unrated web
pages. With the näıve Bayes classifier, the document is replaced by a vector of keywords
over the system vocabulary, T according to our notation. Each component of the vector
indicates whether that keyword appeared in the document or not. If we work with binary
values, we are using a multivariate Bernoulli approach and if we count how many times
the word appeared in the document, we are making use of multinomial näıve Bayes [17].
This second approach can be represented as:

P (cj |
#»
id) = P (cj)

∏
tk∈

#»
id

P (tk | cj)N(id,tk) (2.9)

in which N(id, tk) are the number of times that the word tk appeared in the document
d (

#»
id). This kind of models are very efficient and easy to implement, although the may

obtain worse results than other learning methods as Support Vector Machines (SVM).

2.2.3 Nearest neighbors collaborative-filtering recommenders

Unlike CB systems, nearest neighbors collaborative-filtering recommenders (also known as
k-NN recommenders) estimate the function g by taking into account the opinions (ratings)
assigned by similar users of u to item i. This kind of recommenders take advantage of
the intuitive idea that users who are similar tend to prefer similar items and that similar
items are preferred by similar users. They have some important advantages [19]. They are
intuitive and simple, as it is an approach easy to understand and implement. Normally
the only important parameter is k, the number of neighbors to use in the recommendation
step. They are not seriously affected by the constant insertion of new users or items and,
in addition, their training phase (neighbors computation) is usually less computationally
expensive than the other family of collaborative-filtering systems (model-based).

Neighborhood CF recommenders can be divided in two categories depending on how
the similarities are computed. If the similarities are between users, the method is called
user-based (UB) and if the similarities are between items it is called item-based (IB). We
will replace, for the moment, the function g(u, i) with r̂ui (the predicted rating of a user
u to an item i) as done in [1]. The value of an unknown rating of user u to item i can be
represented as an aggregation of the ratings of the top-k neighbors. The most simple way
to do so is to compute the mean of the ratings of all neighbors of u, however, the most
extended approach to predict a rating in the user k-NN approach is a weighted sum:

r̂ui =

∑
v∈Ni(u) rviwuv∑
v∈Ni(u) |wuv|

(2.10)

2.2. Recommender Systems 11

where wuv is the weight (or similarity) between users u and v and Ni(u) represents user’s u
neighbors that have rated item i. In the same way, we can define the item-based approach
prediction as:

r̂ui =

∑
j∈Nu(i) rujwij∑
j∈Nu(i) |wij |

(2.11)

If we are focusing on predicting a rating to an item, we must take into account that
each user has its own personal scale. A rating of 4 over 5 can be the standard rating of a
user and an eccentric rating for another one, so it can be useful to normalize the ratings.
Two of the most popular normalization schemes are mean-centering and Z-score [35, 23].
The formula of the mean centering normalization (for a user-based approach) is:

r̂ui = r̄u +

∑
v∈Ni(u)(rvi − r̄v)wuv∑

v∈Ni(u) |wuv|
(2.12)

And of the Z-score normalization:

r̂ui = r̄u + σu

∑
v∈Ni(u)(rvi − r̄v)wuv/σv∑

v∈Ni(u) |wuv|
(2.13)

where r̄u and σu correspond, respectively, to the user’s u average rating and standard
deviation, calculated from the observed interactions with the system.

Both formulas can be used for item-based approaches as follows. The mean centering
normalization:

r̂ui = r̄i +

∑
j∈Nu(i)(ruj − r̄j)wij∑

j∈Nu(i) |wij |
(2.14)

and the Z-score normalization:

r̂ui = r̄i + σi

∑
j∈Nu(i)(ruj − r̄j)wij/σj∑

j∈Nu(i) |wij |
(2.15)

The Equations 2.10 and 2.11 perform well when predicting the rating that a user will
give to an item. However, this it not the case when the system is evaluated with ranking
metrics such as Precision, Recall, MRR or nDCG. When evaluating with these metrics,
Equation 2.16 performs better when it is not normalized [16, 2]:

r̂ui =
∑

v∈Ni(u)

rviwuv (2.16)

In this equation, r̂ui represents the score to be used when ranking the item, not the
predicted rating. Hence, using this approach, error metrics like MAE or RMSE cannot be
calculated (see Section 2.3).

To compute similarities between users, there are three popular approaches: the cosine
similarity, Pearson Correlation, and Jaccard index:

cos(u, v) =

∑
i∈Iuv ruirvi√∑

i∈Iu r
2
ui

∑
j∈Iv r

2
vj

(2.17)

PC(u, v) =

∑
i∈Iuv(rui − ru)(rvi − rv)√∑

i∈Iuv(rui − ru)2
∑

i∈Iuv(rvi − rv)2
(2.18)

12 Chapter 2. State of the art

Jaccard(u, v) =
|Iu ∩ Iv|
|Iu ∪ Iv|

(2.19)

The reader may notice that the first two metrics are bounded between [-1,1]. However,
if the ratings are always positive (i.e., F ∈ [1, 5]), cosine similarity is actually bounded
between [0, 1]. The three equations shown above are defined this way for a user-based
k-NN approach. Equivalent formulations can be derived to compute similarities between
items:

cos(i, j) =

∑
u∈Uij ruiruj√∑

u∈Ui r
2
ui

∑
u∈Uj r

2
uj

(2.20)

PC(i, j) =

∑
u∈Uij (rui − ri)(ruj − rj)√∑

u∈Uij (rui − ri)
2
∑

u∈Uij (ruj − rj)
2

(2.21)

Jaccard(i, j) =
|Ui ∩ Uj |
|Ui ∪ Uj |

(2.22)

There are more similarities metrics that are used in recommendation, like Adjusted
Cosine similarity (AC) [38] or Mean Squared difference (MSD) [39], however the ones
shown here are the most widely and typically used.

2.2.4 Matrix factorization models

Matrix factorization (MF) techniques, also known as model-based techniques, were the first
choice for implementing collaborative-filtering recommenders and due to their accuracy
they are the preferred technique for working with the Netflix data (one of the largest
available datasets in the community) [27]. These models try to explain the ratings by
characterizing both users and items on a number of factors (denoted as k) obtained from
the rating matrix. Hence, they map the users and items to a joint latent factor space of
dimensionality k, so user-item interactions are modeled as dot products in that space [28].
Thus, each user u ∈ U is associated with a vector pu ∈ Rk and each item i ∈ I with a
vector qi ∈ Rk. Then, the inner product of qTi · pu approximates the rating of user u to
item i, that is:

r̂ui = qTi · pu (2.23)

Once this formulation is derived, the important step is learning the factor vectors (qi
and pu). To do so, it is necessary to minimize the regularized squared error:

min
q∗,p∗

∑
(u,i)∈R

(rui − qTi pu)2 + λ(||qi||2 + ||pu||2) (2.24)

In this case, R is equivalent to the set of pairs (u, i) whose rating is known. The λ variable
is a constant whose purpose is to avoid overfitting (regularization term), as this is computed
over the set of known ratings. The minimization of Equation 2.24 can be done by stochastic
gradient descent (SGD) or alternating least squares (ALS). For the first case, the system
predicts rui for each rating in the training set. The error is then computed as:

eui = rui − qTi · pu (2.25)

Then the parameters are modified proportionally to γ in the opposite direction of the
gradient:

qi ← qi + γ(eui · pu − λqi) (2.26)

pu ← pu + γ(eui · qi − λqu) (2.27)

2.2. Recommender Systems 13

The process finishes in a number of iterations, or when the error is less than a threshold.
However, sometimes ALS is preferred when the system can effectively parallelize as both
qi and pu are computed independently, or when the system makes use of implicit data [28].

One important advantage of matrix factorization methods is that we can add a bias in
order to improve the predicted rating. The basic bias is defined as:

bui = µ+ bi + bu (2.28)

where µ is the mean of all ratings of the system, and bi and bu represent the deviation of
item i and user u respectively. Then, the rating prediction becomes:

r̂ui = µ+ bi + bu + qTi · pu (2.29)

And the minimization becomes in this case:

min
q∗,p∗,b∗

∑
(u,i)∈R

(rui − µ− bi − bu − qTi pu)2 + λ(||qi||2 + ||pu||2 + b2u + b2i) (2.30)

In [25], the authors introduce new variables to the matrix factorization problem. More
specifically, a set of binary variables indicating the preference of user u to item i denoted
as πui; these variables take the value 1 if the user has consumed the item (i.e., rui > 0). A
confidence variable is also defined as:

cui = 1 + αrui (2.31)

where α is a parameter to be configured. Then, as explained before, we need to compute
the vectors pu and qi using the new variables πui and cui:

pu = (Y TCuY + λI)−1Y TCuπu· (2.32)

where Y is a n× k matrix, with n and k the number of items and factors respectively, Cu

is a diagonal matrix where Cuii = cui and πu· is the vector of user preferences, that is, a
vector with the values πui in each dimension for every item i. The item vector is computed
in a similar way:

qi = (XTCiX + λI)−1XTCiπ·i (2.33)

These are not the only MF techniques that can be applied in collaborative-filtering
RS. Other interesting approaches reported in the literature are the probabilistic Latent
Semantic Analysis (pLSA) [24], that uses some hidden variables Z so that the users and
items are assumed independent given the variable Z. The different values of z ∈ Z are
finite and of size k, leading to this model:

P (i | u) =
∑
z

P (i|z)P (z|u) (2.34)

Another reported MF technique is the Latent Dirichlet Allocation (LDA) that comple-
ments pLSA with a Dirichlet distribution [8].

2.2.5 Hybrid recommender systems

Hybrid recommendation takes advantage of the techniques from two or more recommender
systems to achieve a higher performance while limiting the potential drawbacks that each
system may obtain separately [36]. Although there are hybrids that combine implementa-
tions of recommendations of the same type (for example, two content-based techniques),
the most interesting ones are those that are able to work with different recommenders.
There are different strategies for hybrid recommendation which [10] summarized in the
seven methods shown in Table 2.3.

14 Chapter 2. State of the art

Table 2.3: Hybridization methods from [10].

Hybrid
technique

Description

Weighted Each recommender obtains a score for each candidate item and
these scores are combined using a linear formula.

Switching It switches between recommenders depending on the situation.

Mixed Each recommender makes its own recommendations and the final
output is a combination of them.

Feature
combination

Features derived from various sources are combined and sent to
the recommendation scheme.

Feature
augmentation

Similar to feature combination but instead of deriving, the
recommenders augment (compute) new features and send them
to the final recommendation scheme.

Cascade They normally use a weak and a strong recommender. The weak
recommender is only used when breaking ties in the ranking.

Meta-Level A recommender produces a model, which is the input for the
second recommender. Similar to feature augmentation but the
second recommender does not work with raw data, only with the
model provided by the first recommender.

2.2.6 Sequential recommenders

Because in this work we deal with sequential information, we now review the most impor-
tant techniques that deal with this, not so well-known, recommendation task. In sequential
recommendation each user is associated with a sequence of actions S(u) = (S1, S2, S3, .., Sn)
(following the notation introduced in [22], that is similar to the one proposed in [34]). These
actions can be the items the user has consumed, or the places that s/he has visited, de-
pending on the system domain. The main goal here is to estimate the next element on
the sequence, that is, Sn+1, and recommend suitable items for that sequence. This process
differs from the generic recommendation task in that they rely only on the latest user
events to estimate future actions. In contrast, the general recommendation problem learns
what the user typically likes in a global way.

Because of this, classical collaborative-filtering approaches may not be the best tech-
niques to make sequential recommendations. For capturing these sequential patterns, a
common approach is to use an L-Markov chain model, where L denotes the number of
previous actions that we will consider to make the recommendation. An L-order Markov
chain for the user sequence can be defined as:

P (St | St−1, St−2, .., St−L) (2.35)

The most simple approach is to consider a first order (L = 1) Markov chain in which
the probability of choosing item j given the actual item i at the next step, p(j | i), is
obtained by using maximum likelihood estimation in the item-to-item transition matrix.
For the basic Markov chain models, this transition is the same for all users. However, [34]

2.3. Evaluation 15

proposed a Factorizing Personalized Markov Chain (FPMC) in which each user has its own
transition matrix, dealing to a global representation of a tensor. Besides, they make use
of factorization techniques and combine them with the Markov chain method, dealing to
a probability proportional to the sum of the inner products of the vector representations
of user u, item i, and the last item the user has consumed, item l:

pu(i | l) = qTi · pu + qTl · pu + qTi · ql (2.36)

where pu and qi are the projections of users and items on the k-dimensional latent space
(matrix factorization component). Note that this formula is not exactly equivalent to the
one in [34], as in that case, they work with every item in the last basket of products
consumed by the user.

Another interesting approach is the one proposed in [22]. In this case, instead of using
a first-order Markov chain, the authors generalize this method to an L-order making a
weighted sum for the short and long term dynamics of the user preferences. In that paper,
the authors combine Markov chains with Factored Item Similarity Models (FISM) into
an approach called Fossil (Factorised Sequential Prediction with Item Similarity Models).
According to the reported results, this approach outperforms many sequential state-of-the-
art algorithms. In this context, FISM is a method used to decompose the matrix W of
the Sparse Linear Methods (SLIM) shown in [32]. In SLIM, the recommendation score of
a user to an item is computed as:

âij = aTi · wj (2.37)

where aTi is the rating history of u on all items, considering the value 0 in those items that
have not been seen and wj is a column vector of aggregated coefficients. FISM approximates
the item-to-item similarity matrix W as:

W = P ·QT (2.38)

where P and Q are two matrices of size |I| × k, with k the number of latent dimensions.
Finally, there are some articles where the LCS technique has been used as a pattern

finding algorithm. In [40], the authors created a recommendation system using the LCS
algorithm. They stored the information from the transactions of previous users and, based
on that history, a list of recommended products is displayed. Based on this information,
they used LCS to predict and recommend users’ future requests. However, to the best of
our knowledge, no prior work has used this technique to create a sequential recommender
or as a similarity metric, something that we will explore in the rest of this work.

2.3 Evaluation

Evaluation is a necessary step in analyzing the effectiveness of a recommendation system.
However, there is no single way to evaluate a recommendation technique, since there are
several aspects that can be analyzed. In some cases, we are only interested in predicting
ratings and computing the error between these predictions and the real ratings (error
metrics), but sometimes it is useful to provide a list of potentially relevant items to the
user and check their real relevance (ranking quality) or analyze how novel and diverse
the recommended items are as users tend to value better recommendations of different
characteristics (novelty and diversity metrics). Due to this variety of metrics, there is
typically no algorithm that outperforms every other method in all possible situations [21].
In this section we present these three evaluation approaches, which are currently the ones
most popular to evaluate recommendation techniques.

16 Chapter 2. State of the art

2.3.1 Error metrics

A way to test how good a recommender system performs is to compare ratings returned
by the system against the ones in a test split of a dataset. The two most popular metrics
to do this are Mean Absolute Error (MAE, Equation 2.39) and Root Mean Square Error
(RMSE, Equation 2.40) [19]:

MAE =
1

|Rtest|
∑

rui∈Rtest

|g(u, i)− rui| (2.39)

RMSE =

√
1

|Rtest|
∑

rui∈Rtest

(g(u, i)− rui)2 (2.40)

In both metrics, Rtest denotes the ratings in the test set, g(u, i) is the predicted rating,
and rui denotes the real rating (note that as the difference is squared or absolute, these
values can be exchanged). RMSE tends to penalize more large errors than MAE [21].
Higher values indicate that the recommender predicts ratings farther apart from real ones
and, hence, they are bad predictions. Nevertheless, even though this kind of evaluation was
one of the first metrics used in recommendation and the one used in the Netflix prize [31],
it is incomplete, as these metrics can only be applied to observed ratings, while real-world
problems may take more benefit from solving the ranking-oriented evaluation problem [41].

2.3.2 Ranking quality evaluation

Sometimes ratings are not available because we only have a list of items that the user likes
to test our recommender. In this case the evaluation is done by comparing the list returned
by the recommender and the test list of the user. Hopefully, this list is created by the most
useful articles for the user, ordered according to a specific ranking that can be obtained by
maximizing the function g presented in Equation 2.1. Some of the most important metrics
are Precision (Equation 2.41), Recall (Equation 2.42), Average Precision (Equation 2.43)
and nDCG (Equations 2.44 and 2.45). Normally all of them are computed for each user of
the system, so the result for the whole system is obtained by taking the average of those
per-user metric values:

Precision =
|Relevant ∩ Retrieved|

|Retrieved|
(2.41)

Recall =
|Relevant ∩ Retrieved|

|Relevant|
(2.42)

AP =
1

|Relevant|
∑

{k:dk∈Relevant}

P@k (2.43)

nDCG =
DCG@p

IDCG@p
(2.44) DCG@p =

p∑
i=1

2reli − 1

log2(i+ 1)
(2.45)

In AP, dk denotes the document at position k in the returned list and reli in nDCG
and DCG denotes the real relevance of item i (normally from 1 to 5, no relevant items are
treated as 0). IDCG is computed in the same way as DCG but with the list of relevant
documents ordered by descending relevance. In all of them, instead of evaluating the full
list of recommended items, a top-N sublist is normally evaluated, represented as @p, where
this p is called cutoff. This is because users often prefer short instead of long lists. All
these metrics are bounded in [0, 1], where 1 is the maximum value (and the optimal one)
that can be achieved and 0 the lowest one.

2.3. Evaluation 17

2.3.3 Novelty and diversity

As mentioned before, ranking evaluation is the most extended way to analyze the perfor-
mance of recommender systems. However, this evaluation is “incomplete” as it does not
take into account the novelty or diversity of the items. It is relevant to show that although
novelty and diversity are related, they are not the same. Novelty refers to how different
the recommended items are to the ones that the user has previously consumed, whereas
diversity, on the other hand, analyzes how different to each other are the recommended
items [42]. These dimensions of recommendation should be as fundamental as the eval-
uations presented in previous subsections. The most important metrics that are used to
measure novelty and diversity according to [13, 42] are:

Average Intra-List Distance
One of the first diversity metrics proposed. It is computed as the average pairwise

distance of the items in the set of recommended items R:

ILD =
1

|R|(|R| − 1)

∑
i∈R

∑
j∈R

d(i, j) (2.46)

where d(i, j) is a distance measure that can be specified.

α-nDCG
This metric was proposed in [15]. It is a diversity metric extension of the nDCG metric

shown in Equation 2.44. The idea of this metric is to penalize the score of retrieved docu-
ments if they share features with documents ranked higher in the list (the higher the value
of α, the higher the penalization). As nDCG, it computes the division between DCG and
IDCG. In this case, the gain vector is computed as:

G[k] =
m∑
i=1

J(dk, i)(1− α)ri,k−1 (2.47) ri,k−1 =
k−1∑
j=1

J(dj , k) (2.48)

And DCG formula is:

DCG[k] =

k∑
j=1

G[j]

log2(1 + j)
(2.49)

where J(dk, i) = 1 if d contains the “keyword” or “nugget” i and J(dk, i) = 0 otherwise.
In general, for each item, the value of DCG will be smaller whenever more articles contain
the same keywords.

Aggregate diversity
A diversity metric which counts the total number of items that the system recommends:

AggDiv =

∣∣∣∣ ⋃
u∈U

Ru

∣∣∣∣ (2.50)

Gini Index
A diversity metric that shows how unequally different are the items chosen by a partic-

ular system s:

Gini = 1− 1

|I| − 1

|I|∑
k=1

(2k − |I| − 1)p(ik | s) (2.51)

18 Chapter 2. State of the art

p(i | s) =
|{u ∈ U|i ∈ Ru}|∑
j∈I |{u ∈ U|j ∈ Ru}|

(2.52)

where p(ik | s) is the probability of the k-th least recommended item being drawn from
the recommendation list. In this case, we will use the complementary of the Gini Index
proposed in [13], as defined in [43].

Other metrics
To expand knowledge about more metrics of novelty and diversity, we look for this

definition obtained from [42], in which the authors define a general recommendation metric
scheme affected by the relevance over a ranked list as:

m(R | θ) = C
∑
in∈R

disc(n)p(rel | in, u)nov(in | θ) (2.53)

where θ is a contextual variable that represents the element on which item discovery de-
pends (for example time intervals or a group of users). C is a normalizing constant to
avoid biases in the metric (normally, C = 1/

∑
in∈R disc(n)), disc(n) represents a discount

function, which serves to model the fact that items placed in a lower position in the rank-
ing are less likely to be seen (for example, disc(n) = 1/ log2 n). The term p(rel | in, u)
represents the probability of being relevant given the item and the user, and nov(in | θ)
is the function to be modeled depending on the metric we are using. Thus, for Expected
Popularity Complement (EPC) we have that nov(in | θ) = 1 − p(seen | i, θ), that means
the complement of the probability that the item was seen given the context and the item.
This leads to this equation:

EPC = C
∑
ik∈R

disc(k)p(rel | ik, u)(1− p(seen | ik)) (2.54)

For other metrics like expected inverse popularity (EIP), the term nov(in | θ) was
defined as − log2 p(seen | i, θ) whereas for Expected Free Discovery (EFD), nov(in | θ) =
− log2 p(i | seen, θ). The other functions remain the same. However, in the same article,
the authors also described a distance-based novelty model. For example, the Expected
Profile Distance (EPD) metric can be expressed as:

EPD = C ·
∑

ik∈R,j∈Iu disc(k)p(rel | in, u)p(rel | j, u)d(ik, j)∑
j∈Iu p(rel | j, u)

(2.55)

where d(ik, j) is the complementary of any possible similarity metric like Pearson or Cosine.
Besides, they also defined a diversity metric similar to ILD, shown in Equation 2.46 with
rank discount and relevance weighting (Expected Intra-List Diversity).

2.4 Datasets

In this section, we describe the different datasets that have been used in the experiments
reported later. All of them are publicly available datasets and vary from the movie (Movie-
lensHetRec, MovieTweetings) to music (Lastfm) domain. Due to the intrinsic nature of
the data, in most cases (except in Lastfm) it was not necessary a previous pre-processing
step. Specific details of each dataset are shown below:

2.4. Datasets 19

Table 2.4: Statistics about the datasets used in the experiments.

Dataset Users Items Ratings Density

MovielensHetRec 2,113 10,197 855,598 3.97%
LastFm 1,892 17,632 92,834 0.28%
MovieTweetings 45,324 26,087 541,304 0.045%

MovielensHetRec
The MovielensHetRec dataset1 is a subset of the Movielens10M dataset in which only

users with both ratings and tags have been kept [12]. Each movie of the dataset has a lot
of information associated with it (movie title in English and Spanish, countries of origin of
the movies, etc), but we will only use genres and directors as complementary information
of the ratings. Ratings in this dataset are made on a 5-star scale with half-star increments
(from 0.5 stars to 5.0 stars). This dataset includes timestamps for each interaction between
a user and an item.

LastFm
The Lastfm dataset can also be obtained in the same url as the previous one. This

dataset is the only one among those reported that does not contain explicit data, but only
implicit data (frequencies of the listened artists instead of ratings). We transformed the
frequency numbers to ratings (implicit to explicit data) in a similar way as defined in [14].
Thus, the ratings can be obtained in this way:

r̃ui ∼
⌈

5 · Fui
maxFu

⌉
The transformation is done by dividing the number of listenings of the specific artist

(Fui) and the maximum number of listenings of that user (maxFu). The factor 5 allows
us to create ratings between 1 and 5.

This dataset, on the other hand, does not contain any temporal information, since only
aggregated information for each (user, artist) pair is provided, instead of information at
track-level, where a timestamp would be available.

MovieTweetings
The MovieTweetings dataset2 consists of ratings on movies that were contained in well-

structured tweets on Twitter. Ratings go between 1 to 10 with no half-scales. Although
there are many snapshots, we decided to use the latest dataset. We will take advantage of
the timestamps from this dataset in order to make recommendations. At the time that we
were working with this data, the largest (newest) timestamp was 1476136977.

1https://grouplens.org/datasets/hetrec-2011/
2https://github.com/sidooms/MovieTweetings

https://grouplens.org/datasets/hetrec-2011/
https://github.com/sidooms/MovieTweetings

20 Chapter 2. State of the art

Chapter 3

LCS as a similarity metric

As mentioned before, one of the purposes of this Master’s Thesis is to analyze the perfor-
mance of LCS as a similarity metric against other important state-of-the-art recommenders.
In fact, as we shall show in this section, this algorithm can be generalized to work in a purely
collaborative-filtering approach or in a hybrid content-based and collaborative-filtering sys-
tem taking advantage of different sequence orderings.

Firstly, we show the formulation used to transform users into generic sequences (Section
3.1). Afterwards, some extra parameters are introduced in order to improve the perfor-
mance of the algorithm in terms of both accuracy metrics and execution time (Section
3.2). Subsequently, we introduce four possible normalization functions in order to bound
the LCS-based similarity (Section 3.3) and, then, we discuss different ways to create se-
quences, including a time-based ordering of the items, whose purpose is to integrate the
temporal dimension into the similarity metric (Section 3.4). We end this chapter with a
toy example to better understand how this new approach works in detail (Section 3.5)
and a discussion about which specific instantiations of an LCS-based similarity metric are
equivalent to more classical similarity metrics (Section 3.6).

3.1 Representing users as sequences

In Section 2.1 we presented the original LCS procedure to work with strings as sequences
(Algorithm 1). In a k-NN recommender, instead of two strings, we receive two users or
two items and the longest common subsequence between them will be considered as their
similarity. Hence, in order to adapt this algorithm into the recommendation domain, it is
necessary to define how to represent the users or items properly as sequences and, according
to that representation, we need a function that identifies when two characters are the same.

In the rest of the chapter, we focus on the case of user similarity, that is, sim(u, v),
although this formulation can be adapted for an item similarity in an analogous way.
Hence, we need to generate sequences from the information related to a user, and apply
the LCS algorithm to such sequences. After the sequences are generated, an adaptation of
Algorithm 1 is needed so that we can compute the LCS between them.

Our adaptation of the LCS algorithm as a similarity metric between users can be seen
in Algorithm 3. As the reader may observe, there are two relevant modifications to the
original approach: a function that transforms users u and v to sequences x and y, denoted
as f , and a δ-matching that allows us to configure when two symbols of the alphabet
are considered equal. This second modification is introduced to allow considering two
users as equals even when a small rating difference is found, because of this we changed
the original matching condition of the LCS algorithm by deciding that two symbols are

21

22 Chapter 3. LCS as a similarity metric

Algorithm 3 Longest Common Subsequence for Recommender Systems

1: procedure LCS RecSys(u, v, f, δ) . The LCS of users u and v applying
transformation f

2: (x, y)← (f(u), f(v)) . String x contains m symbols
3: L[0 · · ·m, 0 · · ·n]← 0
4: for i← 1,m do
5: for j ← 1, n do
6: if match(xi, yj , δ) then
7: L[i, j]← L[i− 1, j − 1] + 1 . There is a δ-matching
8: else
9: L[i, j]← max(L[i, j − 1], L[i− 1, j])

10: end if
11: end for
12: end for
13: return L[m,n]
14: end procedure

equivalent when their difference is below the variable δ. Nevertheless, this is not the only
possible configuration. We can expand this matching threshold by exploiting the semantic
information of the items (for the domain of movies or books, we can consider that two
articles are the same if they share any genre).

However, the most critical component in this approach is the transformation function
f . Depending on the information that we are using to represent users, we can obtain
different sequences and hence disparate results. Assuming the user can be described as
a set of items and ratings (or any other implicit numeric data, like click counts, access
frequencies, or binary interactions), we describe the following steps to generate a sequence
in a formal and generic way:

1. Extend the associated information about the items interacted by the user.
Formally, we need a function that returns a set of elements associated to every item.
That is, a function of the form: e : I ×R → I×T k, where k > 0 denotes the number
of those elements that function e is able to associate with every item, and T represents
those elements, modeled in general as tuples. Note that a pure CF approach is derived
from this formulation if we use the identity function in this step: eir(i, r) = (i, {i, r}).
Nevertheless, content-based methods would exploit the feature space so that every
item is linked to their corresponding features: eAr(i, r) = (i, {Aj(i), r}j), where the
feature space A could be genres, directors, or actors in the movie domain or text
features in news recommendation.

2. Represent the tuples created as interpretable symbols by the LCS algo-
rithm. Here, we propose to use t : I ×T k → I ×Zk, where a proper transformation
between T and Z (the set of integer numbers) is required. The reason why we use
the set of integer numbers instead of strings or other space is that they are compu-
tationally more affordable. As a simple example, associated to the function eir we
define the function tir(i, r) = 10 · id(i) + r in such a way that it is also possible to
recover the original elements of the tuple (the item identifier and the corresponding
rating of the interaction) given its output (bijective function). The factor of 10 that
multiplies the id allows us to separate the item id and the rating while combining
them into a single symbol; obviously, this factor depends on the rating interval. Thus,

3.1. Representing users as sequences 23

if ratings are, for example, between 1 and 20, the transformation function should be
tir(i, r) = 100 · id(i) + r in order to make that recovery possible.

3. Arrange the symbols into a sequence. In string matching, the ordering of the
sequence is important, and it is an aspect that the LCS algorithm is able to exploit.
As a first approach, this step can be simplified to just sort the items in the sequence
according to their item id, although it is worth noting that any other global ordering
of the items would be equivalent to this one, for example, by item popularity. In this
way, the sequence arranging function proposed will take several pairs of items and
tuples generated as described before and will output a sequence of symbols, prepared
to be processed by the LCS algorithm. Formally, such a function will be defined as

s({ij , (njk)k}j) = ((njk)k)
|I|
j=1.

Finally, the sequence generation function f could be seen as a composition of the three
functions presented above: f = s ◦ t ◦ e.

To get an intuitive idea about this process, let us present an example considering a
dataset based on movies, which usually have some content-based information associated
like actors, directors, or genres (which can be extended to work with tags or, for example,
the most important keywords from the synopsis). We have the film Avatar, with id 10, and
a user u who has rated it with a 4. If we use function egr to extend this information based
on genres – i.e., A = G and then egr(i, r) = (i, {Gj(i), r}j) – we could find that item 10 has
three genres: Adventure (id 1), Sci-Fi (id 6) and War (id 15). According to the definition
of egr, this function leads to the tuple (10, {{Adventure, 4}, {Sci-Fi, 4}, {War, 4}}). After
that, we would represent these tuples as useful symbols for LCS using a reasonable tgr
function. By using a similar one to tir, we could transform each genre into its id and using
that value in combination with its associated rating, creating the tuple (10, {14, 64, 154}).
To generate the sequence corresponding to this user, we take the tuples associated to the
only item this user has rated: (14, 64, 154).

However, if the user has also rated Goodfellas (with a rating value of 5 and whose id
is 15), then the output is slightly different. This movie has Drama (id 2) and Crime (id
7) as genres. The tuple related to this second movie would be (following the same steps
as before, i.e., using tgr ◦ egr): (15, {25, 75}). The final step would produce the sequence
(14, 64, 154, 25, 75), since the id of Avatar is lower than the one for Goodfellas. Note that
if eir and tir functions are used (pure collaborative-filtering information), then each item
will only generate one tuple and the final generated sequence will be shorter: (104, 155).

From now on, the sequence generation function f will be denoted in the same way as
their respective transformation function t; for instance, fir corresponds to the transforma-
tion tir where items and ratings are considered for the sequence generation, and similarly
for fgr. These sequences (generated either using content-based or collaborative informa-
tion) will be then used by the LCS algorithm to find similarities between users which, in
turn, will be integrated in a technique based on nearest-neighbors, so that recommenda-
tions can be generated in a standard way. As we shall see, the way these sequences are
generated has a critical impact in the final performance of the recommendation algorithm.
Recalling the taxonomy shown in Table 2.3, the reader may see that when making use
of content-based information, this recommender becomes a hybrid system with a feature
combination scheme.

24 Chapter 3. LCS as a similarity metric

Table 3.1: Summary of parameters described.

Parameter Notation Description Effects

Preference γ It only considers items that
have been rated with a rating
higher or equal than the pref-
erence value

Computation time reduction
Coverage reduction

Confidence τ It only considers neighbors
whose similarity is higher or
equal than the confidence
value

Quality of neighbors improve-
ment
Coverage reduction

Threshold δ It allows to consider two items
equals if their rating differ-
ence is lower or equal than the
threshold

Quality of neighbors reduc-
tion
Coverage improvement

3.2 Preference and confidence

As shown previously, the LCS algorithm has a complexity ofO(mn), withm and n being the
length of the sequences to be compared. When receiving very large sequences, computing
LCS between all users may become too expensive in terms of computational cost. However,
the length of both sequences can be reduced if the less important items are filtered. We
introduce a parameter, denoted as γ (we will name it preference filter) to indicate which
items will be considered when computing the LCS algorithm. The idea is that items with
low ratings may not be interesting when finding neighbors of a particular user.

This filter can be introduced as a prefiltering step, where low preferences from users
are filtered out, and these processed users are the input for the transformation function f ;
this would introduce a fourth component in the definition of the transformation function:
fγ = s ◦ t ◦ e ◦ γ. Another possibility for modeling this step is to modify one of the
functions involved in the definition of f so that the input to the function remains the
same. In this case, it would be enough by having an extended function eγ that only outputs
values whenever the associated rating is above the γ threshold; hence, the corresponding
fγ = s ◦ t ◦ eγ would work as explained in the previous section. In both cases, Algorithm
3 would work unaware of this filter.

On the other hand, while obtaining similar users to a target one, we can set a minimum
value of similarity to consider another user as a (valid or useful) neighbor. This parameter
can be seen as the number of items that both users have rated in a similar way (or depending
on the threshold δ, with a value ≤ δ). We have added this parameter in the model, where
we denoted it as confidence filter and is represented by τ . This parameter imposes a harder
constraint on the potential neighbor, reducing the number of possible neighbors that a user
may have. This parameter is equivalent to the threshold filtering defined in [19].

It is important to note that, although these two filtering approaches aim at increasing
the accuracy of the discovered neighbors (because only important preferences are being
considered or only the highest similarities are taken into account), the final coverage of the
algorithm can be damaged if these parameters are very restrictive, since less neighbors will
satisfy these constraints, which may produce less recommendations for each user. Table
3.1 summarizes the main effects (positive and negative) of these parameters.

3.3. Normalization functions 25

3.3 Normalization functions

The LCS algorithm obtains a value in the interval [0,min(|f(u)|, |f(v)|)] when calculated
for two users u and v. However, in neighbor-based recommendation, similarity metrics
are usually normalized to have a range in [−1, 1] or [0, 1], and different normalization
techniques are then applied in order to estimate the utility function g(u, i) [19]. Following
the same rationale, we propose four normalizations for our LCS-based similarity metric:

simf,δ
1 (u, v) = LCS RecSys(u, v, f, δ) (3.1)

simf,δ
2 (u, v) =

simf,δ
1 (u, v)2

|f(u)| · |f(v)|
(3.2)

simf,δ
3 (u, v) =

2 · simf,δ
1 (u, v)

|f(u)|+ |f(v)|
(3.3)

simf,δ
4 (u, v) =

simf,δ
1 (u, v)

max (|f(u)|, |f(v)|)
(3.4)

simf,δ
5 (u, v) =

simf,δ
1 (u, v)

min (|f(u)|, |f(v)|)
(3.5)

Except for Equation 3.1, that produces the LCS-based similarity with no normalization,
that is, as calculated by the Algorithm 3, the other equations present different normaliza-
tions of Equation 3.1, producing values in the [0, 1] interval. In general, these normaliza-
tions favor longer subsequences found inside short sequences, as they include the sequence
lengths in the denominator as a penalization. These functions were proposed in [18] to
compare the output of the LCS algorithm, in a similar way as the one proposed here.

3.4 Sequence ordering

As mentioned in the third step of the sequence generation, there are different orderings
that could be taken into account when computing the LCS-based similarity approach.
The most elementary ordering that can be applied to generate the sequences is an order
based on the id, either ascending or descending. This type of ordering is global, in the
sense that it is the same for all users. Because of that, any other global ordering would
produce equivalent sequences, for instance, one where the items are sorted according to
their popularity. Nonetheless, it might be possible to produce orderings making use of
temporal information – for example, exploiting the rating timestamp. In this case, we
would sort the items consumed by the user in ascending order as they were consumed
(older articles at the beginning and newer articles at the end of the sequence). This
approach has the following advantages over a global ordering:

• The LCS-based similarity will not only maximize similarities of users that have rated
similar items in the same way, but it will also add a temporal factor by matching
users having similar patterns while rating items.

• Recommendations are expected to be more personalized, as the neighbors are selected
by matching temporal patterns.

• As the ordering is independent of the transformation function, we are able to match
temporal patterns not only by item id but also with content-based data, making
a hybrid collaborative-filtering and content-based technique that exploits temporal
information. The same can be said about the confidence and preference parameters.

26 Chapter 3. LCS as a similarity metric

Figure 3.1: Example of different user’s rating history.

In order to clarify the previous explanation, let us consider the example shown in Figure
3.1. In this case, we have the target user u and the different neighbors v1, v2, v3. For the
sake of simplicity, we will not consider ratings, that is, all items are liked for each user
that have rated it; furthermore, the user history is ordered by timestamp. If we consider a
simple collaborative-filtering LCS approach, we can see that the similarities with respect
to user u are 3, 4, and 3 for v1, v2, and v3 respectively (see Section 3.5 for more details
on these derivations). However, if we consider a classic k-NN recommender, we see that
all neighbors have rated the same number of articles with respect to user u, 4 in this case.
In such case, the classic k-NN algorithm will obtain the same predicted score for movie
Avatar (i2) and Rogue One: A Star Wars Story (i13). However, when time is considered
in the ordering function for the LCS-based similarity, the latter movie will receive a higher
score since user v2 has a higher similarity than the other neighbors.

3.5 Toy example

To better understand how the proposed similarity function works under different trans-
formation functions, we show in this section a toy example where two users have rated
four movies each. Table 3.2 shows the items consumed by the first user, u1, and Table
3.3 those consumed by the second user, u2. In these tables, some content features (genres
and directors) are also present, together with their corresponding ids, to understand how
the transformation function generates the sequences in each situation. Table 3.4 shows
the sequences obtained for each variation of the transformation function f , together with
the result computed by the LCS-based similarity function. Here, fir and fgr denote the
functions presented in Section 3.1, and following a similar notation, fdr represents se-
quences built using directors and ratings, whereas we denote as fi when only item ids are
considered.

The first thing we notice in Table 3.4 is that the matching threshold does not affect the

3.6. Relation with other metrics 27

Table 3.2: Toy example. Items consumed by user u1.

Movie (id) Director (id) Genres (ids) User’s Rating

The Wild Bunch (M1) Sam Peckinpah (D1)
Western (G1)
Robbery (G2)

5

Seven Samurais (M2) Akira Kurosawa (D2)
Action (G3)
Drama (G4)
Adventure (G5)

4

The Iron Cross (M3) Sam Peckinpah (D1) War (G6) 3

Gladiator (M4) Riddley Scott (D3)
Action (G3)
Drama (G4)
Adventure (G5)

4

Table 3.3: Items consumed by user u2.

Movie (id) Director (id) Genres (ids) User’s Rating

Seven Samurais (M2) Akira Kurosawa (D2)
Action (G3)
Drama (G4)
Adventure (G5)

5

Gladiator (M4) Riddley Scott (D3)
Action (G3)
Drama (G4)
Adventure (G5)

2

Alien (M5) Riddley Scott (D3)
Sci-Fi (G7)
Terror (G8)

5

The Magnificent Seven (M8) John Sturges (D4)
Western (G1)
Adventure (G5)

4

user representation, which allows us to separate the process in two steps: we generate as
many user sequences as transformation functions we want to test, and then we compute the
LCS-based similarity according to different parameters. It is important to note, however,
that different preference filters γ generate different sequences. The confidence filter, on
the other hand, only affects the final output of the comparison. In the examples presented
here, the same similarity value is obtained when the preference filter is used (γ > 0) and
when it is ignored, although this will not be true in general; it is interesting to observe,
nonetheless, that the application of the preference filter produces shorter sequences, hence
allowing for more efficient computation of the LCS algorithm.

We also observe that different representation spaces (items, directors, genres) create
shorter or longer user sequences, which, in the end, affect the final similarity value. Because
of this, to allow fair comparisons of similarities without having to tune or analyze each of
them separately, the use of normalization functions is key.

3.6 Relation with other metrics

It is interesting to observe that the similarity computed using a transformation based on
items – i.e., f = fi – is equivalent to computing the item overlap between the two users
(Iuv = Iu ∩Iv), which is the basis for several metrics such as similarities based on Jaccard
or item co-occurrence. Furthermore, when the normalization function sim2 is applied, such
instantiation is almost equivalent to the Jaccard similarity metric and ranking-equivalent
to a binary Cosine. The explanation goes as follows: simfi,0

2 (u, v) = |Iuv|2/(|Iu| · |Iv|) ∝u
|Iuv|2/|Iv|, where in the last step we make use of a ranking-equivalent transformation

28 Chapter 3. LCS as a similarity metric

Table 3.4: Toy example. User representation as sequences and LCS-based similarity for
different transformation functions, matching thresholds (δ), and preference (γ) and confi-
dence (τ) filters.

f δ γ τ f(u1) f(u2) simf,δ
1 (u1, u2)

fi 0 0 0 (1, 2, 3, 4) (2, 4, 5, 8) 2

fir

0 0 0
(15, 24, 33, 44) (25, 42, 55, 84)

0
1 0 0 1
1 4 0 (15, 24, 44) (25, 55, 84) 1

fdr

0 0 0
(15, 24, 13, 34) (25, 32, 35, 44)

0
1 0 0 2
1 0 3 0
0 5 0 (15) (25, 35) 0

fgr

0 0 0
(15, 25, 34, 44, 54, 63, 34, 44, 54) (35, 45, 55, 32, 42, 52, 75, 85, 14, 54)

1
1 0 0 4
1 4 0

(15, 25, 34, 44, 54, 34, 44, 54) (35, 45, 55, 75, 85, 14, 54)
4

1 4 2 4

(by removing a term that only depends on user u); on the other hand, Jaccard similarity
between users u and v is computed as |Iuv|/|Iu ∪ Iv|, this similarity is then used to rank
the potential users as neighbors, so, let us suppose we are computing the neighbors of user
u, then |Iu∪Iv| = |Iu|+ |Iv|−|Iuv| ∝u |Iv|−|Iuv|; at the same time, binary Cosine (where
the interactions between users and items are either 1 or 0) is defined as follows:

cos Bin(u, v) =

∑
i∈Iuv ruirvi√∑

i∈Iu r
2
ui

∑
i∈Iv r

2
vi

=

∑
i∈Iuv 1√∑

i∈Iu 1
∑

i∈Iv 1
=

|Iuv|√
|Iu| · |Iv|

(3.6)

Therefore, by taking

√
simfi,0

2 (u, v) we find an equivalence with cos Bin(u, v). Even
though we have not used this similarity in our experiments, it evidences the generality of
the proposed LCS-based similarity metric, and opens up further developments where other
metrics could be integrated under the same formulation.

In fact, if other modifications are allowed, we can even instantiate the Pearson corre-
lation coefficient. Let us consider the sequences generated by the identity function (one
symbol per item), natural ordering, exact matching, and no ratings concatenated to the
symbol. If we modify Algorithm 3 so that it receives an auxiliary array including the
ratings consumed by the user corresponding to each sequence, whenever we find a match,
besides increasing the value of LCS by 1, we can accumulate the value (rxi − rx) for each
user x. By definition (f = fi, δ = 0, and natural ordering), this value will only be updated
when both users have rated the same item. Once we have finished computing the similarity,
we need to perform a new normalization function considering the deviation of each user
(see Equation 2.18). In this way, although with a lot of manual tuning, we are able to
compute Pearson correlation between two users using a modified version of the proposed
approach based on LCS as user similarity.

Chapter 4

Experiments

In this chapter we show the results obtained when using the proposed LCS-based similarity
metric. We have experimented with three different datasets, analyzing both ranking-based
accuracy metrics and novelty and diversity as additional evaluation dimensions. Besides
the performance of the proposed similarity, we also show the results obtained by other
state-of-the-art recommenders in order to make a comparison between them and the LCS
recommenders.

This chapter is organized as follows: firstly, we describe the experimental setup of
the experiments, the metrics and configuration of the experiments as well as the different
baselines used in order to compare our approach against them (Sections 4.1.1 and 4.1.2).
Secondly, we show some results using both pure collaborative-filtering and hybrid content-
based and collaborative-filtering approaches, in order to justify the validity of LCS as a
similarity metric (Section 4.2). Next, the parameters of our approach (preference, confi-
dence, and normalizations) are analyzed in order to show their performance in LCS-based
recommenders (Section 4.3). Then, we illustrate the impact of generating sequences or-
dered by timestamp (Section 4.4). For all previous cases we analyze the performance in
terms of ranking evaluation (mainly through the nDCG metric) and in terms of novelty
and diversity (Section 4.5). Finally, we compare our results with other state-of-the-art
algorithms and discuss all the results obtained (Section 4.6).

4.1 Experimental setup

To analyze the performance of LCS as a similarity metric for both pure collaborative-
filtering and content-based LCS similarity approaches, we will work in the first place with
the MovielensHetRec dataset, explained in Section 2.4 (in [12] the reader may find a more
detailed description of this dataset). As the ratings in this case are in half scale from 0.5 to
5, instead of multiplying the id of the item by 10 as shown in Section 3.1, we will multiply
it by 100. For example, for the pure collaborative-filtering approach (fir), if a user has
rated the item whose id is 15 with a 4.5, the final representation will be 1545.

We have also experimented with the Lastfm dataset, described in the same section as
MovielensHetRec. This second dataset, despite containing content information (tags), will
only be used to test the pure collaborative-filtering approach, as the association between
items and tags is very sparse. Besides, in this case, and as explained before, a explicit
transformation of the data is necessary (see Section 2.4). As we shall see, the following
section includes several experiments for the MovielensHetRec dataset; to not clutter this
section with results from a different dataset, all results related to Lastfm dataset will be
presented in Appendix C.

29

30 Chapter 4. Experiments

The last experiments (related to the temporal ordering) will use the MovieTweetings
dataset. The main reason for including this dataset (although the domain is the same
as in MovielensHetRec, that is, movies) is because the timestamps in this case are more
realistic, allowing us to define a meaningful temporal split (the details of this split will be
explained later).

4.1.1 Evaluation Methodology

In this document, the performance of the different experiments is reported using ranking
evaluation metrics (Precision, Recall, MAP, and nDCG, with special emphasis on the last
one). For novelty and diversity metrics, we will use EPC and EPD to measure novelty and
Aggregate diversity, α-nDCG, EILD, and Gini to determine the diversity of recommen-
dations. Unless stated otherwise, all the metrics will work only with the first five items
returned by the recommender (i.e., using a cutoff of 5). Furthermore, the results have been
obtained by taking into account only the items that are in the test split and have been
rated with a 5. The reason behind this is that recommending items that are in the test
set but with a low rating should not be considered as good recommendations (this con-
figuration may produce lower results in the mentioned metrics but, in general, the overall
comparisons do not differ). Besides, for the MovielensHetRec and the Lastfm datasets, we
have performed a 5-fold cross-validation evaluation where 80% of the data is retained to
train the recommenders and the rest is used for the evaluation. For the MovieTweetings
dataset, instead of a 5-fold split, we use a temporal split where 80% of the oldest ratings
are used for the training set and the rest for test. In all the experiments, we have worked
with the raw data (without a pre-processing step), except for the Lastfm dataset, where
we have transformed the artist listenings to a explicit rating, as described in Section 2.4.
Furthermore, as described in [6] and as a typical methodology in the field, the item rank-
ings for each user will only be composed by items the user has not previously seen, that
is, not found in the training split of that user.

For the computation of some novelty and diversity metrics, the RankSys framework
requires an auxiliary file specifying the features of each item. These features, for both the
MovielensHetRec and MovieTweetings datasets have been the genres of the movies, whereas
for the Lastfm dataset, we used the different tags associated to the items. Even though
some of the novelty and diversity metrics mentioned in Section 2.3.3 can use a discount
function and a relevance model, we have decided to take the most simple approach and
ignoring them. In such case, EILD with no discount and no relevance model is equivalent
to ILD [42]. Finally, for the metrics that use a distance metric (EILD and EPD), we have
used the cosine similarity as a basis for a distance model between items.

All the recommenders have been implemented making use of the RankSys framework1.
At some point, we also considered making use of the Apache Mahout library2, but after
some preliminary results we found they varied too much with respect to those obtained
by RankSys, always producing worse results, as we have shown in [7] (also discussed in
Appendix A). In part, this may be due to Mahout rankings being obtained by ordering
the items by descending predicted rating (the predicted rating was bounded between the
minimum and the maximum value of the ratings), producing more ties between the scores
of several items. On the other hand, RankSys produces a ranking based on scores that do
not correspond to predicted ratings, hence, they are not bounded. This behavior makes
ties more difficult to occur and it was observed that tends to perform better [16], although

1https://github.com/RankSys/RankSys
2http://mahout.apache.org/

https://github.com/RankSys/RankSys
http://mahout.apache.org/

4.1. Experimental setup 31

it prevents from computing error metrics like MAE or RMSE. More details about the
libraries and the implementations are presented in Appendix A.

4.1.2 Baselines

The most important baselines on which we will base our comparisons are the following:

1. Pop: “PopularityRecommender” from the RankSys framework. The items with more
ratings (most popular) will be recommended to users.

2. MF: a matrix factorization recommender from the RankSys framework. Specifically,
it refers to “MFRecommender” with “HKVFactorizer”, proposed in [25] since it was
the best performing factorization method in that library; other methods based on
LDA were also tested but their performance was usually lower. This factorization
method has also been described in Section 2.2.4.

3. IB: a pure collaborative-filtering recommender using a rating-based similarity be-
tween items (cosine or Jaccard). Obtained from the RankSys framework (“Item-
NeighborhoodRecommender”). Note that in the RankSys framework two types of
item similarity are defined: a binary one (where ratings are ignored and only infor-
mation about whether an interaction exists is considered) and another one where
ratings are considered in the similarity computation (vector-based variations). Some
of the implementations that correspond to those defined in Chapter 2 are the binary
approaches (for Jaccard), whereas other implementations correspond to the vector-
based ones (for cosine).

4. UB: a pure collaborative-filtering recommender using a rating-based similarity be-
tween users (cosine or Jaccard). Obtained from RankSys framework (“UserNeigh-
borhoodRecommender”). As in the IB recommender, RankSys supports two types
of user similarities: binary and vector-based.

5. PureCB: a pure content-based recommender using the approach explained in Sec-
tion 2.2.2. However, instead of the TF-IDF approach, this recommender uses a Vec-
tor Space Model (VSM) with binary weights as the performance with this approach
was better. Thus, the coordinates of the feature vectors will have a 1 in the feature
position if the item has that feature and zero otherwise. Then, for each item, we
compute the cosine similarity between the user and the item. Directors and genres
have been tested as features.

6. CBCF: a hybrid recommender system. In this case, the classical collaborative-
filtering formulation is used (Equation 2.10), but making use of content-based sim-
ilarities (instead of using rating-based ones). These similarities are generated using
genres and directors between users by transforming them into a VSM and then com-
puting the cosine similarity. This recommendation approach is the same approxima-
tion taken in the Fab system described in [4] (a meta-level hybridization scheme).

7. Fossil: FactOrized Sequential prediction with Item SImilarity ModeLs. This rec-
ommender was proposed in [22] and it is a sequential recommender that combines
similarity-based methods (like FISM) and Markov Chains, as described in Section 2.2.6.

8. MC: a Markov Chain recommender. It uses a first-order Markov Chain to make
recommendations [34].

32 Chapter 4. Experiments

Table 4.1: Configuration of the baselines used in each dataset.

Parameters

Baseline MovielensHetRec Lastfm MovieTweetings

UB1
VectorJaccardSimilarity

k=100 k=30 k=50

UB2
VectorCosineSimilarity

k=90 k=30 k=100

IB1
VectorJaccardSimilarity

k=5 k=30 k=10

IB2
VectorCosineSimilarity

k=5 k=30 k=5

CB
Binary representation
Directors as CB information

Not used

CBCF
Binary representation
k=100
Directors as CB information

Popularity None

MF
HKV factorizer

50 factors
λ = 0.1 and α = 1

Fossil
Not used

L(Markov Chain Order)=1
K=10 (Latent Feature Dimension)
bias=100

MC K=10 (Latent Feature Dimension)

Note that the PureCB and the CBCF will only be used with the MovielensHetRec
dataset, as it is the only one with content-based information. For the last two baselines,
we have used the code provided by the authors. However, we made some modifications
because the original code did not retrieve a ranking, instead it only considered the last
consumed item as a test item (only one item in test). The rest of the code remains
the same3. These two baselines will only be used in the MovieTweetings experiments.
The different parameters of each of the baselines with respect to each specific dataset are
presented in Table 4.1, where some of the parameters have been optimized for each dataset
(such as the neighborhood size and the similarity metric) whereas the default values of
other parameters were considered in some methods (this was the case for Fossil and MC
baselines).

3The original code can be obtained from https://drive.google.com/file/d/

0B9Ck8jw-TZUEeEhSWXU2WWloc0k/view.

https://drive.google.com/file/d/0B9Ck8jw-TZUEeEhSWXU2WWloc0k/view
https://drive.google.com/file/d/0B9Ck8jw-TZUEeEhSWXU2WWloc0k/view

4.2. LCS as a similarity metric 33

20 40 60 80 100
0.05

0.10

0.15

0.20

Neighbors

n
D

C
G

Item id and rating (f = fir)

20 40 60 80 100
0.05

0.10

0.15

0.20

Neighbors

Director and rating (f = fdr)

20 40 60 80 100
0.05

0.10

0.15

0.20

Neighbors

Genres and rating (f = fgr)

(f, δ = 0) (f, δ = 10)

Figure 4.1: Results of LCS-based similarity for MovielensHetRec dataset. Transformations
based on items (pure collaborative-filtering), directors, and genres using δ = 0 and δ = 10.

4.2 LCS as a similarity metric

In this section we show the results using LCS as a similarity metric without any configura-
tion parameter, only experimenting with transformation functions, in the MovielensHetRec
dataset. In this case, we denote as fir (item-rating) the pure collaborative-filtering ap-
proach, that is, where function e is the identity and users are composed of a combination
of the rated item and the rating value. We also report two content-based approaches,
denoted as fdr (directors-rating) and fgr (genres-rating) as transformation functions. The
results of these recommenders are first analyzed in terms of nDCG@5, that is, taking into
account only the first five items that the recommender suggests to each user. Later (in
Section 4.5) other evaluation dimensions such as diversity and novelty are discussed.

Firstly, in Figure 4.1 we show the results obtained when we use the three different
transformation functions. For each transformation, we report results with two δ-matching
thresholds: exact matching (δ = 0), with a continuous line and matchings allowing a
difference of ±1 in the rating value (using δ = 10 as explained before due to the presence
of half-star ratings in this dataset) with dashed lines. The same scheme is maintained
for the rest of the experiments, even though not all the datasets have half scales, which
means that, in order to avoid confusion, δ = 10 will always indicate that the similarities
are generated allowing a difference of ±1 in the ratings.

It is interesting to observe that the performance is worse when non-exact matchings
(δ > 0) are used. However, this behavior changes depending on the specific configurations
used regarding the other parameters available in the model, as we shall see in other ex-
periments later. In this case, worse neighbors are found when non-exact matchings are
allowed, probably due to an ill-defined neighborhood caused by considering users that
share similar preferences closer than users with the same preferences. Furthermore, we
see that when integrating content-based information in our LCS-based similarity metric, it
performs equally or even worse than applying a pure collaborative-filtering recommender.
In this case, the worst recommender is always the one that uses genre information, because
of this, the results using genres will be ignored in the rest of the chapter and moved instead
to Appendix B . Nonetheless, a possible reason for these low results could be that genres
in films are usually very subjective: even if two movies have the same genres, they could
be totally different.

34 Chapter 4. Experiments

20 40 60 80 100
0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

n
D

C
G

Item id and rating (f = fir)

20 40 60 80 100
0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Director and rating (f = fdr)

20 40 60 80 100
0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Neighbors

n
D

C
G

20 40 60 80 100
0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Neighbors

(f, δ = 0, τ = 30) (f, δ = 0, τ = 50) (f, δ = 0, τ = 70)

(f, δ = 10, τ = 30) (f, δ = 10, τ = 50) (f, δ = 10, τ = 70)

Figure 4.2: Results of LCS-based similarity for MovielensHetRec dataset. Different values
of confidence filter parameter τ using δ = 0 and δ = 10.

4.3 Sensitivity to confidence, preference and normalization
parameters

In this section, we show the results with preference and confidence parameters only for
the MovielensHetRec dataset. Appendix C includes the effect of these parameters in the
Lastfm dataset with a complementary study of the effect produced in the coverage of user
recommendations.

4.3.1 Sensitivity to the confidence filter parameter

Let us start with the confidence filter parameter τ . According to the previous explanation,
this parameter works as a neighbor filter, where each candidate neighbor needs to have
rated “in the same way” as the target user a configurable number of items in order to be
considered as a neighbor. In these experiments, we show three different values of confidence
(although we have analyzed the behavior for more values): 30, 50, and 70; smaller and
larger values had almost no effect, due to sparsity reasons. Nevertheless, the value of this
parameter is totally dependent on the dataset and should be tuned in consequence.

4.3. Sensitivity to confidence, preference and normalization parameters 35

20 40 60 80 100
0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

n
D

C
G

Item id and rating (f = fir)

20 40 60 80 100

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Director and rating (f = fdr)

20 40 60 80 100

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Neighbors

n
D

C
G

20 40 60 80 100

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Neighbors

(f, δ = 0, γ = 3) (f, δ = 0, γ = 4) (f, δ = 0, γ = ū)

(f, δ = 10, γ = 3) (f, δ = 10, γ = 4) (f, δ = 10, γ = ū)

Figure 4.3: Results of LCS-based similarity for MovielensHetRec dataset. Different values
of preference filter parameter using δ = 0 and δ = 10.

Figure 4.2 shows the performance of the recommenders for the directors and item
transformations using the three different values of confidence mentioned before. As in
previous experiments, the same recommenders with a δ-matching threshold of 10 are also
included. We observe that, when using different values of the confidence filter, we obtain
better results. Therefore, we can conclude that a posterior neighbor filtering improves the
performance obtained by the LCS-based approaches.

Nevertheless, there are also some similarities with the previous experiment, as the
best results are still obtained for the pure collaborative-filtering representation of the user
sequences (f = fir) and, at the same time, the exact matching still produces higher im-
provements than the non-exact matching (δ = 10).

4.3.2 Sensitivity to the preference filter parameter

We now analyze the preference filter parameter, denoted by γ. This parameter allows
us to consider in the user sequences only those items having a rating value higher than
a specific value determined by γ. In these experiments we have considered the following
three possibilities: considering ratings higher or equal than 3 (γ = 3), higher or equal than

36 Chapter 4. Experiments

20 40 60 80 100
0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

n
D

C
G

Item id and rating (f = fir)

20 40 60 80 100
0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Director and rating (f = fdr)

20 40 60 80 100
0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Neighbors

n
D

C
G

20 40 60 80 100
0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Neighbors

(f, δ = 0, τ = 30, γ = ū) (f, δ = 0, τ = 50, γ = ū) (f, δ = 0, τ = 70, γ = ū)

(f, δ = 10, τ = 30, γ = ū) (f, δ = 10, τ = 50, γ = ū) (f, δ = 10, τ = 70, γ = ū)

Figure 4.4: Results of LCS-based similarity for MovielensHetRec dataset. Combination of
different values of preference and confidence filtering using δ = 0 and δ = 10.

4 (γ = 4), and higher or equal than the user mean (γ = u). In Figure 4.3 we show the
results for this experiment.

Although there is some improvement with respect to the basic model without preference
filter (γ = 0 depicted in Figure 4.1), the change in performance is lower than the one
achieved with the confidence parameter. This is a very interesting observation, since when
using this parameter the similarities are computed with less data, therefore, its efficiency
improves with no expenses in performance, according to the results obtained. Furthermore,
we can see that the best value for the preference parameter is γ = u, that is, the one that
uses the user mean rating. This is reasonable, since only considering the values higher than
a predefined threshold – such as 3 or 4 – could make us lose important information due to
the inherent bias of each user when rating items.

4.3.3 Performance when combining both confidence filter and prefer-
ence filter parameters

For the next experiment, we combine both preference and confidence parameters and use
them together to see how they affect the recommmender performance. In this case, we

4.3. Sensitivity to confidence, preference and normalization parameters 37

20 40 60 80 100

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

n
D

C
G

Item id and rating (f = fir)

20 40 60 80 100
0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Director and rating (f = fdr)

20 40 60 80 100

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Neighbors

n
D

C
G

20 40 60 80 100
0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Neighbors

(sim1, f, δ = 0) (sim2, f, δ = 0) (sim3, f, δ = 0) (sim4, f, δ = 0) (sim5, f, δ = 0)

(sim1, f, δ = 10) (sim2, f, δ = 10) (sim3, f, δ = 10) (sim4, f, δ = 10) (sim5, f, δ = 10)

Figure 4.5: Results of LCS-based similarity for MovielensHetRec dataset. Different nor-
malization functions using δ = 0 and δ = 10.

are filtering neighbors (according to some confidence value) using only the items that have
been rated with a rating higher than the preference value. We restrict this analysis to
γ = u since it has shown better properties to model the user in a generic way.

When using these two parameters at the same time, a general improvement is achieved,
as shown in Figure 4.4. Unlike in the rest of experiments, a better performance is found
here when non-exact matchings are allowed (δ = 10). Actually, only under this setting, an
improvement with respect to using only the confidence filter is obtained, hence, producing
the highest performance among the different instantiations of the recommenders analyzed
so far. Besides, in this figure it is relevant to show that, when combining preference and
confidence filtering and a threshold of δ = 0, the performance of the recommender remains
constant after a number of neighbors are considered. This can be explained as these two
parameters reduce the number of possible neighbors. Hence, we need to make use of the δ
threshold in order to palliate this effect, and avoid the dramatically reduction of potential
neighbors that prevents an improvement in the recommender.

38 Chapter 4. Experiments

4.3.4 Sensitivity to normalization functions

We now analyze the proposed similarity normalization functions. Firstly, in Figure 4.5
we show the performance of the different normalization functions proposed in Section 3.3
when no confidence (τ = 0) and preference (γ = 0) parameters are used. The objective of
this experiment is to compare the non-normalized values (sim1) against the four proposed
normalizations.

From the figure we observe this parameter has a huge effect in performance. Non-
normalized recommenders obtain the worst results in every situation. A possible expla-
nation of this behavior might be attributed to larger weights given to neighbors in the
standard user-based recommendation formulation when the similarity is too high, which
might occur too often when the similarity is not bounded, as is the case for the sim1

function.

However, we see important differences in the different normalization functions. Inter-
estingly, the best two normalization functions are sim2 and sim3, which are the only ones
that consider the length of both users when normalizing the original value (the other two
only consider the maximum or the minimum length, losing information about one of the
sequences). This is a clear indicator that this information is critical and should be used
by any similarity normalization function based on LCS. In fact, the worst normalization
is the sim5, that is, the one that divides by the minimum number. This is an expected
result. If we denote the length of sequences of user u and two neighbors n1 and n2 as:
|su|, |sn1 | and |sn2 | respectively, if we have this situation: |su| << |sn1 | << |sn2 | with the
same similarities between them, we will consider that both neighbors are equal when the
first neighbor should be more important as it has the same similarity but with a shorter
sequence.

Considering the results from this experiment, we conclude that the previous results
are far from optimal in the case of MovielensHetRec. As we have seen, the LCS model
improves its performance the most when using normalization functions (more specifically,
when using sim2 and sim3) and all the results reported at this point (except the last ones)
were obtained using no normalization, i.e., sim1. Therefore, in Figure 4.6 we show the
effect of a combination of all the parameters in the model: taking into account preference
and confidence filters and the normalization functions. In every case, the best value of
each parameter is used (denoted, as mentioned in the caption, with the symbol ∗). From
these results, we can make the following observations:

1. The performance improvement between normalization (sim∗) and no normalization
(sim1) is still significant, reproducing the behavior found in Figure 4.5.

2. We obtain better results when non-exact matchings (δ = 10) are allowed.

3. The optimal configurations are different depending on whether exact matchings are
allowed: on the one hand, with δ = 0 the best results are obtained by using either the
best confidence or preference filter value (very close to each other when using ratings
and directors), on the other hand, for δ = 10 the best configuration is consistently
found for a combination of the best confidence and preference filter values.

According to these results, we can achieve up to 25% of improvement over the same
recommender without any of these variables, where the normalization function plays a
critical role in this improvement.

4.4. Temporal ordering 39

20 40 60 80 100
0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Neighbors

n
D

C
G

Item id and rating (f = fir)

20 40 60 80 100
0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Neighbors

Director and rating (f = fdr)

(sim1, f, δ = 0, τ∗) (sim1, f, δ = 0, γ∗) (sim1, f, δ = 0, τ∗, γ∗)

(sim∗, f, δ = 0, τ∗) (sim∗, f, δ = 0, γ∗) (sim∗, f, δ = 0, τ∗, γ∗)

20 40 60 80 100
0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Neighbors

n
D

C
G

Item id and rating (f = fir)

20 40 60 80 100
0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Neighbors

Director and rating (f = fdr)

(sim1, f, δ = 10, τ∗) (sim1, f, δ = 10, γ∗) (sim1, f, δ = 10, τ∗, γ∗)

(sim∗, f, δ = 10, τ∗) (sim∗, f, δ = 10, γ∗) (sim∗, f, δ = 10, τ∗, γ∗)

Figure 4.6: Results with the best confidence and preference filters and normalizations for
MovielensHetRec dataset. Top row shows results using δ = 0, bottom row using δ = 10.
The ∗ symbol denotes the best value among the previously reported ones is being used in
the combination.

4.4 Temporal ordering

In this section we analyze the effect of ordering the user sequences according to the item
interaction timestamp, that is, how different functions s (as defined in Section 3.1) affect the
proposed model. Figure 4.7 shows the results for the MovielensHetRec using a timestamp
ordering (from now on, sT , different from the the ordering function used so far that only
takes into account the item id, that we will denote as si) for both ids and directors and the
five normalization functions. We observe the same behavior as in the previous experiments,
since all the normalizations obtain a better performance than using no normalization.

However, we found no improvement over the recommenders that ordered the sequences

40 Chapter 4. Experiments

20 40 60 80 100

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

n
D

C
G

Item id and rating (f = fir)

20 40 60 80 100

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Director and rating (f = fdr)

20 40 60 80 100

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Neighbors

n
D

C
G

20 40 60 80 100

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Neighbors

(sim1, f, δ = 0) (sim2, f, δ = 0) (sim3, f, δ = 0) (sim4, f, δ = 0) (sim5, f, δ = 0)

(sim1, f, δ = 10) (sim2, f, δ = 10) (sim3, f, δ = 10) (sim4, f, δ = 10) (sim5, f, δ = 10)

Figure 4.7: Results of LCS-based similarity for MovielensHetRec dataset. Different nor-
malization functions using δ = 0 and δ = 10, and sequences ordered by timestamp (sT).

by id (Figure 4.5). In fact, time-aware sequences obtain slightly worse results. A possible
explanation for this behavior is that we are performing a 5-cross validation for this dataset,
so the splits are independent of time. Furthermore, building time-based sequences of user
preferences is not a trivial question, mostly because most of the available datasets – as in
this case – do not contain meaningful timestamps: sometimes the timestamp is directly
not available, or some of the profiles are not complete, the users could have most of their
ratings in the very same second, or it could also happen that temporal splits of the datasets
leave a very unbalanced training-test configuration from which it is very difficult to learn
proper patterns [11].

To address this issue, we experiment with a different dataset where interactions (and
their timestamps) are realistic. Figure 4.8 shows the results for the MovieTweetings
dataset. In the left side of the figure we present the results when sequences are ordered
based on time (using sT) and in the right side the ones ordered by item id (si is used). In
this case, we performed a global temporal split, where 80% of the oldest ratings are put into
the training set and the rest into test. In this dataset we do not have any content-based
information, so only pure collaborative-filtering recommenders were obtained. There are
several aspects worth noting in these results. Firstly, we see that the performance in terms

4.4. Temporal ordering 41

20 40 60 80 100
0.40

0.60

0.80

1.00

1.20

·10−2
n
D

C
G

sT : TimeStamp Ordering

20 40 60 80 100
0.40

0.60

0.80

1.00

1.20

·10−2
si: Item id ordering

20 40 60 80 100
0.40

0.60

0.80

1.00

1.20
·10−2

Neighbors

n
D

C
G

20 40 60 80 100

0.40

0.60

0.80

1.00

1.20

·10−2

Neighbors

(sim1, f, δ = 0) (sim2, f, δ = 0) (sim3, f, δ = 0) (sim4, f, δ = 0) (sim5, f, δ = 0)

(sim1, f, δ = 10) (sim2, f, δ = 10) (sim3, f, δ = 10) (sim4, f, δ = 10) (sim5, f, δ = 10)

Figure 4.8: Results of LCS-based similarity for MovieTweetings dataset using a global
temporal split. Different normalization functions using δ = 0 and δ = 10. Ordering by
timestamp (sT) and item id (si).

of nDCG@5 is much lower than in any of the other datasets analyzed. This is due to the
sparsity of the data. We have 21 times the number of users with more than the double
of items, having only half million of ratings (see Table 2.4). As a comparison, note that
in MovielensHetRec we have 300, 000 more ratings with less items and users, producing a
more dense user-item rating matrix.

In such context, it is very difficult to produce recommendations of items appearing in
the test set. Furthermore, we can also observe that the plots of nDCG@5 vs neighbor show
a less clear trend. In the previous results, a larger neighborhood would generally lead to a
performance improvement. Here, no configuration is stable or monotonically increasing or
decreasing, making more difficult to select an optimal value for the number of neighbors.
This might be produced because there are some neighbors that have the same similarity
than others, so the neighbor selection in these cases is arbitrary.

In any case, we observe, as in previous experiments, that normalization functions obtain
higher results than basic configurations, although in this case, the optimal normalization
function is sim3, followed, in some cases, by the optimal one in the other dataset, sim2. We

42 Chapter 4. Experiments

Table 4.2: Performance of some of the most representative configurations of the proposed
approach in MovielensHetRec dataset in terms of ranking quality (nDCG, P, R, MAP),
novelty (EPC, EPD), and diversity (AD, α-nDCG, EILD, and Gini) at cutoff 5. The
configuration for each recommender is denoted as (sim, f, δ, τ, γ), that is: normalization
function, transformation function, threshold for δ-matching, confidence filter, preference
filter. The neighborhood size in every case is k = 100.

Recommender nDCG P R MAP EPC EPD AD α-nDCG EILD Gini

(sim1, fir, 0, 0, 0) 0.196 0.130 0.135 0.086 0.495 0.736 10.10% 0.146 0.693 0.003
(sim1, fir, 10, 0, 0) 0.191 0.128 0.131 0.082 0.506 0.734 9.83% 0.143 0.690 0.003
(sim1, fdr, 0, 0, 0) 0.192 0.128 0.130 0.083 0.501 0.737 9.95% 0.142 0.697 0.003
(sim1, fdr, 10, 0, 0) 0.190 0.128 0.130 0.081 0.508 0.735 9.79% 0.142 0.692 0.003
(sim1, fir, 0, 0, ū) 0.200 0.133 0.136 0.087 0.493 0.735 10.30% 0.149 0.697 0.003

(sim1, fdr, 10, 0, ū) 0.199 0.133 0.137 0.086 0.509 0.732 10.00% 0.148 0.698 0.003
(sim1, fir, 0, 50, 0) 0.218 0.176 0.106 0.069 0.237 0.300 35.62% 0.066 0.284 0.010
(sim1, fdr, 0, 50, 0) 0.213 0.171 0.108 0.069 0.258 0.328 35.98% 0.071 0.311 0.009
(sim2, fir, 0, 0, 0) 0.225 0.146 0.154 0.102 0.476 0.730 12.61% 0.170 0.691 0.003

(sim2, fdr, 10, 0, 0) 0.232 0.152 0.159 0.105 0.484 0.725 12.70% 0.175 0.683 0.003
(sim1, fir, 10, 70, ū) 0.219 0.172 0.114 0.075 0.288 0.370 29.75% 0.083 0.356 0.007
(sim1, fdr, 10, 50, ū) 0.219 0.166 0.127 0.082 0.350 0.470 28.77% 0.108 0.451 0.005
(sim2, fir, 10, 50, ū) 0.245 0.187 0.140 0.093 0.338 0.457 29.41% 0.119 0.433 0.007
(sim2, fdr, 10, 30, ū) 0.246 0.179 0.152 0.101 0.406 0.571 25.88% 0.150 0.538 0.005

can conclude, therefore, that normalization functions are still useful even in very sparse
datasets, and that the optimal configuration of the proposed approaches is a process that
strongly depends on dataset characteristics.

4.5 Impact on beyond-accuracy metrics

As pointed out in the state of the art (Section 2.3), it is interesting to consider other di-
mensions of evaluation like novelty and diversity [42]. A trivial example of this tradeoff
is the behavior of the Popularity recommender, that suggests the items that have been
rated by more users, dealing to unpersonalized recommendations. Although this recom-
mender usually shows a relatively high effectiveness in terms of ranking evaluation, these
recommendations obviously lack both diversity and novelty.

In Table 4.2 we show some of the most representative configurations of the LCS-based
similarity for the MovielensHetRec dataset that have been analyzed in the previous sec-
tions. Together with novelty (EPC and EPD) and diversity (AD as a percentage, α-nDCG,
EILD, and Gini) metrics, we also show results for other ranking evaluation metrics (nDCG,
Precision, Recall, and MAP). We must take into account that these metrics are obtained
from the RankSys framework so some of them do not correspond exactly to the definitions
shown in Section 2.3.3. For instance, the Gini metric in this framework is the complemen-
tary of the real Gini, and the Aggregate diversity is computed in a different way, whose
results do not match its definition when coverage is not complete; because of this, we report
our own implementation of this metric. The most remarkable aspect about these results
is that it is hard to find a configuration that optimizes accuracy, novelty, and diversity at
the same time.

Firstly, we observe that the confidence filter τ affects negatively the novelty of the
recommendations. This may be expected as users with more elements in common with the
target user are preferred instead of other users with a lower similarity, leaving aside some
items that could be more novel. At the same time, this parameter seems to encourage more
diverse recommendations. This is evidenced by the highest value achieved in AD and Gini
for a configuration using τ = 50, especially when compared against the same configuration

4.5. Impact on beyond-accuracy metrics 43

Table 4.3: Performance of some of the most representative configurations of the proposed
approach in MovielensHetRec dataset in terms of ranking quality (nDCG, P, R, MAP),
novelty (EPC, EPD), and diversity (AD, α-nDCG, EILD, and Gini) at cutoff 5. The
configuration for each recommender is denoted as (sim, f, δ) using sT (ordering sequences
by timestamp), that is: normalization function, transformation function, and threshold for
δ-matching. The neighborhood size in every case is k = 100.

Recommender nDCG P R MAP EPC EPD AD α-nDCG EILD Gini

(sim1, fdr, 0) 0.177 0.120 0.120 0.074 0.500 0.742 9.37% 0.130 0.702 0.003
(sim2, fdr, 0) 0.212 0.137 0.144 0.096 0.468 0.732 12.62% 0.160 0.691 0.002
(sim1, fdr, 10) 0.172 0.117 0.117 0.072 0.506 0.741 9.19% 0.126 0.702 0.003
(sim2, fdr, 10) 0.213 0.137 0.145 0.096 0.470 0.729 12.86% 0.161 0.691 0.003
(sim1, fir, 0) 0.193 0.129 0.133 0.084 0.485 0.738 10.21% 0.144 0.695 0.003
(sim2, fir, 0) 0.212 0.137 0.145 0.096 0.466 0.732 13.54% 0.161 0.699 0.002
(sim1, fir, 10) 0.189 0.126 0.131 0.082 0.489 0.737 10.20% 0.142 0.693 0.003
(sim2, fir, 10) 0.211 0.136 0.144 0.096 0.469 0.729 13.76% 0.160 0.697 0.003

using τ = 0, where AD is only 10.10% and Gini has a value of 0.003.

Secondly, in the previous results of nDCG we discussed that the preference filter does
not affect significantly the quality of recommendations. For novelty and diversity, the
same behavior is observed. This is not strictly a negative aspect, as making use of this
parameter reduces the computation time as the sequences generated are shorter and, hence,
more efficient.

Another important aspect to consider is that normalization functions, although pro-
ducing an improvement over all accuracy metrics, they are not affecting in the same way
the novelty and diversity metrics. There are hardly any changes between the results with
and without normalization. This is a very interesting aspect, as we can conclude that by
changing the normalization function we can improve the accuracy of the recommendations
without altering the observed novelty and diversity dimension of the recommended items.

In Table 4.3 we show the results for some representative configurations of the LCS-
based similarity for the MovielensHetRec dataset where the items are ordered by times-
tamp, omitting the variations with the confidence and preference parameters. As in the
previous results, we see that there is not a single configuration that optimizes all metrics at
the same time, but we observe that in both cases, with timestamp order and item id order,
the best results in ranking evaluation metrics are obtained when using the sim2 normal-
ization function. However, this is not the case for novelty and diversity, as there are some
configurations using the basic approach that achieve a better performance. Furthermore, if
we compare Tables 4.2 and 4.3, we see that, in general, the ordering by id performs better
that its equivalent time-ordered recommender, mainly in ranking evaluation metrics.

Last but not least, Table 4.4 presents the results for the MovieTweetings dataset. Here,
we observe again that the normalizations obtain better results that the equivalent basic
recommenders. This confirms that the normalizations are a must have in order to improve
the results. However, the timestamp ordering does not produce better results in comparison
with the basic order; this is somewhat unexpected: on the one hand, the timestamps in
this case are real and the split is temporal, so we would expect the results to show some
improvement in performance, since it should favor time-aware recommenders, but, on the
other hand, this is the most sparse dataset of the three analyzed. From 45, 324 users,
20, 340 have rated only one item. Those users are in fact not relevant, neither as neighbors
nor as target users for recommendations, as their ratings are not mature. Furthermore,
only 13, 098 users have more than five ratings, so these results should be taken carefully.
Besides, the ratings are in a scale from 1 to 10, so allowing here only a difference of 1 in

44 Chapter 4. Experiments

Table 4.4: Performance LCS-based recommenders in MovieTweetings dataset in terms of
ranking quality (nDCG, P, R, MAP), novelty (EPC, EPD) and diversity (AD, α-nDCG,
EILD and Gini). The neighborhood size in every case is k=100. Recommenders labeled
with si and sT generated their user sequences by ordering the items either by item id or
timestamp, respectively.

Recommender nDCG P R MAP EPC EPD AD α-nDCG EILD Gini

(sim1, fir, 0, si) 0.009 0.013 0.005 0.003 0.472 0.349 24.52% 0.007 0.341 0.001
(sim2, fir, 0, si) 0.010 0.015 0.007 0.004 0.464 0.335 43.75% 0.007 0.316 0.009
(sim1, fir, 10, si) 0.009 0.013 0.005 0.003 0.474 0.348 20.37% 0.007 0.341 0.001
(sim2, fir, 10, si) 0.011 0.016 0.007 0.004 0.462 0.332 40.02% 0.008 0.310 0.008
(sim1, fir, 0, sT) 0.009 0.013 0.005 0.003 0.472 0.349 24.43% 0.007 0.341 0.001
(sim2, fir, 0, sT) 0.010 0.014 0.007 0.004 0.453 0.327 42.40% 0.007 0.304 0.011
(sim1, fir, 10, sT) 0.008 0.013 0.005 0.003 0.474 0.349 20.40% 0.007 0.338 0.001
(sim2, fir, 10, sT) 0.010 0.015 0.006 0.004 0.451 0.326 40.00% 0.007 0.299 0.009

Table 4.5: Performance of baselines in MovielensHetRec dataset in terms of ranking quality
(nDCG, P, R, MAP), novelty (EPC, EPD), and diversity (AD, α-nDCG, EILD, and Gini).
The best configuration for LCS-based approach is also included for comparison.

Recommender nDCG P R MAP EPC EPD AD α-nDCG EILD Gini

Pop 0.160 0.105 0.112 0.069 0.444 0.741 7.66% 0.123 0.700 0.002
UB1 0.233 0.152 0.161 0.106 0.484 0.723 12.94% 0.177 0.682 0.003
UB2 0.235 0.153 0.161 0.107 0.490 0.722 12.94% 0.177 0.678 0.004
IB1 0.162 0.109 0.116 0.069 0.521 0.712 65.03% 0.132 0.660 0.004
IB2 0.179 0.119 0.126 0.077 0.508 0.710 67.04% 0.145 0.672 0.004

PureCB 0.010 0.007 0.010 0.005 0.853 0.739 53.69% 0.028 0.658 0.020
CBCF 0.254 0.165 0.180 0.120 0.504 0.722 13.06% 0.192 0.666 0.004

MF 0.271 0.176 0.200 0.133 0.635 0.694 36.50% 0.207 0.626 0.025
(sim2, fdr, 10, 30, ū) 0.246 0.179 0.152 0.101 0.406 0.571 25.88% 0.150 0.538 0.005

the rating may cause a loss of performance under certain situations. This can be observed
in the results in all ranking evaluation metrics: they are in fact much lower than the ones
obtained in the rest of the datasets; in fact, these results that are so close to zero evidences
the difficulty of evaluating item rankings on very sparse datasets.

4.6 Performance comparison against other algorithms

We have seen in previous sections the performance of different configurations of some LCS
recommenders. However, we should also test their performance against other state-of-the-
art recommenders, to check its potential as a new similarity metric. Although the baselines
will be mostly the same for all the datasets, their parameters (number of neighbors, number
of factors, content-based information, . . .) will be optimized to the specific dataset that we
are analyzing. Firstly, we show the results of the baselines for the MovielensHetRec dataset
(Section 4.6.1). Then, we show the results of the baselines for the MovieTweetings dataset,
where we have included other baselines obtained from [22] to compare against specific
sequential recommenders (Section 4.6.2). The results for baselines in the Lastfm dataset
are presented in Appendix C. As mentioned before, the configuration of these baselines
is presented in Table 4.1; these parameters were selected according to a preliminary test
where the best configurations with respect to the nDCG@5 metric were chosen.

4.6. Performance comparison against other algorithms 45

Table 4.6: Performance of baselines and some configurations of the proposed approach in
Movielens 10M dataset in terms of ranking quality (nDCG, P, R, MAP), novelty (EPC,
EPD), and diversity (AD, α-nDCG, EILD, and Gini).

Recommender nDCG P R MAP EPC EPD AD α-nDCG EILD Gini

Pop 0.106 0.069 0.061 0.040 0.576 0.748 7.22% 0.078 0.749 0.001
IB2 0.175 0.120 0.121 0.071 0.749 0.718 53.55% 0.137 0.643 0.005
UB2 0.268 0.172 0.179 0.124 0.711 0.715 23.69% 0.200 0.662 0.005
MF 0.280 0.182 0.200 0.133 0.803 0.697 28.67% 0.210 0.641 0.022

PureCB 0.012 0.008 0.010 0.006 0.912 0.738 53.48% 0.030 0.659 0.020
CBCF 0.140 0.098 0.080 0.052 0.640 0.750 28.99% 0.097 0.705 0.003

(sim1, fir, 0, 0, 0) 0.228 0.151 0.153 0.100 0.686 0.736 12.01% 0.164 0.680 0.003
(sim1, fdr, 0, 0, 0) 0.224 0.148 0.149 0.098 0.685 0.738 11.77% 0.159 0.684 0.003
(sim2, fdr, 0, 0, 0) 0.152 0.099 0.106 0.065 0.636 0.745 36.68% 0.113 0.717 0.003

(sim2, fdr, 10, 30, ū) 0.284 0.199 0.177 0.124 0.587 0.593 22.10% 0.179 0.551 0.005

4.6.1 Performance comparison in MovielensHetRec

Table 4.5 shows the results for each of the baselines and the best LCS-based recommender.
Here, the content-based baseline (PureCB) obtains a much worse performance than the hy-
brid content-based and collaborative-filtering recommender (CBCF), which, surprisingly,
obtains the best results in ranking evaluation right after the MF baseline (the best per-
forming recommendation technique in this case). According to these results, content-based
techniques produce more novel recommendations (and hence, less popular), as represented
by the higher values of EPC. However, it is not easy to produce novel and accurate rec-
ommendations: for instance, a random recommender would also obtain very high values of
novelty and diversity; this is probably the reason that the PureCB recommender obtains
values so high of EPC.

In terms of diversity, MF outperforms the other techniques in terms of Gini, whereas
IB is the best recommender according to AD. The Popularity recommender achieves the
highest value of EILD, and the CBCF and UB recommenders obtain the second highest
values of α-nDCG, just behind the MF recommender. As mentioned before, this metric
combines accuracy and diversity into a single measure. These results make clear that it
is very difficult to produce diverse recommendations under different definitions, since, like
for novelty, each evaluation metric measures a different nuance of the concept of diversity.

However, one of the main objectives of this work is to outperform some of the state-
of-the-art baselines, especially those based on neighbors. Recalling the results shown in
Table 4.2 and comparing with those of Table 4.5, we find that all configurations of the
proposed LCS-based user similarity outperforms some of the state-of-the-art baselines,
namely, Pop, IB, and PureCB. Although there are no configurations that outperform the
MF baseline, for some preliminary test, we were able to beat other MF methods, like
the pLSA recommender. Nonetheless, it is not difficult to find some configurations that
outperform the UB recommender, which is the real baseline to beat, since the proposed
approach uses the same recommendation technique as UB but changing the user similarity
metric. More specifically, the best LCS-based configuration outperforms UB in terms of
nDCG, precision, AD, and Gini.

Furthermore, we should note that the extremely high results of the hybrid CBCF are
strange. Because of this, we investigated on this issue and discovered that the Movielen-
sHetRec dataset is biased to content-based information. According to the definition of
the dataset in [12], the dataset only contains users who have provided both ratings and
tags. For this reason, we decided to perform some additional experiments using the whole
Movielens10M dataset – from which the MovielensHetRec dataset was extracted – and

46 Chapter 4. Experiments

Table 4.7: Performance of baselines in MovieTweetings dataset in terms of ranking quality
(nDCG, P, R, MAP), novelty (EPC, EPD) and diversity (AD, α-nDCG, Gini). The best
configuration for LCS-based approach is also included for comparison.

Recommender nDCG P R MAP EPC EPD AD α-nDCG EILD Gini

Fossil 0.008 0.012 0.004 0.002 0.425 0.324 14.08% 0.005 0.327 0.001
MC 0.013 0.021 0.008 0.004 0.428 0.323 26.61% 0.011 0.312 0.002
UB1 0.011 0.016 0.006 0.003 0.459 0.330 39.05% 0.008 0.305 0.007
UB2 0.010 0.015 0.006 0.003 0.463 0.333 35.07% 0.008 0.311 0.007
IB1 0.009 0.015 0.006 0.003 0.484 0.331 61.10% 0.007 0.299 0.015
IB2 0.009 0.016 0.006 0.003 0.484 0.334 43.68% 0.008 0.311 0.020
Pop 0.003 0.006 0.003 0.001 0.938 0.393 1.84% 0.006 0.751 0.000
MF 0.006 0.009 0.004 0.002 0.986 0.329 11.76% 0.009 0.517 0.003

(sim2, fir, 10, si) 0.011 0.016 0.007 0.004 0.462 0.332 40.02% 0.008 0.310 0.008

filtering out the items not included in the MovielensHetRec dataset, to make the compar-
isons between datasets more fair. The original Movielens10M dataset includes many more
ratings than the MovielensHetRec dataset, and hence it should favor collaborative-filtering
algorithms. For this experiment, we only report results for one fold, where an 80 − 20
training/test split was performed for the users included in the MovielensHetRec dataset,
and all the ratings from the remaining users are considered for training.

The results obtained for these experiments are presented in Table 4.6. Here, the perfor-
mance of the baseline recommenders are different: MF, UB, and IB algorithms outperform
the hybrid baseline CBCF, which no longer benefits from having content-based informa-
tion as much as before. More specifically, we have observed that the number of ratings per
item has increased significantly (from 84.6 to 963.5), which clearly favors collaborative-
filtering algorithms. Moreover, since the number of users has also changed (from 2, 113
to 69, 878) we hypothesize that the user profile building step (function UserProfile(u) in
Section 2.2.2) is now more noisy, producing neighbors of worse quality for CBCF than for
UB, evidenced by the worse results obtained for the former, even though the score predic-
tion is computed in the same way once the neighbors are found. Furthermore, we have also
included in this table the two most basic configurations of the LCS similarity approach
and the best combination (with respect to nDCG) of parameters in MovielensHetRec. In
this context, LCS recommenders are also able to beat the hybrid recommender by a large
margin, and even the best baseline method (MF) in terms of nDCG and Precision.

In summary, the proposed approaches based on LCS similarity in MovielensHetRec
have shown better performance in terms of nDCG and precision than some of the baselines,
especially than the UB recommender, evidencing the advantage of using a similarity based
on LCS, since this is the only difference with respect to how these two recommenders are
being computed.

4.6.2 Performance comparison in MovieTweetings dataset

As mentioned before, in this dataset we use some baselines from [22] besides the more
classical ones used before. The reason behind this is that, since we are using a temporal
split, we think we should also extend the experiments to compare against other baselines
that take into account the temporal information. As before, the parameters of these
baselines can be seen in Table 4.1.

According to the results presented in Table 4.7, we observe that the LCS-based recom-
mender performs again quite well, although it is not the best one. It performs better than
any of the baselines that do not take into account the time component. Besides, it also
outperforms the Fossil recommender, the one that obtained the best results in [22]. The

4.7. Discussion 47

most striking results in this case are those obtained by the Fossil recommender, which was
the best recommender in [22]. However, it is relevant to indicate that we have just used the
basic configuration (L=1, K=10 and bias=100) so it may be necessary to optimize those
parameters, for instance, by performing a grid search. Furthermore, regarding this and the
MC baseline, the authors only considered in the original article the users and items that
have at least 5 interactions, while here we have not performed any pre-processing step,
finally, in that article, the split was made by selecting the last item consumed by every
user and including it in the test set, so the objective was to predict such item. Here, the
split is performed globally (20% of newer ratings to the test set), so there may be users
with more than one item in test and users that do not have any item in it. Nevertheless,
with these results, we again confirm the difficulty of creating a recommender that obtains
good performance on all the metrics, and, at the same time, we show promising results of
our proposed LCS-based approaches.

4.7 Discussion

The reported experiments provide empirical evidence of the usefulness of the proposed
approach. The analysis of the results revealed that it is possible to use the Longest
Common Subsequence (LCS) algorithm as a similarity metric taking advantage of both
collaborative-filtering and content-based information. Although in some cases the LCS-
based configurations obtain poor results (as in the case of generating genres sequences),
the results obtained when using directors or the pure collaborative-filtering approach are
comparable to, and sometimes even better than, other state-of-the-art recommenders that
are used in the area. However, we must take into account that these experiments are still
conditioned to the experimental setup (we have only considered the top 5 items in the
ranking with a rating ≥ 5).

We have also shown the effect on recommendations of some other configurable param-
eters: the confidence filter, the preference filter and normalization functions. Among all,
the one that has produced substantial improvements in terms of ranking quality is the
normalization, especially the ones that use the length of both sequences, i.e., the second
normalization function sim2 and the third normalization function sim3. While sim2 re-
turns the square of the LCS divided by the product of the lengths of both sequences, sim3

doubles the LCS and divides this value by the sum of the length of both sequences. The
worst normalization in all cases has been sim5, the one that divided by the minimum se-
quence length of the two users involved. Hence, we can conclude that when bounding a
user similarity, we must take into account the information provided by both users.

Moreover, the best configurations are normally achieved when using different combina-
tions of preference, confidence, and normalization functions. In these cases, we were able
to find a combination that could outperform UB baselines in terms of ranking evaluation
and, sometimes, in case of novelty and diversity metrics, as for AD. At the same time,
we found that for both MovielensHetRec and MovieTweetings the sequences generated by
making use of the timestamps did not provide an advantage over the sequences ordered by
natural ordering. However, we think that there is still some room for improvement if we
rethink the classical neighborhood approaches by prioritizing the items that are near the
last common item of both users.

Nevertheless, it is relevant to say that the LCS-based recommenders are not the best
approaches reported as we could not find a configuration that beats the MF recommender
[25] (the best baseline in two of the datasets). This is expected as it is well-known in
the literature that these kind of recommenders tend to outperform neighborhood based

48 Chapter 4. Experiments

approaches. However, there are many MF methods that can be used in order to make
recommendations. Here, we have shown the results obtained by the one described in
[25], but, as we reported in [7], some configurations of LCS-based recommenders are able
to outperform other MF techniques such as pLSA in the MovielensHetRec dataset. At
the same time, we have seen that in the MovieTweetings dataset, the UB approaches
obtain better results than the MF approaches, although in this case, the results of all
recommenders are very low in comparison with the other two datasets.

Finally, an important aspect to take into account is that there is not a single recom-
mender – not LCS-based nor baselines – that outperforms the rest in all the metrics. In
general, it is very difficult to build recommenders that obtain good results in both ranking
quality metrics and novelty and diversity metrics. In fact, sometimes when using metrics
that measure the same dimension like Aggregate Diversity and EILD in the case of di-
versity, we can end up with recommenders with high values in one of them and very low
values in the other. This was observed, for instance, with IB recommenders, which obtain
very good results in terms of the AD metric but worse performance for EILD.

Chapter 5

Conclusions

5.1 Summary and discussion

Recommender Systems are essential in a large number of applications and contexts, espe-
cially those related to the Internet. Because of this, it is compulsory to continue innovating
in this field by proposing new approaches and algorithms to improve the user’s experience,
since good recommendations will usually make current users trust the system and, poten-
tially, may increase the number of customers in the future.

In this work, we have made a study on the most important techniques in this field,
showing not only the best known algorithms and recommendation approaches but also
different ways of evaluating them depending on the aspect that we want to consider (ranking
quality vs novelty and diversity). We have concluded that it is generally necessary to find a
balance between them, as sometimes better ranking quality results in a poor performance
on both novelty and diversity, and vice versa. In addition, we have analyzed the effects of
different state-of-the-art algorithms in three datasets from the real world, evidencing that
sometimes it is difficult to produce effective recommendations, especially in very sparse
datasets. We have also shown the challenge involved in obtaining a recommender that
outperforms the rest in all possible metrics.

Nonetheless, the most important contribution of this work is the proposal, develop-
ment, and evaluation of the Longest Common Subsequence (LCS) algorithm as a user
similarity metric for recommendation. We have presented a general method to configure
an LCS-based similarity metric to generate different sequences of user preferences by us-
ing pure collaborative-filtering and content-based data, together with different orderings.
Furthermore, some additional parameters like the δ-matching, confidence filter, preference
filter, and normalization functions have also been integrated in this general model.

We have obtained substantial improvements in performance for specific configurations
of the proposed model, not only in terms of ranking quality but also in novelty and diversity
dimensions. The best results have been typically found when all these parameters are used
together, however, strong performance improvements were obtained in some cases when
only one of them was used, in particular, when different normalization functions were
included in the model. Nonetheless, it should be noted that these parameters add another
layer of complexity since they should be tuned to the specific dataset to obtain the optimal
configuration.

With the purpose of providing empirical support for the proposed model and the dif-
ferent available configurations, we have used three different datasets under specific circum-
stances. As a result, with the MovielensHetRec dataset we have found that we slightly
improve the results when using data from item contents (only when directors are used),

49

50 Chapter 5. Conclusions

but, in general, our approaches beat most of the baselines, at least in terms of ranking
quality. With the Lastfm dataset we have obtained similar results than with the previ-
ous dataset, although the user coverage might be severely decreased in some situations; it
should be noted that the ratings exploited in this case were artificially transformed from
implicit data. Finally, in the MovieTweetings dataset we performed a temporal split to
check the behavior when time-aware sequences are incorporated to the model; here we
found that a global ordering of the items (i.e., not based on the time the user interaction
was produced) obtained better results in terms of ranking metrics that a sequence ordering
based on timestamp. Since we believe this result is counter-intuitive, we aim to further
extend these experiments with more datasets, focusing on those where the timestamps are
realistic, which is not an easy constraint to satisfy.

In conclusion, we have shown the potential of the LCS algorithm to be used in the
recommendation context as a similarity metric between users, besides some previous works
where it was used as pattern finding algorithm [40, 26]. To the best of our knowledge,
the application of this algorithm in this way is novel and, as described before, it shows
empirically not only that it produces good recommendations but also that there is still a
margin to improve its performance.

5.2 Contributions of this work

The specific contributions of the work presented here can be summarized as:

Adaptation of Longest Common Subsequence to recommender systems. Four pa-
rameters have been included in this new model, leading to several translations of this
concept to be used as a user similarity.

Two external contexts were integrated successfully in the proposed model besides col-
laborative ratings: content-based data and temporal information. These extensions
validate the generality of the approach.

Experimental validation of the proposed methods. Several configurations have been
tested, analyzing the sensitivity with respect to their parameters and comparing
the results against several state-of-the-art algorithms in terms of ranking quality,
diversity, and novelty metrics. The results are particularly positive with respect to the
classical user-based nearest neighbor algorithm, since the proposed approach is built
on top of this baseline but the performance is larger when configured appropriately.

5.3 Future work

The research presented here uncover new problems and several directions for the continu-
ation of this work. Among them, we highlight the following:

Use of other features and more general datasets: the model presented here might
be further extended with more transformations so that other features (like demo-
graphic information, tags, etc.) can also be exploited and considered when building
user sequences. Moreover, we think that parameters like confidence filter and pref-
erence filter can be adapted to implicit data, where no ratings are available.

More transformation functions: for these experiments in order to create the sequences
we have used either collaborative-filtering or content-based information. We can split

5.3. Future work 51

the items in time intervals so all the movies that are between two timestamps are
arranged with the same symbol and then order the sequences by timestamps. With
this approach we may find similarities with users that have the same time-evolution
than the destination user. This is only an example of a possible transformation
worthy of further investigation; we plan to continue working on other, more principled
transformation functions, that may lead to even larger performance improvements.

Obtaining n-subsequences of length L: instead of computing the whole LCS between
two users and use this value as a similarity, we may obtain different subsequences of
length L and use the number of these sequences as the similarity. For this approach,
we will need to define the number of characters necessary to obtain a single sequence
(L) and see how many subsequences of that length can be found in the users. An
advantage of this approach would be identifying short common patterns of behavior
between users. Besides, this may help us to make recommendations based on the
gaps that we can find between the sequences.

Other variations of LCS: in all the experiments performed, we have considered that
two “characters” are the same when the ratings of both users are in the range of the
threshold parameter δ. However, we can reformulate the LCS algorithm so it directly
considers the differences of ratings; in such a case, the computed LCS should be
incremented differently depending on whether both users have rated equally the same
item or not. We may even consider generating negative values when the ratings are in
opposite extremes of the ratings range. As another extension of LCS, we could weight
differently each time the algorithm has to advance one position from one sequence to
another (gap) or perform single-character modifications of the sequences to obtain a
matching, this would relate to the well-known problem of sequence alignment, but
reformulated in the recommendation context with users (or items) as sequences.

Revisiting k-NN recommenders: we believe that offline experiments using temporal
splits are the most realistic ones, since they reproduce more faithfully the recommen-
dation scenario. Under these constraints, we understand that a similarity between
users that captures the sequence of actions each user made in the system should be
valuable. Even though we have not obtained definitive results in the experiments
reported so far, we have started experimenting with a reformulation of the k-NN
problem for time-aware scenarios, and the results are very promising. Under this
reformulation, each neighbor contributes a number of candidate items to the target
user depending on their last common interaction; in order to do this, the LCS-based
similarity defined here would allow us to easily find this last common interaction
and, at the same time, would produce a similarity between the users, considering the
interaction pattern of both users. In this case, we have obtained some preliminary
results that shows the potential of this new approach.

52 Chapter 5. Conclusions

Bibliography

[1] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible extensions. IEEE
Transactions on Knowledge and Data Engineering, 17(6):734–749, June 2005.

[2] Fabio Aiolli. Efficient top-N recommendation for very large scale binary rated datasets.
In Proceedings of the 7th ACM Conference on Recommender Systems, RecSys ’13,
pages 273–280, New York, NY, USA, 2013. ACM.

[3] Alberto Apostolico. String editing and longest common subsequences. In Grzegorz
Rozenberg and Arto Salomaa, editors, Handbook of Formal Languages: Volume 2.
Linear Modeling: Background and Application, pages 361–398. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 1997.

[4] Marko Balabanović and Yoav Shoham. Fab: Content-based, collaborative recommen-
dation. Commun. ACM, 40(3):66–72, March 1997.

[5] Alejandro Belloǵın. Recommender System Performance Evaluation and Prediction:
An Information Retrieval Perspective. PhD thesis, Universidad Autónoma de Madrid,
2012.

[6] Alejandro Belloǵın, Pablo Castells, and Iván Cantador. Precision-oriented evaluation
of recommender systems: an algorithmic comparison. In Proceedings of the 2011 ACM
Conference on Recommender Systems, RecSys 2011, Chicago, IL, USA, October 23-
27, 2011, pages 333–336. ACM, 2011.

[7] Alejandro Belloǵın and Pablo Sánchez. Collaborative filtering based on subsequence
matching: A new approach. Submitted to Information Sciences, 2017.

[8] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation.
Journal of Machine Learning Research, 3:993–1022, 2003.

[9] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiérrez. Rec-
ommender systems survey. Knowledge-Based Systems, 46:109–132, 2013.

[10] Robin Burke. Hybrid recommender systems: Survey and experiments. User Modeling
and User-Adapted Interaction, 12(4):331–370, 2002.

[11] Pedro G. Campos, Fernando Dı́ez, and Iván Cantador. Time-aware recommender
systems: a comprehensive survey and analysis of existing evaluation protocols. User
Modeling and User-Adapted Interaction, 24(1-2):67–119, 2014.

[12] Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. Second workshop on information
heterogeneity and fusion in recommender systems (HetRec2011). In Proceedings of the
Fifth ACM Conference on Recommender Systems, RecSys ’11, pages 387–388, New
York, NY, USA, 2011. ACM.

53

54 Bibliography

[13] Pablo Castells, Neil J. Hurley, and Saúl Vargas. Novelty and diversity in recommender
systems. In Francesco Ricci, Lior Rokach, and Bracha Shapira, editors, Recommender
Systems Handbook, pages 881–918. Springer, 2015.

[14] Òscar Celma. Music Recommendation and Discovery - The Long Tail, Long Fail, and
Long Play in the Digital Music Space. Springer, 2010.

[15] Charles L. A. Clarke, Maheedhar Kolla, Gordon V. Cormack, Olga Vechtomova, Azin
Ashkan, Stefan Büttcher, and Ian MacKinnon. Novelty and diversity in information
retrieval evaluation. In Proceedings of the 31st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR 2008, Sin-
gapore, July 20-24, 2008, pages 659–666. ACM, 2008.

[16] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of recommender
algorithms on top-N recommendation tasks. In Proceedings of the Fourth ACM Con-
ference on Recommender Systems, RecSys ’10, pages 39–46, New York, NY, USA,
2010. ACM.

[17] Marco de Gemmis, Pasquale Lops, Cataldo Musto, Fedelucio Narducci, and Giovanni
Semeraro. Semantics-aware content-based recommender systems. In Francesco Ricci,
Lior Rokach, and Bracha Shapira, editors, Recommender Systems Handbook, pages
119–159. Springer, 2015.

[18] F. T. de la Rosa, Maŕıa Teresa Gómez López, and Rafael M. Gasca. Analysis and
visualization of the DX community with information extracted from the web. In
Database and Expert Systems Applications, 16th International Conference, DEXA
2005, Copenhagen, Denmark, August 22-26, 2005, Proceedings, volume 3588 of Lecture
Notes in Computer Science, pages 726–735. Springer, 2005.

[19] Christian Desrosiers and George Karypis. A comprehensive survey of neighborhood-
based recommendation methods. In Francesco Ricci, Lior Rokach, Bracha Shapira, and
Paul B. Kantor, editors, Recommender Systems Handbook, pages 107–144. Springer
US, Boston, MA, 2011.

[20] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using collaborative
filtering to weave an information tapestry. Commun. ACM, 35(12):61–70, December
1992.

[21] Asela Gunawardana and Guy Shani. A survey of accuracy evaluation metrics of
recommendation tasks. Journal of Machine Learning Research, 10:2935–2962, 2009.

[22] Ruining He and Julian McAuley. Fusing similarity models with markov chains for
sparse sequential recommendation. In IEEE 16th International Conference on Data
Mining, ICDM 2016, December 12-15, 2016, Barcelona, Spain, pages 191–200. IEEE,
2016.

[23] Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl. An algorith-
mic framework for performing collaborative filtering. In SIGIR ’99: Proceedings of the
22nd Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, August 15-19, 1999, Berkeley, CA, USA, pages 230–237. ACM,
1999.

[24] Thomas Hofmann. Latent semantic models for collaborative filtering. ACM Transac-
tions on Information Systems, 22(1):89–115, 2004.

Bibliography 55

[25] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit
feedback datasets. In Proceedings of the 8th IEEE International Conference on Data
Mining (ICDM 2008), December 15-19, 2008, Pisa, Italy, pages 263–272. IEEE Com-
puter Society, 2008.

[26] Mehrdad Jalali, Norwati Mustapha, Md Nasir Sulaiman, and Ali Mamat. A web
usage mining approach based on LCS algorithm in online predicting recommendation
systems. In 12th International Conference on Information Visualisation, IV 2008,
8-11 July 2008, London, UK, pages 302–307. IEEE Computer Society, 2008.

[27] Yehuda Koren and Robert M. Bell. Advances in collaborative filtering. In Francesco
Ricci, Lior Rokach, and Bracha Shapira, editors, Recommender Systems Handbook,
pages 77–118. Springer, 2015.

[28] Yehuda Koren, Robert M. Bell, and Chris Volinsky. Matrix factorization techniques
for recommender systems. IEEE Computer Society, 42(8):30–37, 2009.

[29] Pasquale Lops, Marco de Gemmis, and Giovanni Semeraro. Content-based recom-
mender systems: State of the art and trends. In Francesco Ricci, Lior Rokach, Bracha
Shapira, and Paul B. Kantor, editors, Recommender Systems Handbook, pages 73–105.
Springer US, Boston, MA, 2011.

[30] Raymond J Mooney, Paul N Bennett, and Loriene Roy. Book Recommending Using
Text Categorization with Extracted Information. In Proceedings of the Fifteenth Na-
tional Conference on Artificial Intelligence (AAAI-98), pages 70–74, Madison, WI,
1998.

[31] Netflix prize. http://www.netflixprize.com/rules.html. Accessed: 2017-01-20.

[32] Xia Ning and George Karypis. SLIM: sparse linear methods for top-N recommender
systems. In 11th IEEE International Conference on Data Mining, ICDM 2011, Van-
couver, BC, Canada, December 11-14, 2011, pages 497–506. IEEE Computer Society,
2011.

[33] Michael Pazzani and Daniel Billsus. Learning and revising user profiles: The identifi-
cation of interesting web sites. Machine Learning, 27(3):313–331, 1997.

[34] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing per-
sonalized markov chains for next-basket recommendation. In Proceedings of the 19th
International Conference on World Wide Web, WWW 2010, Raleigh, North Carolina,
USA, April 26-30, 2010, pages 811–820. ACM, 2010.

[35] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl.
Grouplens: An open architecture for collaborative filtering of netnews. In Proceedings
of the 1994 ACM Conference on Computer Supported Cooperative Work, CSCW ’94,
pages 175–186, New York, NY, USA, 1994. ACM.

[36] Francesco Ricci, Lior Rokach, and Bracha Shapira. Recommender systems: Introduc-
tion and challenges. In Francesco Ricci, Lior Rokach, and Bracha Shapira, editors,
Recommender Systems Handbook, pages 1–34. Springer, 2015.

[37] Alan Said and Alejandro Belloǵın. Comparative recommender system evaluation:
benchmarking recommendation frameworks. In Eighth ACM Conference on Recom-
mender Systems, RecSys ’14, Foster City, Silicon Valley, CA, USA - October 06 - 10,
2014, pages 129–136. ACM, 2014.

http://www.netflixprize.com/rules.html

56 Bibliography

[38] Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John Riedl. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the Tenth In-
ternational World Wide Web Conference, WWW 10, Hong Kong, China, May 1-5,
2001, pages 285–295. ACM, 2001.

[39] Upendra Shardanand and Pattie Maes. Social information filtering: Algorithms for
automating ”word of mouth”. In Human Factors in Computing Systems, CHI ’95
Conference Proceedings, Denver, Colorado, USA, May 7-11, 1995., pages 210–217.
ACM/Addison-Wesley, 1995.

[40] YS Sneha, G Mahadevan, and M Madhura Prakash. An online recommendation system
based on web usage mining and semantic web using LCS algorithm. In Electronics
Computer Technology (ICECT), 2011 3rd International Conference on, volume 2,
pages 223–226, April 2011.

[41] Harald Steck. Evaluation of recommendations: rating-prediction and ranking. In
Seventh ACM Conference on Recommender Systems, RecSys ’13, Hong Kong, China,
October 12-16, 2013, pages 213–220. ACM, 2013.

[42] Saúl Vargas and Pablo Castells. Rank and relevance in novelty and diversity metrics for
recommender systems. In Proceedings of the 2011 ACM Conference on Recommender
Systems, RecSys 2011, Chicago, IL, USA, October 23-27, 2011, pages 109–116. ACM,
2011.

[43] Saúl Vargas and Pablo Castells. Improving sales diversity by recommending users to
items. In Eighth ACM Conference on Recommender Systems, RecSys ’14, Foster City,
Silicon Valley, CA, USA - October 06 - 10, 2014, pages 145–152. ACM, 2014.

Appendices

57

Appendix A

Implementation details

As the main objective of this work is to verify if the application of LCS algorithm can
be useful to make recommendations, we have implemented a framework that allows to
operate with different variations of LCS-based recommenders that have been presented
and discussed throughout this document. Moreover, to increase reproducibility and make
comparisons against other state-of-the-art algorithms easier, we used external libraries
and integrated them into our framework. More specifically, we created “LCS4RecSys”
(LCS for Recommender Systems1), a framework that allows to execute our LCS-based
similarities in user-based recommenders from Mahout2 and RankSys3 libraries. The third
external library we have used is RiVal4, but it has only been used to obtain results of
recommendation metrics in terms of ranking evaluation. Our project has been implemented
in Java as all the libraries are programmed in that language. When integrating the LCS-
based recommenders both in RankSys and Mahout, we have followed their corresponding
class hierarchy. More details about these libraries and the metrics implemented in them
are described in this appendix.

A.1 Comparing RankSys and Mahout

Both frameworks RiVal and RankSys have been developed by people from the Information
Retrieval Group of the EPS-UAM, whereas Mahout is an Apache Software Foundation
project. Although some of the recommendation algorithms implemented in RankSys and
Mahout are very similar, we discovered that the results obtained by them differs too much
depending on the library we use, mostly due to intrinsic differences of implementation.
Because of this, the results between these libraries could not be compared directly (a
similar conclusion but with different libraries is reported in [37]).

As a consequence, running the same configuration of an LCS-based recomender under
both libraries would produce different recommendations, with different performance results.
Some specific details about the libraries have already been discussed: RankSys does not
normalize the score predicted for a user towards an item. This means that, instead of
working with a bounded value when the recommender predicts a rating, it works using
Equation 2.16; hence, these recommendations are not suitable for error metrics as now the
predicted score does not correspond to a rating. Mahout, on the other hand, normalizes the
score and error metrics can be computed but, in our experience, it obtains worse results in

1https://bitbucket.org/PabloSanchezP/lcs4recsys/
2https://mahout.apache.org/
3https://github.com/RankSys/RankSys
4https://github.com/recommenders/rival

59

https://bitbucket.org/PabloSanchezP/lcs4recsys/
https://mahout.apache.org/
https://github.com/RankSys/RankSys
https://github.com/recommenders/rival

60 Appendix A. Implementation details

ranking evaluation than the other framework, in part because there are many scores with
the same value. Additionally, Mahout does not allow recommendations coming from only
one neighbor.

Nonetheless, the main reason for us to choose RankSys over Mahout was the better per-
formance results obtained consistently in all the metrics when using RankSys algorithms.
This, together with much higher efficiency in terms of computation offered by this library
helped us to decide towards this library instead of Mahout.

A.2 Evaluation using the libraries

As mentioned before, we have used two libraries to evaluate the performance of the recom-
mender systems. With RiVal, we have obtained results in terms of Precision, Recall, nDCG
and MAP. For the different novelty and diversity metrics, we used the implementations
included in the RankSys library, except for Aggregate diversity. This metric, although
defined in that library, does not follow exactly the definition presented in Equation 2.50.
Because of this, we implemented our own version following the class hierarchy defined in
RankSys in the same way as done for the recommenders.

Furthermore, the novelty and diversity metrics defined by RankSys make use of aux-
iliary models of relevance, discount, or distance between items in order to evaluate the
recommenders. As these models can take different values, we decided to execute the met-
rics with the most simple configurations, leaving for future work extending these results
by running more complex formulations of these metrics. Hence, we have not taken into
account any ranking discount model (we used the “NoDiscountModel”) and no relevance
model (“NoRelevanceModel” was used). For the metrics requiring a distance metric to
compute distances over the items, we have made use of the cosine distance (instantiated
as “CosineFeatureItemDistanceModel”).

Appendix B

Performance of LCS using genres

In this appendix we extend the results of the MovielensHetRec dataset presented in Chapter
4, by making use of the genres information. As mentioned previously, the performance for
the hybrid LCS recommender when using this information tends to be lower than the rest
of approaches. However, it is interesting to observe the effect of the rest of the parameters
when using this information. We use the same notation and experiment with the same
configurations as the ones presented in Chapter 4, that is: f = fir, f = fdr, and f = fgr,
which represent user sequences generated considering the item id, the item directors, and
the item genres, respectively, also using ratings in the three cases.

Figures B.1, B.2, and B.3 show the results of three different configurations to generate
sequences: only using the confidence filter, only using the preference filter, or using a
combination of both. In the three cases we observe that, when using genres, the results
obtained by the nDCG metric are in fact much lower than the pure collaborative-filtering
and the directors hybrid recommender. At first, it is reasonable to think that the use of
content-based information is a poor strategy, but as we showed with the performance of the
rest of the baselines, it depends on how it is used (CBCF was one of the best baselines for
this dataset, see Table 4.5). In this case, we are generating sequences of genres; however,
two movies can be very different even if they have the same genres. Consider for example
the movies Godzilla, I am legend, and Alien, they have exactly the same genres (in the
MovielensHetRec dataset) but they are clearly very different from each other.

Furthermore, consider again the effects of normalization functions in Figures B.4 and
B.5. Here, we show the effect of the normalization functions and their combination with
preference and confidence filters. In this case, we see that even if the results obtained are
slightly worse than the other two approaches, this approach can still be competitive against
them. This is a very interesting result, because we may use this information to generate
sequences for the users that have rated very few items. Finally, in Figure B.6 we present
the results of the recommenders that generate sequences ordered by timestamp. In this
case, we note that our approach based on genres, despite having a lower performance, can
still be competitive when using certain normalization functions.

Finally, in Table B.1 we show the same results as in Table 4.2 but with some illustrative
configurations using sequences generated by movie genres. As we can see here, the genres
approach always obtain the worst performance if we compare it against the rest of equiv-
alent configurations using directors and ids. However, in terms of novelty and diversity
metrics, this situation is not found. Even if using genres reduces the AD, these approaches
obtain relatively high results in EILD, showing that even if they recommend the same
items to many users, they are different from the rest of recommended items. In fact, for
both EILD and EPD, one of the genres configurations obtain the best results.

61

62 Appendix B. Performance of LCS using genres

20 40 60 80 100
0.05

0.10

0.15

0.20

n
D

C
G

(f = fir)

20 40 60 80 100
0.05

0.10

0.15

0.20

(f = fdr)

20 40 60 80 100
0.05

0.10

0.15

0.20

(f = fgr)

20 40 60 80 100
0.05

0.10

0.15

0.20

Neighbors

n
D

C
G

20 40 60 80 100
0.05

0.10

0.15

0.20

Neighbors

20 40 60 80 100
0.05

0.10

0.15

0.20

Neighbors

(f, δ = 0, τ = 30) (f, δ = 0, τ = 50) (f, δ = 0, τ = 70)

(f, δ = 10, τ = 30) (f, δ = 10, τ = 50) (f, δ = 10, τ = 70)

Figure B.1: Results including genres of LCS-based similarity for MovielensHetRec dataset.
Different values of confidence filter parameter τ using δ = 0 and δ = 10.

20 40 60 80 100
0.05

0.10

0.15

0.20

n
D

C
G

(f = fir)

20 40 60 80 100
0.05

0.10

0.15

0.20

(f = fdr)

20 40 60 80 100
0.05

0.10

0.15

0.20

(f = fgr)

20 40 60 80 100
0.05

0.10

0.15

0.20

Neighbors

n
D

C
G

20 40 60 80 100
0.05

0.10

0.15

0.20

Neighbors

20 40 60 80 100
0.05

0.10

0.15

0.20

Neighbors

(f, δ = 0, γ = 3) (f, δ = 0, γ = 4) (f, δ = 0, γ = ū)

(f, δ = 10, γ = 3) (f, δ = 10, γ = 4) (f, δ = 10, γ = ū)

Figure B.2: Results including genres of LCS-based similarity for MovielensHetRec dataset.
Different values of preference filter parameter using δ = 0 and δ = 10.

63

20 40 60 80 100
0.05

0.10

0.15

0.20

n
D

C
G

(f = fir)

20 40 60 80 100
0.05

0.10

0.15

0.20

(f = fdr)

20 40 60 80 100
0.05

0.10

0.15

0.20

(f = fgr)

20 40 60 80 100
0.05

0.10

0.15

0.20

Neighbors

n
D

C
G

20 40 60 80 100
0.05

0.10

0.15

0.20

Neighbors

20 40 60 80 100
0.05

0.10

0.15

0.20

Neighbors

(f, δ = 0, τ = 30, γ = ū) (f, δ = 0, τ = 50, γ = ū) (f, δ = 0, τ = 70, γ = ū)

(f, δ = 10, τ = 30, γ = ū) (f, δ = 10, τ = 50, γ = ū) (f, δ = 10, τ = 70, γ = ū)

Figure B.3: Results including genres of LCS-based similarity for MovielensHetRec dataset.
Combination of different values of preference and confidence filtering using δ = 0 and
δ = 10.

20 40 60 80 100
0.05

0.10

0.15

0.20

n
D

C
G

(f = fir)

20 40 60 80 100
0.05

0.10

0.15

0.20

(f = fdr)

20 40 60 80 100
0.05

0.10

0.15

0.20

(f = fgr)

20 40 60 80 100
0.05

0.10

0.15

0.20

Neighbors

n
D

C
G

20 40 60 80 100
0.05

0.10

0.15

0.20

Neighbors

20 40 60 80 100
0.05

0.10

0.15

0.20

Neighbors

(sim1, f, δ = 0) (sim2, f, δ = 0) (sim3, f, δ = 0) (sim4, f, δ = 0) (sim5, f, δ = 0)

(sim1, f, δ = 10) (sim2, f, δ = 10) (sim3, f, δ = 10) (sim4, f, δ = 10) (sim5, f, δ = 10)

Figure B.4: Results including genres of LCS-based similarity for MovielensHetRec dataset.
Different normalization functions using δ = 0 and δ = 10.

64 Appendix B. Performance of LCS using genres

20 40 60 80 100
0.05

0.10

0.15

0.20

0.25

Neighbors

n
D

C
G

(f = fir)

20 40 60 80 100
0.05

0.10

0.15

0.20

0.25

Neighbors

(f = fdr)

20 40 60 80 100
0.05

0.10

0.15

0.20

0.25

Neighbors

(f = fgr)

(sim1, f, δ = 0, τ∗) (sim1, f, δ = 0, γ∗) (sim1, f, δ = 0, τ∗, γ∗)

(sim∗, f, δ = 0, τ∗) (sim∗, f, δ = 0, γ∗) (sim∗, f, δ = 0, τ∗, γ∗)

20 40 60 80 100
0.05

0.10

0.15

0.20

0.25

Neighbors

n
D

C
G

(f = fir)

20 40 60 80 100
0.05

0.10

0.15

0.20

0.25

Neighbors

(f = fdr)

20 40 60 80 100
0.05

0.10

0.15

0.20

0.25

Neighbors

(f = fgr)

(sim1, f, δ = 10, τ∗) (sim1, f, δ = 10, γ∗) (sim1, f, δ = 10, τ∗, γ∗)

(sim∗, f, δ = 10, τ∗) (sim∗, f, δ = 10, γ∗) (sim∗, f, δ = 10, τ∗, γ∗)

Figure B.5: Results including genres with the best confidence and preference filters and
normalizations for MovielensHetRec dataset. Top row shows results using δ = 0, bottom
row using δ = 10. The ∗ symbol denotes the best value among the previously reported
ones is being used in the combination.

65

20 40 60 80 100

0.05

0.10

0.15

0.20

n
D

C
G

(f = fir)

20 40 60 80 100

0.05

0.10

0.15

0.20

(f = fdr)

20 40 60 80 100

0.05

0.10

0.15

0.20

(f = fgr)

20 40 60 80 100

0.05

0.10

0.15

0.20

Neighbors

n
D

C
G

20 40 60 80 100

0.05

0.10

0.15

0.20

Neighbors

20 40 60 80 100

0.05

0.10

0.15

0.20

Neighbors

(sim1, f, δ = 0) (sim2, f, δ = 0) (sim3, f, δ = 0) (sim4, f, δ = 0) (sim5, f, δ = 0)

(sim1, f, δ = 10) (sim2, f, δ = 10) (sim3, f, δ = 10) (sim4, f, δ = 10) (sim5, f, δ = 10)

Figure B.6: Results including genres of LCS-based similarity for MovielensHetRec dataset.
Different normalization functions using δ = 0 and δ = 10, sequence ordered by timestamp
(sT).

Table B.1: Performance of some of the most representative configurations of the proposed
approach in MovielensHetRec dataset including genres in terms of ranking quality (nDCG,
P, R, MAP), novelty (EPC, EPD), and diversity (AD, α-nDCG, EILD, and Gini) at cutoff
5. The configuration for each recommender is denoted as (sim, f, δ, τ, γ), that is: nor-
malization function, transformation function, threshold for δ-matching, confidence filter,
preference filter. The neighborhood size in every case is k = 100.

Recommender nDCG P R MAP EPC EPD AD α-nDCG EILD Gini

(sim1, fir, 0, 0, 0) 0.196 0.130 0.135 0.086 0.495 0.736 10.10% 0.146 0.693 0.003
(sim1, fir, 10, 0, 0) 0.191 0.128 0.131 0.082 0.506 0.734 9.83% 0.143 0.690 0.003
(sim1, fdr, 0, 0, 0) 0.192 0.128 0.130 0.083 0.501 0.737 9.95% 0.142 0.697 0.003
(sim1, fdr, 10, 0, 0) 0.190 0.128 0.130 0.081 0.508 0.735 9.79% 0.142 0.692 0.003
(sim1, fir, 0, 0, ū) 0.200 0.133 0.136 0.087 0.493 0.735 10.30% 0.149 0.697 0.003

(sim1, fdr, 10, 0, ū) 0.199 0.133 0.137 0.086 0.509 0.732 10.00% 0.148 0.698 0.003
(sim1, fir, 0, 50, 0) 0.218 0.176 0.106 0.069 0.237 0.300 35.62% 0.066 0.284 0.010
(sim1, fdr, 0, 50, 0) 0.213 0.171 0.108 0.069 0.258 0.328 35.98% 0.071 0.311 0.009
(sim2, fir, 0, 0, 0) 0.225 0.146 0.154 0.102 0.476 0.730 12.61% 0.170 0.691 0.003

(sim2, fdr, 10, 0, 0) 0.232 0.152 0.159 0.105 0.484 0.725 12.70% 0.175 0.683 0.003
(sim1, fir, 10, 70, ū) 0.219 0.172 0.114 0.075 0.288 0.370 29.75% 0.083 0.356 0.007
(sim1, fdr, 10, 50, ū) 0.219 0.166 0.127 0.082 0.350 0.470 28.77% 0.108 0.451 0.005
(sim2, fir, 10, 50, ū) 0.245 0.187 0.140 0.093 0.338 0.457 29.41% 0.119 0.433 0.007
(sim2, fdr, 10, 30, ū) 0.246 0.179 0.152 0.101 0.406 0.571 25.88% 0.150 0.538 0.005
(sim1, fgr, 0, 0, 0) 0.153 0.105 0.104 0.062 0.503 0.747 8.36% 0.112 0.699 0.002
(sim1, fgr, 10, 0, 0) 0.153 0.107 0.103 0.061 0.505 0.748 8.20% 0.112 0.704 0.002
(sim1, fgr, 0, 0, ū) 0.158 0.108 0.107 0.064 0.495 0.743 8.78% 0.116 0.701 0.002
(sim1, fgr, 10, 0, ū) 0.156 0.107 0.104 0.062 0.502 0.746 8.25% 0.113 0.716 0.002
(sim1, fgr, 0, 50, 0) 0.155 0.109 0.105 0.062 0.489 0.720 14.54% 0.111 0.677 0.002
(sim2, fgr, 0, 0, 0) 0.206 0.134 0.142 0.092 0.473 0.714 11.59% 0.155 0.682 0.003
(sim2, fgr, 10, 0, 0) 0.219 0.142 0.150 0.099 0.478 0.711 12.44% 0.166 0.673 0.003

(sim1, fgr, 10, 30, ū) 0.158 0.111 0.105 0.063 0.485 0.718 8.23% 0.113 0.689 0.002
(sim2, fgr, 10, 30, ū) 0.231 0.154 0.156 0.104 0.468 0.679 12.33% 0.171 0.637 0.003

66 Appendix B. Performance of LCS using genres

Appendix C

Performance results in Lastfm
dataset

In this appendix we show the results obtained by the LCS-based recommenders in the
Lastfm dataset. This dataset originally does not have explicit ratings but a number labeled
as “weight” that indicates the number of times a user has listened to a specific music band
or artist. Besides, although there is content-based information associated with the tags, we
will only show the pure collaborative-filtering approach. It is also important to remember
that for this dataset the explicit ratings have been obtained by transforming the original
listenings into artificial ratings, so there are no half scales. However, to avoid confusion
with the previous results, we still maintain the threshold value of 10 (δ = 10) to indicate
a discrepancy of ±1 in the ratings (δ = 1).

C.1 Results for Lastfm dataset

In Figure C.1 we show the results of the Lastfm dataset with two values of δ. On the
one hand, it is relevant the constant decline when using a large number of neighbors in
both cases; on the other hand, we see that having a threshold of δ = 10 produces better
results in terms of nDCG than the same configuration with exact matchings, unlike in the
MovielensHetRec dataset. We must recall that this parameter increments the number of
potential neighbors that a user may have by allowing soft matchings. This behavior may be
due to sparsity of the dataset, where less neighbors may produce worse recommendations.
In fact, in the MovielensHetRec dataset, the average ratings per user was ≈ 405 (855, 598
ratings for 2, 113 users), and for Lastfm the average is ≈ 49 (92, 834 ratings for 1, 892
users); hence, in the first case it is easier to find neighbors that have rated in the same
way some of the items. In Lastfm dataset, however, allowing only perfect matchings may
find neighbors having only one or two items in common, which will eventually reduce the
performance of the recommender. Thus, we conclude that allowing small discrepancies in
ratings between users (soft matchings or δ > 0) help to find neighbors with higher quality
in sparse datasets.

We now show the results when applying the confidence parameter (τ) in the Lastfm
dataset in Figure C.2. In this case, the values for the confidences values are much lower than
the ones used in the MovielensHetRec dataset (due to the sparsity, as discussed before).
As we can see here, the best performance is obtained when using a value of τ = 10 using
both thresholds. When the matchings are exact (δ = 0), the results do not increment or
decrement when using different neighbors. The reason behind this is that we are reducing
the neighbors so much that there are only a few users that can match the condition imposed

67

68 Appendix C. Performance results in Lastfm dataset

20 40 60 80 100
0.16

0.18

0.20

0.22

0.24

Neighbors

n
D

C
G

Item id and rating (f = fir)

(sim1, f, δ = 0) (sim1, f, δ = 10)

Figure C.1: Results of LCS-based similarity for Lastfm dataset. Pure collaborative-
filtering approach with δ = 0 and δ = 10.

20 40 60 80 100
0.10

0.15

0.20

0.25

0.30

0.35

0.40

Neighbors

n
D

C
G

Item id and rating (f = fir, δ = 0)

20 40 60 80 100
0.10

0.15

0.20

0.25

0.30

0.35

0.40

Neighbors

Item id and rating (f = fir, δ = 10)

(f, δ = 0, τ = 3) (f, δ = 0, τ = 5) (f, δ = 0, τ = 10)

(f, δ = 10, τ = 3) (f, δ = 10, τ = 5) (f, δ = 10, τ = 10)

Figure C.2: Results of LCS-based similarity for Lastfm dataset. Different values of confi-
dence filter parameter τ using δ = 0 and δ = 10.

C.1. Results for Lastfm dataset 69

Table C.1: Coverage of Lastfm dataset. Different values of confidence (τ). The configura-
tion for each recommender is denoted as (f, δ, τ).

Recommender Coverage

(fir, 0, 3) 1, 758.8
(fir, 0, 5) 1, 130.8
(fir, 0, 10) 98.6
(fir, 10, 3) 1, 848.6
(fir, 10, 5) 1, 699.8
(fir, 10, 10) 663.6

by the confidence value. In fact, there will be an important number of users that have less
ratings than the value of confidence, making impossible to provide recommendations for
them. The increase in performance in terms of nDCG is hence misleading as the users
that we can make recommendations for are reduced drastically. Another relevant aspect
about these results is that even when using a threshold of 10 (δ = 10), the results for
confidence values τ = 3 and τ = 5 are practically the same, although we can see that when
using a confidence of 3, when using a high number of neighbors, the results are slightly
worse. In this case, even if we augment the coverage with the threshold value, the quality
of those neighbors are worse than the neighbors that have rated the items in the same way.
However, we can see differences when using a confidence of 10 (τ = 10). In this case, the
performance in terms in nDCG is higher when allowing a threshold of 10 (δ = 10).

In order to see the effect of this parameter over the coverage, in Table C.1 we show
the coverage (the number of test users for whom we can make recommendations) of the
recommenders of Figure C.2. As we can see, as the value of confidence increases, the
coverage decreases. However, it is relevant to note that when using δ = 10 we obtain
higher results in terms of nDCG and higher values of coverage than those configurations
with exact matchings for a γ = 10.

In Figure C.3 the reader can see the results for different values of the preference filter.
In this case, both the preference values of 4 and u retrieve practically the same results
for both thresholds (the differences are so small that they cannot be distinguished in the
plots). On the other hand, contrary to the previous experiment, here we see that there is a
significant growth in performance between 5 and 30 neighbors, but also a slower decrease
when using more than 40 neighbors. We must take into account that the preference filter
only allow us to generate shorter sequences, but we are not filtering neighbors, so in the
long term it is normal that the neighbors lose some quality. In Table C.2 we show the
results of coverage for these recommenders, in this case we see that the loss of coverage
is in fact low with respect to the results obtained by modifying the confidence parameter,
but also the effect in terms of performance is rather small. In this case, this behavior
reminds us to the plots reported in Figure C.1, as the performance decay when using 30-40
neighbors, indicating that this parameter has little impact on the recommenders.

Now, we present in Figure C.4 the results when applying different values of preference
and confidence at the same time. The value of preference is fixed to be the average of
every user. In this case, we see an improvement when applying a confidence of 3 with a
threshold of 10 with respect to the same configuration but with exact matchings (δ = 0).
However, when using a larger value of confidence (τ = 5) the behavior is the opposite.
This is an interesting observation because it indicates that when using a low number of
the confidence filter, the new neighbors obtained by augmenting the matching are better
than the ones obtained with a higher value of confidence. A possible explanation for this

70 Appendix C. Performance results in Lastfm dataset

20 40 60 80 100

0.14

0.16

0.18

0.20

0.22

Neighbors

n
D

C
G

Item id and rating (f = fir, δ = 0)

20 40 60 80 100

0.14

0.16

0.18

0.20

0.22

Neighbors

Director and rating (f = fir, δ = 10)

(f, δ = 0, γ = 3) (f, δ = 0, γ = 4) (f, δ = 0, γ = ū)

(f, δ = 10, γ = 3) (f, δ = 10, γ = 4) (f, δ = 10, γ = ū)

Figure C.3: Results of LCS-based similarity for Lastfm dataset. Different values of pref-
erence filter parameter using δ = 0 and δ = 10.

Table C.2: Coverage of Lastfm dataset. Different values of preference (γ). The configura-
tion for each recommender is denoted as (f, δ, γ).

Recommender Coverage

(fir, 0, 3) 1, 877.8
(fir, 0, 4) 1, 871.0
(fir, 0, u) 1, 871.0
(fir, 10, 3) 1, 879.0
(fir, 10, 4) 1, 873.2
(fir, 10, u) 1, 876.6

C.1. Results for Lastfm dataset 71

20 40 60 80 100
0.16

0.18

0.20

0.22

0.24

0.26

0.28

Neighbors

n
D

C
G

Item id and rating (f = fir, δ = 0)

20 40 60 80 100
0.16

0.18

0.20

0.22

0.24

0.26

0.28

Neighbors

Item id and rating (f = fir, δ = 10)

(f, δ = 0, τ = 3, γ = ū) (f, δ = 0, τ = 5, γ = ū)

(f, δ = 10, τ = 3, γ = ū) (f, δ = 10, τ = 5, γ = ū)

Figure C.4: Results of LCS-based similarity for Lastfm dataset. Combination of different
values of preference and confidence filtering using δ = 0 and δ = 10.

could be related to the coverage. Table C.3 shows these values. We observe that the best
recommender in terms of nDCG is the one that obtains the lowest values of coverage. It
is relevant the difference of coverage when using a threshold of 0 and a threshold of 10
for a confidence of 5 (τ = 5). We obtain almost twice the number of users that can be
recommended, at the expense of only losing 0.03 of nDCG. This, together with the rest
of results regarding coverage, evidences the difficulty of obtaining a recommender having
good results in both coverage and ranking quality metrics. In fact, we can end up having
very good recommenders but with a very low coverage, recommending only to users whose
rating history is large, or, in other terms, easier users.

Considering the improvement of performance in the MovielensHetRec dataset when
using normalization functions, in Figure C.5 we show the results of the same four nor-
malization functions applied to the Lastfm dataset. In this case we observe a slightly
different behavior. Unlike the case of MovielensHetRec, there is only one normalization
function that outperforms the basic configuration, sim2. Actually, in the previous exper-
iment this normalization function was also the best performing one, but in this case the
main difference is that the rest of normalization functions degrade to practically the same
recommendations. Furthermore, we also observe the same situation found in Figure C.1:
when more than 50 neighbors are used, the performance begins to drop. Although this is an

Table C.3: Coverage of Lastfm dataset. Different values of confidence (τ) and preference
(γ). The configuration for each recommender is denoted by the following order (f, δ, τ, γ).

Recommender Coverage

(fir, 0, 3, u) 1, 587.6
(fir, 0, 5, u) 700.6
(fir, 10, 3, u) 1, 771.0
(fir, 10, 5, u) 1, 243.2

72 Appendix C. Performance results in Lastfm dataset

20 40 60 80 100
0.16

0.18

0.20

0.22

0.24

Neighbors

n
D

C
G

Item id and rating (f = fir, δ = 0)

20 40 60 80 100
0.16

0.18

0.20

0.22

0.24

Neighbors

Item id and rating (f = fir, δ = 10)

(sim1, f, δ = 0) (sim2, f, δ = 0) (sim3, f, δ = 0) (sim4, f, δ = 0) (sim5, f, δ = 0)

(sim1, f, δ = 10) (sim2, f, δ = 10) (sim3, f, δ = 10) (sim4, f, δ = 10) (sim5, f, δ = 10)

Figure C.5: Results of LCS-based similarity for Lastfm dataset. Different values of nor-
malizations using δ = 0 and δ = 10.

expected behavior because of previous experiments presented in this section, in the other
dataset the performance continued increasing when more neighbors were used. Again, this
may be explained by the sparsity of the dataset. In average, for this dataset each item has
been rated by 5 users, while in the MovielensHetRec the average is close to 85, thus, when
using a higher number of neighbors, we would start considering other users having a small
number of items in common with the target user, making these neighbors useless to make
recommendations.

As done for the MovielensHetRec dataset, in Figure C.6 we show the results of different
values of preference and confidence (and combinations) with and without the normalization
function sim2. Although we performed experiments for the rest of normalization functions
and combinations of preference and confidence, we think that this example is enough to
illustrate the effect of these three parameters in this dataset. In this case we see that, in
general, when using a threshold of 10 (δ = 10), the performance is lower than when using
exact matchings. However, we must take into account the coverage component analyzed
in the previous experiments, which tends to be higher for δ > 0. In this figure we also see
that when using a large value of confidence (in this case, 5) the normalization function has
practically no effect. The reason for this could be that, since we are using a high confidence
value, the neighbors are the best ones that the user can have, so applying a normalization
between them has practically no effect. However, when using only the preference value
we see that including the normalization into the process produces results that are slightly
higher.

We now present the results for the Lastfm dataset analyzing the rest of ranking metrics,
together with novelty and diversity metrics for both the LCS-based recommenders and the
baselines. Table C.4 includes these results. As pointed out before, for this dataset we do
not report results using any content-based approach from LCS or from any other baseline.
In summary, when analyzing the LCS approaches we see that the configurations where
a normalization function is applied perform better in most of the metrics than the non
normalized approaches, even for novelty and diversity metrics. Furthermore, in this case,

C.1. Results for Lastfm dataset 73

20 40 60 80 100

0.16

0.18

0.20

0.22

0.24

0.26

Neighbors

n
D

C
G

Item id and rating (f = fir, δ = 0)

20 40 60 80 100

0.16

0.18

0.20

0.22

0.24

0.26

Neighbors

Item id and rating (f = fir, δ = 10)

(sim1, f, δ = 0, τ = 5) (sim1, f, δ = 0, γ = 3) (sim1, f, δ = 0, τ = 5, γ = 3)

(sim2, f, δ = 0, τ = 5) (sim2, f, δ = 0, γ = 3) (sim2, f, δ = 0, τ = 5, γ = 3)

(sim1, f, δ = 10, τ = 5) (sim1, f, δ = 10, γ = 3) (sim1, f, δ = 10, τ = 5, γ = 3)

(sim2, f, δ = 10, τ = 5) (sim2, f, δ = 10, γ = 3) (sim2, f, δ = 10, τ = 5, γ = 3)

Figure C.6: Results with the best confidence and preference filters and normalizations for
Lastfm dataset. Results using δ = 0 and δ = 10.

using both normalization and a threshold of 10 entail better results in all the used metrics
(only for EPD and EILD our recommenders with exact matchings obtain better results).
However, the improvement in general is lower in percentage with respect to the experiments
of MovielensHetRec, probably because there are less parameters to configure.

Let us now analyze the behavior of the baselines. In this case, we observe that although
the UB1 and MF algorithms beat the best configuration of our LCS-based recommender,
its results are highly competitive; in fact, it outperforms most of the other baselines, such
as popularity and both IB1 and IB2 in all ranking metrics. This is the same behavior that
we observed for the MovielensHetRec dataset. For the UB1 and UB2 case, the results of the
LCS recommender are close to these baselines in terms of ranking evaluation metrics, but
as we can see, it obtains higher values in Aggregate diversity, which makes our approach
the user-based recommender with the highest results in this metric. However, it is also
relevant to show that the IB recommenders obtain the highest values in diversity metrics,
especially in Gini and Aggregate diversity, indicating that they are the recommenders that
are able to retrieve many different items.

74 Appendix C. Performance results in Lastfm dataset

Table C.4: Performance of baselines in Lastfm dataset in terms of ranking quality (nDCG,
P, R, MAP), novelty (EPC, EPD) and diversity (AD, α-nDCG, EILD, Gini).

Recommender nDCG P R MAP EPC EPD AD α-nDCG EILD Gini

MF 0.261 0.123 0.288 0.203 0.925 0.870 26.77% 0.223 0.874 0.014
Pop 0.082 0.040 0.093 0.060 0.792 0.922 1.35% 0.064 0.933 0.000
UB1 0.223 0.106 0.246 0.172 0.883 0.895 53.60% 0.191 0.896 0.006
UB2 0.222 0.106 0.245 0.171 0.883 0.895 52.70% 0.191 0.896 0.005
IB1 0.211 0.101 0.235 0.162 0.913 0.732 81.93% 0.171 0.721 0.027
IB2 0.214 0.100 0.231 0.167 0.912 0.694 86.81% 0.175 0.681 0.034

(sim1, fir, 0) 0.199 0.094 0.219 0.154 0.866 0.906 49.72% 0.171 0.906 0.004
(sim2, fir, 0) 0.204 0.096 0.223 0.157 0.868 0.900 56.99% 0.174 0.899 0.004
(sim1, fir, 10) 0.215 0.102 0.237 0.166 0.873 0.901 47.90% 0.186 0.902 0.004
(sim2, fir, 10) 0.222 0.106 0.245 0.171 0.879 0.887 59.22% 0.190 0.887 0.006

	Contents
	List of figures
	List of tables
	Acronyms
	Introduction
	Motivation
	Goals
	Document structure

	State of the art
	Sequence matching
	Recommender Systems
	Problem definition and notation
	Content-based recommenders
	Nearest neighbors collaborative-filtering recommenders
	Matrix factorization models
	Hybrid recommender systems
	Sequential recommenders

	Evaluation
	Error metrics
	Ranking quality evaluation
	Novelty and diversity

	Datasets

	LCS as a similarity metric
	Representing users as sequences
	Preference and confidence
	Normalization functions
	Sequence ordering
	Toy example
	Relation with other metrics

	Experiments
	Experimental setup
	Evaluation Methodology
	Baselines

	LCS as a similarity metric
	Sensitivity to confidence, preference and normalization parameters
	Sensitivity to the confidence filter parameter
	Sensitivity to the preference filter parameter
	Performance when combining both confidence filter and preference filter parameters
	Sensitivity to normalization functions

	Temporal ordering
	Impact on beyond-accuracy metrics
	Performance comparison against other algorithms
	Performance comparison in MovielensHetRec
	Performance comparison in MovieTweetings dataset

	Discussion

	Conclusions
	Summary and discussion
	Contributions of this work
	Future work

	Bibliography
	Appendices
	Implementation details
	Comparing RankSys and Mahout
	Evaluation using the libraries

	Performance of LCS using genres
	Performance results in Lastfm dataset
	Results for Lastfm dataset

