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INTRODUCTION

The present document corresponds to the subject Trabajo Fin de Mdster being part of the Master’s
Degree in Mathematics and Applications at the Universidad Auténoma de Madrid. The objective
of this dissertation is to analyse the almost everywhere pointwise convergence of the solution to
the Schrodinger equation to the given initial data.

As it is widely known, the Schrodinger equation is one of the pillars of quantum mechanics.
It was first introduced by the Austrian physicist Erwin Schréodinger (Vienna, 1887-1961) in 1926
and models the evolution of the quantum state of a quantum system. The importance of this
contribution earned him the Nobel Prize in Physics in 1933.

One of the most celebrated versions of the equation is the time-dependent one which is most

generally given by

h2

——A+V(x,t)
2u

iy .
zha—t‘l’(x,t) = W(x,t). (0.1)

Here, i is the imaginary unit, / is Planck’s constant and p is the reduced mass of the particle. The
equation involves the wave function of the quantum system here denoted by ¥ and the potential
energy, V. By A we denote the Laplace operator. Nevertheless, it is usual to consider some extra
assumptions which imply a simpler version of the equation. A case of interest is that of analysing
the case of a free particle. This can be technically expressed by the suppression of the potential
field, thus equation (0.1) becoming

ihﬁ‘l’(x, t)= —h—2A‘I’(x, t).
ot 2u

and therefore

0 h
—W(x,t)=i—AY(x,1).
Y (x,8) lZu (x,2)

If we rename the constant % = C, we obtain which is probably the most basic and universal form

of the Schrédinger equation given by

(%‘I’(x, 1) =CiAW¥(x,1?). (0.2)

For being an evolution equation, it is natural to assume certain initial data, which will represent
the known state of a particular system, for example, in the present time. The objective is thus to

know the future behaviour. Hence, if the problem is considered in the whole space R", it can be
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INTRODUCTION

stated as
SW(x,t) - CiAP(x,t)=0, inR"xR,

Y(x,0) = WYo(x), in R”.

(0.3)

The problem we are to tackle is already visible in the given statement, for even if we were able to
obtain an explicit form of the solution of (0.3), we would like, as we expect, to recover the known
state when we go back to the starting time. Hence, we will focus on finding the properties the
data should satisfy for the solution to converge to it pointwise almost everywhere when the time
tends to zero.

This problem has been analysed since the 1980s, and it has become evident that the convenient
spaces to work with are the Sobolev spaces H® of fractional order. Precisely in 1980, in [4], Lennart
Carleson treated the situation in one spacial dimension, successfully proving convergence for the
case the exponent was s = 1/4. A year later, in 1981, Bjorn E. J. Dahlberg and Carlos E. Kenig
were able to prove in [6] that the condition given by Carleson was sharp, showing the existence of
functions in H® with s < 1/4 for which convergence did not hold. The problem in R had therefore
been solved.

The situation in higher dimensions has not been completely solved yet. Many authors such as
Anthony Carbery in [3] and Michael Cowling in [5] achieved some positive results, and in 1987
Per Sjolin in [10] and Luis Vega in [13] showed independently that convergence holds if s > 1/2
no matter the dimension. More recent results have been obtained by Sanghyuk Lee in [7], who
showed convergence in the two dimensional case R? for s > 3/8, and Jean Bourgain in [2], who
proved convergence for s > 1/2—1/4n in R” for n = 3. Bourgain also prove in [2] that it is necessary
to ask s = 1/2 — 1/n for convergence. Observe that when n = 5, this condition says s > 1/4, thus
showing that the one-dimensional border cannot be achieved. The best known necessary condition
in R" with n = 3 is by Renato Luca and Keith M. Rogers, who obtain that s = 1/2 - 1/(n +2) is
needed for convergence in [8].

In the following pages, we will analyse and prove several results mentioned above. Chapter 1
will be devoted to prove the characterisation for the one dimensional case. The following chapters
will treat the higher dimensional case. In Chapter 2 we will work with general results applying
in every dimension. More precisely, we will first prove the positive result of Sj6lin and Vega based
on [9], and we will also give the necessary condition by Luca and Rogers. Finally, in Chapter 3
we will focus on the result of Lee, which is the best sufficient condition known so far for the two

dimensional case.
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PRELIMINARIES

We will analyse the version

uix,t) —iAzulx,t)=0, inR"” xR,
(0.4)

u(x,0) = upx), in R™.
of the Schrodinger equation. Note that by rescaling the initial value problem (0.2) can be reduced
to (0.4). As we have said, it is not the most complete version of the equation, but it is probably
the most extended form. Following the ideas presented in the introduction, the main objective
is to examine the almost everywhere pointwise convergence of the solution to the initial data.
But for that, it is completely necessary to have a concrete and explicit formula for the solution of
(0.4). Fortunately, this is given by a well-known formula which can be obtained by means of the

Fourier transform. We will make use of the definition
FOO =3O = [ gl dx
RVL

all along the present document. This way, we know that the Fourier transform is an isometry
in L2, as well as in the space of Schwartz or rapidly decreasing C® functions ., for which the
inverse is given by

F PO =90 = | pwe = dx

Let us shortly sketch the steps to obtain a formula for the solution. We need to Fourier transform
the equation only in the spacial variable, and by the linearity of the transform, it is enough to
work out & (uys) and & (Au). Observe that if u is supposed to have enough regularity, since the

transform variable and the differential variable are independent, we can write

—en_ [0 —omin-E 3. _ 6[ “omixé . _ O
ut(gr,t)—fw atu(x,t)e dx= 3% o u(x,t)e dx = atu(f,t).

On the other hand, a well-known property relating the Fourier transform and the derivatives

says that #(D;p) = 2ni;{p, from where we deduce that

n n n
Fo(Mu) = F () D) =Y F(Diu) = - ) 4n°E0 = —4n° ¢4
J=1 J=1 J=1

Therefore, the equation in (0.4) has become into an equation for i,
9 a0y =—an2ilel’a
at b b

v



PRELIMINARIES

which has a solution z(¢,¢) = C(¢é Ye~47"itll" On the other hand, the initial condition in (0.4) forces
C(&) = up(é). Hence,

2,0 = @o@e 1 = u(w,t) = F7 1 (@o(E)e IR,
Writing the inverse transform explicitly, we see that
u(x,t) = fR @o(&)e4m IHEF g2mixt g = fR o(§)eiwe 2t g, (0.5)

Definition 0.1. The expression at formula (0.5) is called the solution to the Schrodinger’s

initial value problem (0.4) and we denote it by e?*2u(x). Therefore,

eitAuO(x) :j'% %(g)eZni(xf—Zntlflz)dé‘ (0.6)

A property about the operator e!** which is sometimes useful is that it is an isometry in L2.
Proposition 0.2. Let t > 0. Then, the operator ¢*® : L2(R") — L?(R") is an isometry.

Proof. By the construction we have seen above,
e ()= Ft (F@pe ),
and since the Fourier transform is an isometry in L?, we see that
le“® Fllze = 1F@e ™ ¥ Lo = 1 Flpe = Il .
O

In our way to determining the properties for the solution to converge almost everywhere to

the initial condition, that is to say, to satisfy
ynéeimuo(x) =ug(x), a.e., (0.7)

we will need to work with several functional spaces. More precisely, we will have to decide in
which spaces can the initial data u lie if we want (0.7) to satisfy. One expects that no problems
will arise when considering regular functions. For example, if we consider the extremely regular
Schwartz functions, (0.7) can be easily checked. We write this first result here to have a first
approach to the solution of the problem and also because it will be useful later in the setting of
methods of approximation, since we know that the Schwartz space is a dense subspace in many

functional spaces.
Proposition 0.3. Let ug € FL(R") be a Schwartz function. Then,

8 0(x) = uo(x)

lime
t—0
for almost every x € R™.

vi



Proof. 1t is a well-known result that the Fourier transform of a Schwartz function is again a
Schwartz function. Now, considering the integral term in the solution (0.6), we see that there is a
trivial bound given by

’a\O(é)eZHi(x-cf—ZntIEIZ)

<@,

which is integrable because . c L!. Hence, the dominated convergence theorem asserts that
time'“ugw)= [ e dt = uo(),

which is given by the Fourier inversion formula. O

When we consider not so regular functions, it turns out that the adequate spaces are those
we call fractional Sobolev spaces or simply Sobolev spaces. Recall the definition for usual Sobolev

spaces, for which we will use the multi-index notation.
Definition 0.4. For % € N, the Sobolev space W*2(R") = H*(R") is defined to be
H*R") = {f e L*(R") | D*f e L’(R"), Vlal<k).
In other words, it is the space of L? functions whose derivatives up to order % are also in L2.

As we have said above, the Fourier transform is an isometry in L2(R"), so that means
that for f € Hk(an), since its derivatives are in L2, we have that F(D% f)e L2@RM). By the
properties of the derivatives of the Fourier transform, and using the standard multi-index
notation, Z(D%f) = (27i&)*f. Hence,

Df e LA(R") & ¢f e L2R").

This can also be equivalently written as |£|!%! f € L?(R"). Therefore, by writing these conditions in

their integral forms and since f € L2(R"), we can write
Hk(R")={feL2<R”)| fR (1+|§|2k)|f<5>|2d5<oo}. (0.8)
These spaces can also be equivalently presented as

H"’(R”)={f€L2(R”)|f (1+|é|>2k|f(f)|2df<oo}
R (0.9)
= {feLz(lR”)l [.; n(1+|é|2)k|f(€)l2d€<00}-

The main advantage of working with these alternative expressions rather that with the classical
ones is that %2 need not be natural now. Indeed, the integrals we write make sense for every % > 0,

which precisely allows us to define the fractional Sobolev spaces.
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PRELIMINARIES

Definition 0.5. Let s > 0. Then, the fractional order Sobolev space H* is defined as
HS(IR”):{feLZ(R”)I f |f(€)|2(1+|€|2)sd€<oo},
[Rn
or equivalently as any of the forms in (0.8) and (0.9). The norm we will use is given by

1 1 e oy = fR AFOPA+IEP) de.

As we have suggested before, the result of Proposition 0.3 will play a key role. This is because
the space of Schwartz functions is not only dense in L2, as we already know, but it is also dense

in the fractional Sobolev spaces.
Proposition 0.6. The space of Schwartz functions #(R") is dense in H*(R") for every s = 0.

Proof. We will do it in two steps. First, we will see that the space of L? functions with compact
Fourier support (this is to say, that their Fourier transforms have compact support) is dense in
H?, and after that, we will check the density of .% in the latter.

Let f € H® so that fRn | ]? (O)12(1+ 12 dé < oo. The convergence of the integral shows that for
any € > 0 there exists M > 0 such that

f IFOPA+1E2)° dé < e/2.
[EI>M

Hence, if we choose ¢(&) = f (©)xB(0,m)(¢), we see that § has compact support and that it is in L2
because f € L? and thus f € L? too. Moreover,

If = plF. = f IF©O)-pOPA+IEP)Y de = f FOPA+IEP) de <ef2.
R 1E1>M
Now since . is dense in L2, and since § € L?, there exists h € & such that

o) FOPde < —
| o0 -hPds < o

Consider a cutoff function ¢ supported in B(0,2M) and being 1 in B(0,M) and define @ =
lAz(/)M € &. Then, denoting the annulus of radii M and 2M as A(M,2M),

f 1) — R ()2 dé = [ 1) — R dé + f A ()12 dé
R® B(0,M) A(M 2M)
< [ (&) — h(©)?dE + f IR deE
B(0,M) A(M 2M)

_ f PO -REPdE+ f P& - RERdE
B(0,M) A(M,2M)

’

_ e Ty 2 €
- fR 19O -ROPdE < S

Hence,
lo—hagliZ = f PO P @A+ e de < £,
B M) 2

»
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since |¢|2 < 4M?2. By joining the two previous results, by the triangle inequality we have

If —hatlZrs <If =@l + o —hyllF <e.
O

Therefore, since we can approximate Sobolev functions by means of Schwartz’ rapidly decreas-
ing functions, the problem will reduce many times, as we will see, to proving some maximal a
priori estimate in terms of the Sobolev norm. This is because we will be able to split any f € H®

into p € & and g =f — @ € H® so that ¢ is regular and g has a norm as small as we need.

ix






ANALYSIS IN ONE DIMENSION

This chapter is devoted to analyse the results in one dimension. As we have said, the issue of
convergence is completely determined in the case of R, so we will be able to characterise the
convergence property (0.7) in terms of the exponent of the Sobolev spaces defined in Definition 0.5.
We will split the chapter in two sections. First, we will analyse the positive result, and we will

see counterexamples afterwards which will determine the necessary condition.

1.1 The Positive Result

The first positive result regarding the problem of convergence to the initial data was obtained by

Lennart Carleson in [4]. We present his result in the following theorem.
Theorem 1.1. Let s = ‘—11 and consider [ € H*(R). Then,

lime'**f(x) = f(x)
almost everywhere.

This section is devoted to proving Theorem 1.1, for which we will need to take several steps.
The keystone, as suggested, will be to estimate a maximal function of the solution e**2f by means
of the Sobolev norm || f || y14(g). But before we do so, we need to present an auxiliary lemma which

is also due to Carleson [4].
Lemma 1.2. Let a,b€(-2,2) and a €(0,1). Then,

f pilat+be) 4
R

a-1/2| |-« a-1
R < Co (16110l +1a1" ). (1.1)

1



CHAPTER 1. ANALYSIS IN ONE DIMENSION

We postpone the proof of Lemma 1.2 to the end of the present section for being quite technical.
As we have said in the beginning of the section, the main result we need to prove Theorem 1.1
is a maximal estimate for the solution e***f by means of the Sobolev norm | f|| HYAR)- We present

it in the following proposition.

Proposition 1.3. Let f € #(R) any Schwartz function. Then, there exists a constant C >0 such
that

Isup|e’f|llLe@ = CIlf l gva)-
t>0

Proof. For technical reasons which will be clear in the following lines, we will prove the estimate
in a ball B(0,R) with R > 0. In other words, we will first prove

Isup [e"f|lz4ao.R) < CIf | sy, (1.2)
t>0

C being a constant independent of R. Indeed, this is enough to prove the estimate in the statement,

because if (1.2) holds for every R > 0, then by taking the limit R — oo, we see that
lim [lsup [e"*f|lz4Bo.r) = Isup [e"* F |l L4
R—oo >0 t>0

by the monotone convergence theorem. So let us prove (1.2).
Working with the norm of a supremum is not convenient in general, so we will remove
it. Fix x € R. Then, there exists #(x) > 0, which generated a measurable function, such that

|2 f(x)| = L sup.q |e!2 f(x)|. In other words,

sup [e' f(x)] < 2[e" @ f (). (1.3)
t>0

Then, it will be enough to obtain an estimate for the L* norm of ™2 f(x), which is now a
function only of x. Recall that we can argue about the L? norms by duality. Indeed, for any f € L7,
there exists a function w € L? such that Ifllze = f fw. Moreover, this function w has unitary
norm. Hence, there exists w € LY 3(B(0,R)) with |lwl| 143 =1 such that

||eit(')Af(')||L4(B(0,R)) :fReit(x)Af(x)w(x)dx,

since w can be considered to be supported in B(0,R). If we were able to prove that for functions
w € L¥3(B(0,R)) supported in B(0,R)

fR e £(yw(x) dac < CIlf llgpus 1wl s (14)

with some constant C > 0 independent of the functions and of R, then by (1.3),

IISU(}))e”Af ILs@o.ry < 21" F©)l Laoo,ry = 2 fR "N (yw(x) dax

t>

< 2CIflguallwlizes = 2C N f |l s

2



1.1. THE POSITIVE RESULT

because w is unitary, and we would obtain (1.2). Hence, let us prove (1.4). Square the integral
and write the definition of the solution to get

2

fff(f)ezni(x§_2m(x)€2)dfw(x)dx
RJR

Observe that w € L¥3(B(0,R)) c L1(B(0,R)), so Fubini’s theorem allows us to change the order of
integration, and if we write

7 1/4 omi(ué—2mt(x)e?) W)
URf(f)lfl (fRe : de) dc

2

b

we apply Cauchy-Schwarz’ inequality to obtain a bound by

2
f |f(£)|2|€|1/2d§f ‘f e2ﬂi(xf—2nt(x)52)M dx‘ dé‘ (15)
R R|JR |&|1/4
The left-hand side integral at (1.5) can be bounded by
IFORPIEIM2de < | IFOPA+1EDYdE = 1 1%,
R R H

so we obtain one of the desired values. We need to deal with the right-hand side integral of (1.5).

Use |z|% = 2Z to obtain

J

R
:/ffeZnif(x—y)—47r2i§2(t(x)2—t(y)2)w(x)w(y)dxdy df/Z.
RJRJR §

2
d¢

f P 2iEE-2mH)E?) w(x) dx
&

(1.6)

Now, we want to make use of Lemma 1.2. Observe that for a = 1/2, the term b disappears and

f pilac+ben 4
R g%

But for that, we need to change the order of integration. In principle, we cannot do it since |&]~2

< Cla|™Y2.

is not integrable. But observe that Fatou’s lemma allows us to work with the L — oo limit of

the integral in (—L,L) in variable ¢. In this situation, |¢ |-12

is integrable and hence Fubini’s
theorem allows us to change the order of the integral in (1.6). Moreover, the proof of Lemma 1.2
shows that its conclusions are also valid in intervals (—L, L), so we see that if a = 27(x — y) and

b=—4n?(t(x)% - t(y)z), we can say that with absolute values,

lw@)llw(y)l

16)<C
Rz |x— y|1/2

dxdy.

Now Holder’s inequality gives us the way to write

lw(x)|lw(y)

dxdy < |wlpvs
R |x—y|Y2

f lw(x) dx
R|x—y|1/2

Observe that the L* norm can be solved by the Hardy-Littlewood-Sobolev inequality which we

L4'

present here.



CHAPTER 1. ANALYSIS IN ONE DIMENSION

Proposition (Hardy-Littlewood-Sobolev Inequality). Consider f € LP(R") and indices 0 <y <n,

1< p < q <oosuch that
n-y
—

Q| =
"=

Then,
If * Iy Loy < Ap g I f I Lr@r).-

Its proof has not a big interest here and hence we refer the reader to Proposition B.1 at

Appendix B.1. Let us use it. We have y =1/2 and ¢ =4, so

1 1 n-y 1 B

3
P q n 4 4

1

+——=="+1-=

2

and p = 4/3. Therefore, the Hardy-Littlewood-Sobolev inequality asserts that

lw(y)l “
———d =Cllw ,

and (1.6) < Cllwllim. Hence, we have obtained

2
2 2
< ClIF I ulwl? .y,

’ f O L0y (x)dx
R

from which we deduce (1.4). O

Remark 1.4. Observe that

I Nl s = fR IFOPA+1EPHYde < fR IFORA+ 1DV AE = || f || gruase,

for any ¢ > 0. Hence, Proposition 1.3 also shows that

itA

||sup|e f|||L4([R) < Clflasw)),
t>0

for every s = 1/4.

The estimate in Proposition 1.3 and more generally in Remark 1.4 will be the main property
we are going to exploit in order to obtain convergence to the initial data. But for that, we need
to extend it to general functions in HV4. The fact that Schwartz functions are dense in H® as
we saw in Proposition 0.6 leads the way to the extension. Thus, we will develop an argument of

density.

Corollary 1.5. There exists a constant C > 0 such that
Isup e F[ILs@ < CIlf e, 1.7
>

for every f € H3(R) with s = 1/4.



1.1. THE POSITIVE RESULT

Proof. Remark 1.4 shows that it is enough to prove the estimate for s = 1/4, since H® ¢ H4
with |fllgus < Ifllgs. Solet f e H 14 By the density of Schwartz functions, consider a sequence
{Fmtmen € & such that f,,, — f in H%. As we have seen in Proposition 1.3, for every m €N,

e Fnllza) < Isup [ fon [ Loy < Cll fn | sy < 00, (1.8)
t>0 ®

so e*Af, € L*. Notice that taking limits in (1.8), we would like to prove that lim,,, . || eAF | LAR)

A

[|etA fliLsw)- Now observe that by the linearity of the operator elt , We can write

e Frn — e Fill o = 1€ (Fm — flips < Cllfm — f1ll ga — O

when m,l — oo because {f;;}men is a convergent sequence and thus a Cauchy sequence in H 4
As a consequence, {e'*2 f,,,} is a Cauchy sequence in L* and hence convergent. We want to see that

the limit is precisely e’*2f. For that, observe that
e f ) = 77 (F(e ). (1.9)

Since f, — f in HY* c L2, then by definition of the Fourier transform in L2, we have fAm — f in

L2. But of course, the exponentials are unitary, so
— 12 -~ — 2 2 -~ _A+241712
e—4n2t|5|2fm _ e_4n2t|g|2f — g1 (fm(f)e_4” tI¢| )_)g;—l (f(f)e 4n*t¢| )

in L? because the Fourier transform and its inverse are continuous operators. Hence, this shows
by (1.9) that

[0 F ) — e F i L2,
But we are working in L*, not in L2. Nevertheless, if g were the L* limit, by convergence in L? we
know that there exists a subsequence {e**® frde — e*Af almost everywhere, and by convergence
in L* a subsequence {2 fmkl }; converges almost everywhere to g. Since two almost everywhere

limits must be the same, g = ¢/*2f and
{eitAfm}—’eitAf in L4
as we wished. This implies by (1.8) that
e A fllpa = nyl%one‘”fm s < C Hm || follgus = CUf Il s, (1.10)
which is a kind of partial result for (1.7). Now we need to argue with the supremum. Again, the

objective is to prove convergence

itA

Isup|e?®®f|ll s = lim [sup|e’™ fn|ll 4 (1.11)
t>0 m—=00 >0

in order to apply the estimate in H#, but in this case linearity is not available as before. Anyway,
we can write

sup|e!*X(fy, — f)] = sup|e!* £y, — A f;| = sup| |2 | ~ |2 1|

t>0 t>0 t>0 (1.12)

ki

= [sup |eimfm’ —sup |eimfl |
>0 t>0

5



CHAPTER 1. ANALYSIS IN ONE DIMENSION

where the first inequality is the triangle inequality and the second one is true because for
functions g,k =0,

|supg —suph|<supl|g-~hl.

Hence, from (1.12) we can write
Isup |e"® £ | — sup [e“A £ 14 < lsup | *(Fm — fD|llzs < Cll fm = Fill g — O
t>0 t>0 t>0

when m,l — co. Then, {sup,.( |eitAfm |}m is Cauchy and therefore it has a limit, say g, in L*. We

want to compare that limit with sup,.q |eitA f | as suggested in (1.11). Indeed,
* We can consider a subsequence {sup;.q |e”A fm \}k which converges pointwise to g.

* By the convergence {e!!2f,,} — ¢'*2f in L*, we consider a sub-subsequence {m k11 so that

{eitAfmkl }; — €A f pointwise.

Hence,

g(x) = lim sup [ £, (0)] = lim [e*2 f,, ()] = |e"™2 f(x)|
l—00 >0 4 l—o00 !

almost everywhere for every ¢ > 0, and thus g(x) = sup;. |ei"‘A f (x)|. This is not precisely (1.11),
but it is sufficient for our objective, since we have proven that

itA

Isup|e’®™F|llLs < llglips = lim [sup|e’™ fon 4.
t>0 m—oo0 50

As a consequence,
it . itA :
Isuple"®f[liLe < lim [Isup |e*®frn|lips < C lim | fonllgus = ClIf | o,
t>0 m—=00 >0 m=00
and we are done. O

Once we have been able to prove the estimate for functions in H® for any s = 1/4, we are
ready to give the main result. The technique is similar to the standard proof of Lebesgue’s

differentiation theorem.

Proof of Theorem 1.1. The result is again given by an argument of density. Consider a function
f € H®, and since ¥ is dense in H®, for € > 0 let us consider ¢ € & such that || f — ¢lgs <e. If we
call g = f — ¢, observe that we have decomposed f = g + ¢ into two parts, one being regular and
the other one having small norm. Observe first that the issue of convergence for Schwartz data is
trivially solved as we saw in Proposition 0.3, so the problem is basically translated to functions in
H?® which have norm as small as we wish.

Recall that we want to check that lim,_oe**2f(x) = f(x) almost everywhere. This is equivalent

to proving lim;_ g |eitAf(x) - f(x)| =0, or in other words,

0.

m ({x | limsup |[e?2 £ (x) — f(x)| # 0})

t—0

6



1.1. THE POSITIVE RESULT

We write the upper limit to avoid problems of existence. In any case, it is also clear that

eitAf(x)_f(x)| £ 0} = {x | lim sup
t—0

keN

{x | lim sup eimf(x)—f(x)| > 1},
t—0 k

from which we deduce that

m ({x | limsup |2 £ (x) f(x)' # o})
t—0

(1.13)

<y m({x | lim sup eimf(x)—f(x)‘ > %})
t—0

keN

Therefore, it is enough to see that every summand in (1.13) is null. As suggested before, let us

translate the problem from f to g. Indeed,

eitAf(x)_f(x)‘ - eitAg(x)_g(x)+eitA

p(x)— (p(x)‘

<

eitA

20— gl)| + e (@) - p(x),

and taking limits ¢ — 0, by the convergence result for Schwartz functions analysed in Proposi-

tion 0.3, we get

limsup |2 f(x) - f(x)‘ <limsup |e/® g(x) —g(x)|,
t—0 t—=0

so for all £ € N, we have

m ({x | lim sup eimf(x)—f(x)| > %})

t—0

<m ({x | lim sup

. 1
e‘mg(x)—g(x)| > —})
t—0 k

Now, observe that |e!®g(x) — g(x)| < |e!*® g(x)| + |g(x)], so by taking limits we see that

lim sup eltA itA itA

t—0

g(x)—g(x)( <limsup|e"*g(x)| + |g(x)| < su(;))|e g()| +g@)l.
t—0 t>

Also since sup,. |e'**g(x)|+|g(x)] > 1/k implies that either sup,. |e!"*g(x)| > 1/2k or |g(x)| > 1/2,

we can write

eitAg(x) - g(x)| > % })

; 1 1
) > ot e {xl1gwi> -},

Let us treat each of the terms in (1.14) separately.

m ({x | lim sup
£=0 (1.14)

<m ({x | sup
t>0

¢ On the one hand, Chebyshev’s inequality and the result in Corollary 1.7 show that

. 1 .
m ({x | sup |e"* g(x)| > ﬁ}) =< (2k)*lIsup|e”®g|ll7, < C2R)* Il 7.
t>0 t>0

7



CHAPTER 1. ANALYSIS IN ONE DIMENSION

* On the other hand, by Chebyshev and Plancherel (because g € H4 c L?),

1
m ({x| lg(x)l > ﬁ}) < (2k)lgl3, = (2k)? fR 8NP dé
<(2k)? fR 18P+ 1% dé = (2R)? || g1
Therefore,
(1.14) < 2R)2 I gl% (C2R) g%, + 1) < (2k)%e? (C(2R)%€® + 1),

which, remember, is valid for every € > 0. Hence, letting ¢ — 0 and going back to (1.13), we see

that for every &k e N,
m ({x | lim sup ’eimf(x)— f(x)| 7 0}) =0,
=0
which completes the proof. O

To complete this section, we will give the proof of Lemma 1.2 which was postponed in the

beginning of the section.

Proof of Lemma 1.2. We will need to use tools regarding oscillatory integrals developed in Ap-

pendix A, so we will keep the notation introduced there. We first assume b = 0. Then, we are

feiatﬂ
R |E®

Observe that the left-hand side of (1.15) is an oscillatory integral with parameter a, with phase

looking for the proof of
<Cgylal® L. (1.15)

¢(t) = ¢t and w(¢) = |¢|”%. We split the integral into three. For € > 0, we will consider the integrals

in (—oo, —¢€),(—¢,€) and (¢,00). In the middle interval,

€ € €
U e““ﬁ s[ ﬁ:z[ tdt = 2 el
—€ [t|* —e |t|® 0 1-a

Choose € = 1/|a| so that €17% = |a|*~! and the bound is

€ iar dt
f ezat_a
- ]

Let us consider the remaining integrals now. We will need to use the results of Van der Corput,

2
< oc—l'
T 1l-a lal

and more precisely Corollary A.9. With ¢ and y already defined, and since |y'(¢)| = alt| oL
|¢'(t)] = 1, we have

R

l/IaI)

R dt
f ezat_
Vlal [£]*

which is valid for any R > 1/|a|. On the other hand,

—1/|a| A dt R A dt
‘f ezat_ f e—Lat_
-R |2|* Vlal Z]*

R
<Clal™ (W(R) +f |w’(t)|dt) =Cla|™! (R“ —
1/|a|

=Clal Y al® = Cla|*,

K




1.1. THE POSITIVE RESULT

and the situation is the same excepting that the phase is ¢(¢) = —¢. But as before, |¢'(¢)| = 1 and
the estimates of Van der Corput are allowed, hence the result is the same, again for any R > 1/|a].

Therefore, we obtain

R dt 2
f plat 44 (_ +20) lal®"t, VR >1/al,
& 1t 1-a

so0 (1.15) is satisfied by letting R — oo.
We can thus assume b # 0. By the absolute values in (1.1), we may even assume b > 0. Let us

simplify (1.1). Change variables ¢ = b/ 26 in the integral so that

-1/2
i(af+b52)ﬁ _ i(ab-1/2t+t2)b_d _ pla-12 i(2At+t2)ﬂ
e = e a2 t= e a’

R €1 Jr [t %~ R [t

if we call 2A = ab~ 2. After this change of variables, (1.1) is equivalent to proving

. 2y dt - - - -
fel(2At+t )stu 020 (ba' V2147 4 |q)® 1)
R

-c, (ba/2|a|—a " b(l—a)/2|a|a—1) (1.16)
=Co (12417 +12A1° 1) =K, (JAI™* +]A|“7Y).

Consider two different cases for A. Let |A| < 2. Split the integral as in case b = 0, and for the

same reason,
2

T l-a

l1-a

UE pi2Arse) At |
—¢ [t]@

Let us focus on (¢,R), for R > e. If we now take ¢(t) = 2A¢ +t2, then |¢"(t)| = 2, and what is more,
if we fix ¢* = ¢/|A|, then |(¢p*)"(¢)| = 2/|A| = 1, so with w(¢) = ¢~ % as before, we can use the second
order Van der Corput estimate from Corollary A.9 to say that

R R
Lot Qi 0t
€ t* € t*

< C|A|—1/2 (R—a _ t—a

R
) — C|A|—1/2€—(Z‘

On the other hand,

J

 iArs At
— ta

R 115

so considering now ¢(¢) = —2A¢ + t2, the second derivative does not change with respect to the

R
f i(—24t+2) At
e —_—

€

previous case, so if we repeat the process with the idea of ¢p*, we obtain exactly the same bound.

R
U ei(zAt+t2)ﬁ -
-R [2]%

If we consider € = 1/|A| as before, the bound we obtain is C,(|A|* ! + |A|%*"12), We wish to have
a bound with |A|*1. Observe that if |A| < 1, then |A| < |A|Y2. On the other hand, if 1 <|A| <2,
then |A| <2<2|AY2, soin any case |[A| < 2|A|Y2. Hence, |A|* 12 <2|A]1%"1, and hence we obtain
a bound C4|A|%1, which obviously satisfies (1.16).

Hence, for every R > ¢,

el +2C|AIT %

1-

9



CHAPTER 1. ANALYSIS IN ONE DIMENSION

Hence we are only left with the case |A| > 2. In this case, we need to split the integral into

—2|A| —|Al/2 -1/1A| 1A| |A]/2 2|A| oo
R —00 —2|A| —|Al/2 -1/A| 1IA| |[A/2 2|A|

=Ig+1g+17 +1o+11+12+13.

more pieces:

The situation of I is the same as before: Iy < %IAI“‘I. For the rest of the cases, we want to use
Van der Corput again. Recall that ¢/(¢) = 2t + 2A. For the remaining,

e Ifte(1/|Al,1A|/2), then 2¢+2A € (2/|A| +2A,|A| +2A). Observe that |¢/(¢)| = |A|, since

-IfA>0,2t+2A>2A+2/|A| >2A > A =|A|.

-IfA<0,2t+2A<2A+|A|=A<0 = |2t +2A|=-A =|A]|.

Therefore, we take ¢* = ¢/|A| so that |(¢p*)'| = 1, and with Van der Corput,

A
f QIAID"
1IA|

e =CylA|“L,

<ClAI™! ((|A|/2)‘“ -t

|A/2
1A|

e Ifte(—|A|/2,-1/|A]), then 2¢ + 2A € (2A — |A|,2A — 2/|A|). Also here |¢'(£)| = |A|, since

-IfA>0,2t+2A>2A-|A|=A=|A|

- IfA<0,2t+2A <2A-2/|A|<2A <0 = |2t +2A| = -2A =2|A| = |A]|.
Therefore, we take again ¢* = ¢/|A| for the same reason and observing that |¢/'(#)| =
alt|”* 1 = a(-t)"%"!, we see that

-1/]A|
|w’<t)|dt) =C|A|™ (|A|“ -t
2

I sC|A|‘1(|w(1/|A|)| +f
—|A|/:

=C|AI" (21A19 - (A2 *) < Co (JAI1* L +14]77Y)
<C, (A1 1 +1A7%),

|[Al/2
1IA|

which satisfies (1.16).

e Ifte(2|A|,00), then 2t +2A € (4|A]| +2A,00), so for positive A, 2t +2A > 6A > |A|, and for
negative A, 2¢ +2A > —2A = 2|A| = |A|. Hence, by the trick of ¢p*, and for R > 2|A],

R .
f QA0
2|A|

Since this is valid for every R > 2|A|, we see that |I3] < C,|A|™% since |[A| > 2.

-1 -a —aR
<ClA| (R -t 214

):Ca|A|_a_1~

10



1.1. THE POSITIVE RESULT

o Ifte(—o0,—2|Al), then 2¢ +2A < —4|A|+2A. If A is positive, then 2t +2A < —-2A < —A, so
|2¢ +2A| > |A]. On the other hand, if it is negative, then 2t + 2A < 6A <0, so |2+ 2A| >
6|A| > |A|. Hence, repeating the procedure, for big R,

24l
U (A0,
-R

sC|A|‘1((2|A|‘“—t‘“

2141 -1 -a_p-a
R ) =CIAI" (2@21AD"*-R™)
<CqlAIMAI™,
so we see that |I5] < CylAI"% 1 <C4|A|® because |A| > 2.
The situation is a bit more tricky in the case of I3 and I, . Indeed,

o Ifte(JA|/2,2|Al), then 2t +2A € (JA|+2A,4|A| +2A). If A > 0, then 2t +2A > 3A > |A]|, so

we can argue the same as before to say that

115 <C -1 -a _ a2A| _ -a-1 -a
ol =CIA|™ [(2IAD™" —¢ Ao —C4lA| =CqlAI™.

Butif A <0, then 2¢ +2A € (A,-2A), so we cannot argue the same. But observe that if we

change variables t =r+|A|=r—A, then

21A A
f | Iei(2tA+t2)ﬁ:f| | pir2-A?) dr
IA1/2 [t®  J-ojape (r+|A]e

Therefore, calling the phase ¢(r) = r2 — A2, we see that ¢"(r) =2 > 1 so by Corollary A.9,
with y(r) = (r +|A])7%,

‘ f A gierean__dr c( (14D f o )|d)
— | < +
7|A|/2e (r+]A]e v —AV2 violdx

1Al
=C((2|A|)‘“—(r+|A|)‘“ ) (1.17)

—Al2
=C(lAI/2)7" = CqlAI™Y,

so [Ig| = CyulAI72.

¢ Finally, the case of t € (—2|A|,—|A|/2) is similar. Indeed, if A <0, then 2¢ +2A € (6A4,3A), so
2t +2A <3A < A and |2t +2A]| > |A|. By the trick of ¢*, we see that

2|A|
|[Al/2

=CIAI™ (231A1/2)* - (1A ™%) = CalAI* 7T,

II;1=CIA|™ ((|A|/2)‘“ —t

so in this case |I;| < CylAI"% 1 <C4lA|"®. But if A > 0, then 2t +2A € (-24,A), so we
cannot bound ¢'. But with the change of variables ¢t = —r — |A|,

—|A)2 A
f 1A ei(ZtA”z)ﬂ:fl | Li2-A%) dr
—9lA]| [E1®  J-jare (r+lAD®’

which is exactly the same integral as in (1.17), so |I,| < C4|A[7“.

11



CHAPTER 1. ANALYSIS IN ONE DIMENSION

Therefore, we conclude that since the bounds of every piece of the integral are either |[A|™% or

|A|%"1 and only with constants depending on a, we deduce that

. dt
fez(ZAt+t2)WSca(lAl—a+|A|a—l)’
R

which is the result we asked for in (1.16). The lemma is proven. O

1.2 The Negative Result

Carleson’s result given in Theorem 1.1 asserts that convergence is obtained whenever f € H® for
indices s = 1/4. The natural question arising is whether convergence holds for Sobolev spaces
of smaller index. In other words, we wonder if this is a sharp result. In this section we will see
that the result is indeed sharp, showing that the index s = 1/4 is the best possible. To accomplish
this task, after fixing s < 1/4, we will build a function in H® such that the solution given by the
operator e'*2 does not converge to the chosen initial data.

As a first step, it is interesting to find the reasons why the arguments in Section 1.1 do not
work this time. Observe that the keystone was the estimate given in Corollary 1.5, an estimate

concerning an L?-norm the maximal function

sup
t>0

eith f(x)| (1.18)

in terms of the H4-norm of the initial data. We observe that the proof of Proposition 1.3 heavily
depends on Lemma 1.2 and on the fact that the case s = 1/4 simplifies its bound because it
allows us to take a = 1/2. But this time we will show that the maximal expression (1.18), when
considered as an operator H® — L?, is not bounded, thus removing the possibility of repeating
the argument. Let us see this.

Let s < 1/4, and for j € N, consider a function f;(x) defined via its Fourier transform
FiO) = 1gi 21+ 221 (©): (1.19)

Let us analyse its H®° norm. For that, we see that
) 2/ + 13527 )
= " asieerde. (1.20)
J
Observe that

9) 4 1_9i2 2 9i 4 9i% 2.2/,
100

so by the effect of the interval, we see that 2/ <&<2-27 from which we deduce 2% < ¢2<4.2%,

and since j = 1, we can also say that 2%/ <1+¢2<4-2% +1<5.2% Then,
2% < (1+¢&%)° <5°2%,

12



1.2. THE NEGATIVE RESULT

This means that from (1.20) we deduce

2js0j/2 92js9j/2 9isgil4 js /4
<\fill%s <5° = <\fillgs <52=—"—
In other words,
Ifjlls =~ 275274, (1.21)

where the constants of the equivalence are 1/10 and 52/10, the last depending on s, which does
not matter since s < 1/4 is fixed.
After estimating the norm of the chosen f;, we focus on the solution expression, eltAf 7, which

after a change of variables given by ¢ — ¢ + 2/ turns into

9il2

/‘W e2ni(x€*2ﬂt52*4”tf2j)df . (1.22)
0

9il2 '

. 100 . j i\2
eltAfj(x)| — ‘f e2m(x(£+21)72nt(€+21) )df
0

The terms not depending on ¢ have disappeared by the effect of the absolute value. Now, since we
are interested in treating sup,. |e”A f j(x)|, we choose a certain value for ¢ so that the phase in

the integral (1.22) is really small. We restrict ourselves to x € [0,1] and we define
t;=2""12m) k. (1.23)

Hence, the phase becomes bounded by
. . . Y 1
2 —j=1,.22 _ 9—j-1z2 _ o—j-1
|.’)C£—27l'tjf —47th€2‘]|55(x—.’)C)+2 J .’)Cf <2 J 6 <2 J m=m
Now, bounding (1.22) from below with the real part,

oi/2

To0 9 .
f cos2m(xé — 2mté” —4nté2))dé|,
0

eitjAfj(x)| >

and the cosine term can be bounded from below by 1/2 because the phase is very close to 0. Hence,

12772 :
= =2, (1.24)
2100

eitjAfj(x)| >

from where we can assert that

eitAfj(x)| >

sup eiti fj(x)| > 22, vxelo,1].

t>0
Therefore for any 1 < p < oo we have

Isup "™ £ 0| | Loy = Isup |2 £ Lo o,11) = C277. (1.25)
t> t>

The bound (1.25) we have obtained, alongside (1.21), will give the desired result. Indeed,

observe that (1.21) can also be written as
”fj”Hs ~ 2]82]/4 — 2j/22j(8—1/4) — ”f_]”Hs2J(1/4_S) ~ 2j/2,

13



CHAPTER 1. ANALYSIS IN ONE DIMENSION

so inserting that in (1.25), we get
Isup e @) lo@ = 27N fillms, VieEN.
t>

Since s < 1/4, then 1/4 — s > 0 and when j — oo the hypothetical constant for the bounded operator
tends to infinity. In other words, it does not exist, so the operator is not bounded. Also observe
that if s = 1/4 or more generally s = 1/4, the dependence of the constant on j disappears. It must
be so, since we showed that in the case p =4 the operator is bounded.

We have thus seen that the argument used to prove the positive result will not be correct in
case s < 1/4. What is more, we want to find a counterexample which shows that convergence fails
in this case. For that, since s < 1/4, we have s + 1/4 < 1/2, so consider « such that s+ 1/4 < a < 1/2.
Let us define

fx) =Y 270%F(x), (1.26)

122
where f; was defined in (1.19). First let us check that f € H®. Indeed,

I ler < Y 27" full e,
1=2
and using the estimate (1.21), we can say that
”f”Hs < Cs Z 2—la+ls+l/4 — Cs Z 2—[(0{—8—1/4)‘

=2 =2

Observe that by the choice of a, the exponent is negative since a —s —1/4 > 0, hence the sum
converges and f € H®. It is also clear that the partial sums of the series defining f converge to f

in H%, because

N o o
fo-Y 2l nw| =) ¥ 2 aw| sc, Y ol
122 e |li=N+1 s I=Na+1

which tends to zero when N — oo for being the tail of a finite series. This automatically shows
that convergence also holds in L? because the L?-norm is dominated by the H*-norm.

Since we want to deal with e’*2f, we need to know if expression (1.26) admits to take the
operator inside the sum. We know that e?*2 is linear, but since we are working with an infinite
sum, we should justify this step. We saw in Proposition 0.2 that e?*2 is an isometry in L2, so since
we know that (1.26) is convergence in L2, then isometries being continuous, we can assert that
Zf\iz g-lagithp _, oitAr showing that

. o0 .
ettAf: 22—laeltAfl in L2,
=2

and therefore pointwise (because there is a subsequence of the partial sums converging pointwise

to f).
Since our objective is to show that e?*2f does not converge to f when ¢ — 0, we will again

work with certain time values tending to zero, in which the function will be too unstable for

14



1.2. THE NEGATIVE RESULT

convergence. Recall the ones defined in (1.23), and also the bound we gave in (1.24) for coinciding
values of [ = j, |ei’ffA f j(x)|. We want to analyse what happens when [ # j and to see if we can

obtain a similar bound. For that, recall the expression in (1.22).
e Ifl<jel—-j<0,by taking the absolute value inside the integral, we obtain

12
eitjAfl(x)’ - 212 _ 0902912 _ cig-li-l29il2
~ 100

¢ Otherwise if [ > j < [ —j >0, the same procedure does not work, since we obtain

’ it; Afl(x)| — 0oU=D129j12 _ moli- Z|/22]/2

100
which is a terrible bound for / > j. Therefore, we need another technique. Indeed, observe

that the integral to treat is

oll2

100 (Ot Ol 1Y E_ Oy 52
e2m((x 2mt ;27 —-2mt ;¢ )df ,

0

100 e2ni(x€—2ntj€2—4ﬂtj€21)dé —

ol/2
0

which is an oscillatory integral with phase ¢(¢) = (x — 271t jZZ 1y —2mt j€2. We want to use
Van der Corput’s results given in Proposition A.6. For that, we need to control the derivative

of the phase. Clearly,
¢ (&) =x—2mt ;21 +28) = x — 2777121 £ 28) = x(1-277(27 + 9)),
and if we consider x € (1/2,1),
1$'()] = %u—z‘f(zl +)l.
Observe that since ¢ > 0, then 27/(2! + &) > 2!~/ > 2 because [ —Jj=1. Hence,
1$'©)] = %(2—%21 +O)-1)= %(zl—f -1,
and since 2!77 > 2, then 2/7"1>1 and
oli-1l

Zol=j _
4 4

Thus, define ¢p* (&) = J s (&) so that (¢p*)' (&) = 1, and since it is monotonic, we can use Van

der Corput’s result to assert that

ol/2
/‘100 2‘1 ‘([) (“)df
0

The constant from Var der Corput is 4, so K = 8/%. Also observe that

W1z Sl -2t = Ly

112 L
to oli-ll !

) = K27V,

2P0 g¢| = <C (275

0

—-j-1 —j-llolj-1l1/2¢6j/2 —j-11/126j/2
9=li=ll < 9=li=ligli-l129j/2 _ o=1j-l129] ,

from where we deduce that

eitjAfl(x)‘ < K2—|j—l|/22j/2’

which is the same bound as in the case I < j.

15



CHAPTER 1. ANALYSIS IN ONE DIMENSION

Therefore, observe that if [ # j, we have obtained
'eitjAfl(x)‘ <Q27 V2912 yye(1/2,1), (1.27)

where @ = max{1/100,8/7} = 8/7.

Once we have managed to obtain bounds from below for most of the summands of the solution,
it is time to tackle the solution itself as a whole. Since we are looking for divergence, we also
want to bound |e”fA f | from below with some bound depending of j such that it tends to infinity

when ¢; tends to zero (and by the choice of ¢}, equivalently when j tends to infinity). Write

. o .
lelliA f ) = | Y 271% A fi(x)|, (1.28)
1=2
and by the reverse triangle inequality, since j is fixed now, we write
e A f ) = 2779 R fi(x) — Y 271 e R (),
I#]
so that we can use both (1.24) and (1.27). Hence,
. —jaj2 4 4
it f(x)] 2 ———— — Q272 Y g laglizll2, (1.29)
200 =

We need to treat the sum making a difference between cases [ < jand [ > j.

* When [l < j, we see that
2 ol l2 o2 o lao( D2 e ol(2a)
27 E 2 g l—ilia — 9J E g tagl-y+i)ia E 2 @

=2 =2 =2 (1.80)
2j(1/2—a) _ 22(1/2—a) 2j(1/2—a)

2(1/2-a) _ 1 = 2(1/2-a) _ 1"
e When!l>j,

12 % o-lao-lj-l2 _ 0j2 © o-laoG-2 _o0f W o-l(12+a)
~lag-1j-11/2 _ —-lag(j-1)/2 _ -1(1/2+a
2/% ) 2maaTUTE=9/® K 2702 =2/ ) 2
I=j+1 I=j+1 I=j+1 (1.31)

—(j+1)(1/2 —(a+1/2
:2j2 (+D(1/2+a) _ i2-a) 9—(a+1/2)
1-2-(12+a) 1-9-12+a)"
Hence, we can bound (1.29) with
. . 1 1 o—(a+1/2)
it;A Jj(12-a) | _~
e f(x)| =2 [200 Q (2(1/2—a)_ 1 1_2—(1/2+a))

—C, 212,

Observe that if C > 0 holds we are done since 1/2 —a > 0 and 2/V2-9 _, 50 when j — oo, showing

that the solution tends to infinity. Nevertheless, the argument is not finished. Indeed, since
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1.2. THE NEGATIVE RESULT

a could be very close to 1/2, it could happen that the constant C, were negative because the
negative term is bigger than 1/200. One way to fix this problem is to remove terms from the

initial definition for f. In (1.26), we filter summands by choosing M € N, M > 1 and letting

fu(x) = Z 27Mlanl(x).

=2

Observe that we are doing nothing but considering only one out of M former coefficients. Consider

also times ¢)7, alone. Going back to (1.28), we see that we can follow the same process to write

e fg()| = 27 M MR ) = 3 27 Mt fyy ()

I#j
o-Mja+Mj/2 _ _
> 500 _QzMJ/ZZ2—Mla2—M|‘]—l|/2.
I#]

If we review the calculations in (1.30) and (1.31), one can very easily observe that the effect of
the parameter M is translated to the constant C, which will now be C, y. Indeed, the bounds

we get are

eitjAfM(x)| S oMj(12-a) [i Q (

200 ¥ |\oMaz-a 1 | 1_9-MZ+a)

: 1 1 2
Mjz-a |1
=2 [200 Q (2M(1/2—a) e 2M(a+1/2))

1 2—M(a+1/2) )

- C(x sz(1/2—(l)

where in the last inequality we have chosen M big enough so that 1 —2"M12+® > 1/2 Now, it is

clear that
1 2

oM(12-a) _ 1’ oM(a+1/2)

0, when M — oo,

so we can choose M big enough to make the sum of those terms smaller than 1/200 and thus

Co M > 0. Finally letting j — oo, we eventually deduce that

lim
Jj—o0

eitjAfM(x)) =00,

showing that

lim eitAfM(x)) =00
t—0

and that the solution does not converge to the initial data, even if we saw that fj; € H5.
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ANALYSIS IN SEVERAL DIMENSIONS

Through calculations in Chapter 1 we have been able to characterise convergence in terms of
Sobolev spaces H® in one dimension, this is to say, in R. More precisely, we have seen that the
border exponent is s = 1/4, with convergence holding if and only if s = 1/4. We want to see if we

can obtain similar results in higher dimensions.

2.1 A Positive Result in R”

In this section, we will analyse a positive result which gives a sufficient condition for convergence

in every dimension. We can write it in the following way.
Theorem 2.1. Let s > 1/2. Then, if f € H3(R"),

lime'**f(x) = f(x)
almost everywhere.

As we see, this result is not as strong as Theorem 1.1 in the sense that the Sobolev exponent
is worse. On the other hand, it is a powerful theorem since it ensures convergence in every
dimension. It is a fact that in higher dimensions finding the right exponent is tougher and it has
not been solved so far as we will later see.

Theorem 2.1 is proved by a similar procedure as the one used to prove Theorem 1.1. Indeed,
we will prove an estimate for solutions concerning the maximal function in time of e*2 f by means

of the Sobolev norm of the data f. We present it in the following proposition.

Proposition 2.2. Let s > 1/2 and f € #(R"). Then, there exists a constant Cg > 0 such that

[sup 1 ][l 205 < CoR MU e
>
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CHAPTER 2. ANALYSIS IN SEVERAL DIMENSIONS

for every R > 0, where Br denotes the ball in R" centred at the origin and of radius R.

Proof. In the way we did in the proof of Proposition 1.3, for every x € R” we can find a time value
t(x) such that

) ) 1 )
sup|elmf| > |ezt(x)Af| > qup|elmf|.
t>0 t>0
Therefore, sup,.q |e”A f | < 2/e®™@A £ and it is enough to obtain the estimate for |e?* ™2 f(x)|, thus
not needing to work with the supremum in time. By duality, since the dual space of L? is L? itself,

we can find a function w € L2(Bg) (which since we only mind the situation in the ball, can be

chosen w to be supported in Bg) so that |wllz2g,) =1 and
||eit(-)Af(.)”L2(BR) :L elt(x)Af(x)w(x)dx
R

Because of that, we are looking for a bound like

fB R F(&)e2m i@ =2mt @I vy 4 doe < CR V2| f s w2 (2.1)
R n

for functions w € L2(B R).
Observe that the integral in (2.1) admits a change of the order of integration. Indeed, since f
is a Schwartz function, so is its Fourier transform and hence f e L. Also, L2(Bgr)c LY(Bg), so w

is integrable. Therefore, Fubini’s theorem can be applied and the integral is

fB f(é') A e2ni(x-§—2nt(x)l€|2)w(x)dxdf
R n

27i(x-E—2mt(x)|€|2)

| 7oA+ 162y € dx|d
fR fexaie?) (fB T YW x) ¢ (2.2)

. o 9 12
. , 12 ‘fBR p2milx-E=2mt(x)I¢] )w(x)dx‘
< 1 °d d ,
<([ Foraritra | [ tEarEs ;

where the last inequality is nothing but the consequence of applying Holder’s inequality in the
outer integral. Now observe that the first term in (2.2) is precisely the H® norm of the initial data

f, since

171 = [ PR+ iy de.

Hence, we need to work with the second term. For its management, we need to define the following

sets. For every j=1,...,n, let

\ <l
Uj:{cfeﬂ%? ||fj|2ﬁ}. 2.3)

Observe that if £ € R” were a point for which |¢;| < |¢|/\/n for all j=1,...,n, then

n 2
&2 <y "’%' =[¢[?,

=1
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2.1. APOSITIVE RESULT IN R"

which is obviously false, so there exists some j such that ¢ € U;. This shows that

UJ':Rn.
1

n
Jj=

What we do next is to split the second integral in (2.2) into these sets U;. Define

|2

[ 22N )
L=
U, (L+E2

so that, since U; are not disjoint, we can bound the integral as

d¢

‘/‘BR e2ni(x-vf—2nt(x)|§|2)w(x)dx‘z n
dé< ) I;. 2.4
fn (1+182)° ¢ le ! &9

Therefore, we will work to bound each of these partial integrals I;. Let us work with I for
simplicity. Observe that since I; is an R” integral of a positive function, we can split it in
variables. Call & = (¢1,&9,-++,&p) = (E1,8), where & € R*™1. Hence, after splitting,

|fBR ezﬂi(xlfl+ff—2ﬂt(x)|5|2)w(x)dx ’ _
I Sfff dé1dé,
U, Juién) (1+1&%)s

where Ee Ui cR" 1, We want to change variables to make |& |2 = r. But observe that it cannot be

done directly. In fact, we are only going to change variables in the first variable, so to make |¢|?

become the new variable, we need

. 2 21 2 yp, _dr
¢i=\Vr-¢, df—z(r &) dr__Zfl' (2.5)
Then,

ezm'(xlfl+§-E—2nt(x)r)w(x)dx dr

I <[ f UBR dé
Y e o 1 +7)° 20Eq

and since in U7 we have |¢1] = |é|/v/n, we can bound

|2

|, PP FE RO @y |
. f f Y= drdg.
Vo (d+r¥ 2l

But looking at (2.5) we see that indeed r = |£|2, so

‘2

2@ E1+ T2 1y (1) vn

I <[ f o drdt
= r .
e U1(&1) (I+7r) 2yr

Here, we choose to let the term &1 = &1(r,¢) in the exponential, since we are to see that it will

‘2

play no role. Now, since we have an integral of positive functions, we can change the order and

integrate in (0,00) (because r = |£|? = 0) to write

- 2
2 Jo vr(1+r) Joil)Bs
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CHAPTER 2. ANALYSIS IN SEVERAL DIMENSIONS

Let us focus now on the integral on the ball. Since w is integrable, we can by Fubini split the

integral to write

_ 2
f Q2L EHEE-2TE) ()
Bgr

R .
- 'f ez]‘[lxlfl
-R B

R . 2 R
= f ’ezmxl{l dxlf
-R -R

where we have used Cauchy-Schwarz’ inequality in the outer integral. Observe that the first term

2
(2.6)

fieZni(Ef—W”(x)r)w(x) df) dx1

2
dx1,

f Q2MIEE-2HCr) () g

B

in (2.6) is nothing but 2R. Hence, taking the expression for /; again and extending the integral

from both Bg and U; to R*~1 we write

0o 1 R
L= ‘/ﬁRfo ALty f_RfR

after several Fubini’s changes of order. Observe that U; can be trivially extended to the whole

2
dédxidr 2.7

/ Q2MIEE=2TH) ()
Rn—l

space. On the other hand, in principle we cannot extend the integral from Br since we are
integrating a complex function, but since w is supported in the ball, it will be null outside, so we
can do it.

Plancherel’s identity tells us that the Fourier transform is an isometry in L2. We use this fact

to simplify the two innermost integrals, because writing

[l\anl

2 —_—
d¢

f Q2MIEE-2H) () I
Rn—l

B ‘[Rn—l
B ‘[lv%n—l

we obtain the L? norm of a Fourier transform. Then, noting that we are not integrating over x1,

2 —_—
d¢

2 TE =
/ w(x)e_4” lt(x)re2mx~€ dx
Rn—l

%(w(x)e*‘*ﬂzit(x)r) (3)|2 iz

by Plancherel this is the same as

[;Qn—l

Coming back to (2.7), we see that

o 1 R
Ij<yvnR| ———— 2dxdx1d
1=Vn fo \/;(Hr)sf_an_llw(x)l xdxidr

©© 1
=vnR 2 f —dr.
\/ﬁ ||w||L2 0 \/]_‘(1+r)3 r

The remaining integral can be easily managed as follows:

9.
w(x)e—4n it(x)r

2
dx = f lw(x))? dx.
Rn—l

L S L S
———dr=| ———=dr r
0o Vr(l+r)s 0o Vr(1+r)s 1 Vr(l+r)s
L | © 1
< —d d
<f0\/— r+f1 \rrs g

r
©° 1
=2 +f1 s 4T




2.1. APOSITIVE RESULT IN R"

The last integral is finite if and only if s+ 1/2 > 1, which is the same as saying that s > 1/2.

Therefore, if we call this quantity K, we see that
Iy <KVnR|w|?,.

Observe that the bound for the remaining I; is done exactly the same way if we separate x;
instead of x1. Then, from (2.2) and (2.4) we get the bound

I Iz (BsnvnRwl3)"? = Kg n R fll s llwll 2,

as we asked in (2.1), so we are done.
O

As we did in Chapter 1, the estimate obtained in Proposition 2.2 can be extended to general

functions in H®. This step is needed because we are looking for results in H*.

Corollary 2.3. Let s > 1/2 and f € H*(R™). Then, there exists a constant Cg > 0 such that
[ suple™*f1l L2, = CoBM1f s
t>0
for every R > 0.

Again, the fact that Schwartz functions are dense in the Sobolev spaces will give the way to
prove this result. The approximation argument is exactly the same as which we used to prove
Corollary 1.7, the only differences being that now we have L2(Bg) instead of L*(R) and that we
substitute H4(R) for a more general H*(R"), changes that do not affect the argument. For that,
we will omit the proof here and we refer the reader to the proof of Corollary 1.7.

Finally, we are ready to use the estimate in Corollary 2.3 to complete the proof of Theorem 2.1.
The argument we will perform is very similar to that we used to prove Theorem 1.1, but in this
case we have estimates in balls B which depend on the radius R > 0 instead of the universal
estimate we had there. That obliges us to be more careful, but as we will see it will not trouble

much.

Proof of Theorem 2.1. Proposition 2.2 combined with the same procedure used to prove Theo-

rem 1.1 in Chapter 1 implies that

m ({x € Bgr | limsup

t—0

et f(x) — f(x)' + o}) ~0, VR>0.

Hence we conclude by saying that

m ({x € R" | limsup |[e!* f(x) — f(x)‘ # 0})
t—0

0.

o0
< Z m({x € By, | limsup
k=1

t—

e f )~ fl)] # 0})
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CHAPTER 2. ANALYSIS IN SEVERAL DIMENSIONS

2.2 A Necessary Condition

We have seen in Section 2.1 that a sufficient condition for convergence in R” is s > 1/2. We wonder
if, in the same way we saw that in R, this condition is also necessary. For what it is known so far,
this is way too much to say, but nevertheless we will be able to give a necessary condition, which
will show that Theorem 2.1 is quite strict taking into account that it is a result independent of
the dimension.

As suggested, the result we are to analyse in the following pages gives a necessary condition
for convergence in R” when n = 3. It is a result due to R. Luca and K. M. Rogers which was

obtained in [8]. It can be stated as follows.

Theorem 2.4. Let n =3 and consider that
lim e f(x) = f(x)

1 1

almost everywhere for every function f € H*(R"). Then, s = 5 — —.

1

Observe that if this theorem is read the other way around, it asserts that for values s < %— —=3

convergence does not occur in general, so there exist counterexamples in which the solution does
not converge to the initial data. Also observe that the border value obtained in this theorem

satisfies
1 1 1

im =—.
n—-02 n+2 2

This fact shows that the result in Theorem 2.1 is almost strict (the case s = 1/2 being the

prospective improvement) in the sense that the border s = 1/2 cannot be improved if we seek a
universal exponent which is valid for all dimensions.

Let us explain the argument for proving Theorem 2.4. Indeed, recall that when we have
sought positive results, we have first obtained maximal estimates in terms of the H° norm of
the initial data. What we will see is that if we have an estimate of this kind, then the condition
for s in Theorem 2.4 must hold. Of course, in principle this would not be enough, since there
might be methods to prove convergence other than the maximal estimate method. Nevertheless,
it can be proven that the almost everywhere convergence implies a maximal estimate in L?. This
is a consequence of applying the Stein-Nikishin maximal principle, which generates a weak L2
estimate, and the interpolation technique in [1, Proof of Lemma C.1] which makes it become into

a strong estimate. Hence, it will be enough to prove

Theorem 2.5. Let n =3 and assume there exists a constant Cs > 0 such that
itA
| sup [ F[ll 20,1 = Csll F leeny
O<t<1

for every f € S(R"). Then, s = % - n—}rz
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2.2. ANECESSARY CONDITION

Before we start proving Theorem 2.5, we will present a lemma regarding the d-density of a

particular set which, as we will see, will be critical in the proof.

Definition 2.6. Let E and F be sets in R"” and § > 0. We say that E is 6-dense in F if for every
x € F there exists a point y € E such that |x — y| < 6.

Lemma 2.7. Let n=3and 0<o < 12 . For some direction 0 € S*1 we define the set

n+

Eg= U {x € RO71Z" : x| < 2} + 6.
teR20-17n(0,1)

Then, for any € > 0, there exists a value 0 € S*~1 such that Eg is eR ™ 1-dense in the ball B(0,1/2)

for every R > 1.

Proof. What we do first is to rescale the problem. Indeed, if we dilate x — R1~?x in space, we will

see that the initial objective, which can be written as
1 -1
V|x|<§, dyeEy : |x—y|l<eR -,
and since |x — y| < eR ™! is equivalent to R1™|x — y| <¢R 7, it is the same as asking that

1-o0

vkl < ——, dyeRYEy : |x—yl<eR™°,

this is to say, that R1"?Ey is eR ~?-dense in B(0,R177/2). And it is also easy to see that

RYEg=Eg= U  {xez":1xI<2R"}+16. (2.8)
teR°ZN(0,R1-9)

Hence, we are looking for the eR~?-density of (2.8) in B(0,R179/2), or in other words, for x €
B(0,R179/2), we need to find 0 € $* 1, y, € Z" nB(0,2R17%) and ¢, € R°ZN(0,R1~?) such that

| —y, — 0| <eR7°.

Let us work in the quotient space R"/Z" = T". Recall that in this space, we have an equality
[x]=1[ylif x —y € Z". Hence, we are partitioning R" into cubes of length 1 and with corners at 7",
so that every cube is the same. Therefore, we are basically working on a cube T" =[0,1]". Let us
suppose that for a class [x] € T* we can find ¢, € R°ZN(0,R'~?) such that

I[x]—[£,01 <eR™°. (2.9)

In that case, if we take any x € B(0,R179/2), then by (2.9) we have a value ¢, € R°Zn(0,R'79).
Consider z, € R" such that [z,] = [#,] and such that z, lies in the same original cube as x. Then,

considering y, =z, —t, € Z", we see that y, € Z" and
|x—yx - tx| = |x_zx| = |[x]_[tx]| <eR7°.
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Moreover, the reverse triangle inequality asserts that
o _3pio Y 3 1-o
lyel < x|+ |2,| +€R <§R +eR %< §+e RO,

because R > 1. Hence, a choice of € < 1/2 gives y, € B(0,2R179) as desired. Hence, let us prove
(2.9).

Consider a smooth function ¢ : T® — [0,(2/¢€)") with support in a small ball B(0,¢e/2). Since
the maximum integral value for ¢ is cn(€/2)M(2/€)? = ¢, > 1 (where ¢, is the measure of the

n-dimensional unit ball), we can make it have [}, ¢ = [p(g (/2) ¢ = 1. Now call the dilation

Pr(x) = PR x).

Observe that the support of ¢ is B(0,eR™7/2). Also an easy change of variables shows that
f ¢r(x)dx=R™"? Pp(x)dx=R™". (2.10)
B(0,R~9/2) B(0,¢/2)

If we were able to find a direction 8 € S*~! such that for any x € T" we could find ¢, € (R°Z +
[-eR™9/2,eR™°/2])N(0,R1~7) satisfying ¢r(x—t.0) >0, we would obtain (2.9). Indeed, the fact that
the value of the function is positive implies that the point is in the support, so |x —#,0| <eR™%/2.
And since we have allowed a margin for #,, then considering the closest ¢, e RZn (0,R179), by

the triangle inequality we have
€ €
lx -0 <lx—t.0]+|t.0 —t 0] < ER_U + §R“’ =eR7°.

Let v be another smooth function y : R — [0,2/€) with support in (—€/2,¢/2). Observe that the
maximum integral value is 2¢/2-2¢ = 2, so we can choose it so that [ = 1. Using this function,

we define
I.R 1*20]

nrR@=R%*1 Y w(R(t-R))), (2.11)
J=1

which has clearly support contained R°Z +(—eR™?/2,eR™°/2). It is also chosen that way for it to

have integral

LRI_QUJ
fnR(t)dt=R3U_1 > fw(R"(t—R"j))dt
R i R

=1
o (2.12)
=R¥1 ¥y R“’f w()dt =R* 1R~ 1.
=1 R
Again, if we are able to find a direction 8 € $*! so that
f(,bR(x—tB)nR(t)dt>0, VxeT", (2.13)

then since we are integrating in suppng and since both ¢z and ng are positive functions, there

must exist ¢ € suppng so that ¢r(x —£6) > 0. Also ng(¢) > 0, so by the support conditions,
teR%j+(—eR™°/2,eR™°/2), j=1,...|R'7?],
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2.2. ANECESSARY CONDITION

and because of eR™7 « 1, we deduce ¢ > 0. Also, since j <R'™29, ¢t < R177, so the properties asked
for ¢ are satisfied. Hence it is enough to prove (2.13).
Use the Fourier series expression of ¢ to write that of ¢(x —¢8). This way, we see that
Pr(x—10)= Y. Pr(k)e*™ D = Gp(0)+(x,1,0),
kez"

where I is the sum pf every values excepting £ = 0. Recalling (2.10) and (2.12), we can write

f<pR(x—t0)nR(t)dt=f$R(0)nR(t)dt+fr(x,t,e)nR(t)dt

R R R (2.14)

zR‘”"+fr(x,t,6)nR(t)dt.
R

because ¢r(0) = J ¢. Then, since we want (2.14) to be positive for big enough R > 1, it will be

enough to ask for

U T(x,t,0nr@#)dt| SR, VxeT", (2.15)
R

for some y > no. Indeed, if (2.15) holds, then the reverse triangle inequality shows that

R‘”"+[ [(x,t,0nr(t)dt =R~ — U [(x,t,0nr@)dt
R R

>R " -CR™"
for some constant C > 0. And of course, that will be positive if

R "™>CR7"oR"™ >(C.

Y—-no

Since y —no >0, we see that limg_.o R = 00, so the the positivity we ask for will hold for big
enough R > 1.

Hence, consider the integral and write

Z (’p\R(k)e2nik~(x—t9)nR(t)dt
R rezn—{0}

> $R(k)f 2R b (1) d it
R

kez™—{0}

< Z |$R(k)| ‘f eznik-(x—tﬁ)nR(t)dt”
kezn—{0} R

‘ f r(x,t,e)nR(t)dt‘ _
R

(2.16)

where we have made use of Fubini’s theorem to write the second equality. To justify it, and by
(2.12), we need to check that

f Y |pr®)|nr®)dt= Y |Pr(k)|<oo.
R ezn—{0}

kez™—{0}

Observe that
Pr(k) :f H(Rx)e 2"k x gy :R—Mf Pl)e 2TREE g
B(0,cR~7/2) B(0,¢/2)
:R—nO'(:ﬁ(R—Uk)
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Since ¢ is smooth and compactly supported, it is a Schwartz function, so there exists a constant
C >0 such that (1 +|x])**!|p(x)| < C, and hence

—nho
lpr (k)| < W, (2.17)
so we need to solve
R—na
(2.18)

pei o A+ ROTRT

Observe that it is a Riemann sum, so we can bound it by means of an integral,

R—I’LO’ R—nO' dk
< dk :f S
pet o) A+ RO~ Jon T+ ROl re (1+ &)1

and since we have a radial function, the polar coordinates lead us to

0o rn—l 1 1 0o rn—l
—dr< | r"dr+ ——dr <oo.
0 (1+r)n+1 0 1 rn+1

Hence, the sum is finite (and we can bound it with a constant independent of o) and Fubini’s

theorem can be applied. So going back to (2.16), by (2.17) we see that

—ho

URF(x,t,B)nR(t)dt‘ skez;{o}mgwm(k.e)\, 2.19)
since the % - x term of the exponential can be eliminated with the absolute value. Observe that
this bound we have obtained is independent of x. Since we want to obtain (2.15) for some 0 € $"*71,
we will consider the integral in $"~! to see that the mean value of the function can be bounded by
what interests us, R °. This way, there will be a point § € $"~1 for which the function is smaller
than a constant times R "¢ (otherwise the mean would be greater than R™"? ). Hence, let us

analyse

R—na
————— |Nr(k-0)|d6
fgn1kezn2_m}<1+R—“lkl>”“'”R |

R-no (2.20)
= ¥ —Ln_l |7k -0)| do,

e L+ RO R
where the equality is a consequence of Fubini’s theorem for positive functions. Let us work out
the transform of 1. Indeed, from the definition at (2.11),
I.R 1*20]
MR =R*T Y F(yR(t-R’j)) W),
j=1
and the usual properties for translations and dilations of the Fourier transform (by changes of
variables) lead to
F (w(R°(t—Rj)))(t) = R e 2R IGHR ™).
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2.2. ANECESSARY CONDITION

Thus,
LRI—Z{IJ ) .
TR =R LGR™t) Y e 2R (2.21)
j=1

We know how to sum finite geometric sums. Indeed, if we call M = |[R'"27] + 1, we have

1-20 _ : o _ ; a _ ; o
IR Je—27titR”j _ e 2mitR°M _ 1 i e 2nitR°M —e 2nitR
Z_ —27mitR% _ —2mitR% _
1 e 1 e 1
J:

It is known that from the subtraction of two exponentials a sine term can be obtained. More

precisel Y,
—_ 7 o —7 a —_ 7 a / C . —7 Y .
2mitR ] intR ( mitR nitR ) 2l intR Sln(JTRUt)

and with the same procedure,
e—27ritR"M _ e—QJTitRU — _2ie—i7TRgt(M—1) Sin (ﬂRUt(M+ 1))

Therefore, from (2.21) and knowing that the Fourier transform of v is bounded because it is a

Schwartz function, we can write

_1|sin(mR M + 1))
< CR20 1
= |Sin(TR71)|

MR @)

and the integral we need to bound in (2.20) becomes

-no : oy, .
R Rza_lf 1 |sin(mR%k-6(M + 1))| 40 (2.99)
sn-

kEZn—{O} (1+R_U|k|)n+1 |S1n(7TRUk~9)|

In Lemma 2.8 we show that the integral in (2.22) can be somehow simplified to obtain

: gy, . 1 |t o
f 1 |sin(mR%k-6(M + 1))| 40 = |§n_2|f |sin(wRY|k|t(M + 1))|
§n* —_

1—2)n=32 g,
|sin(wR%k - 0)| 1 |sin(wRY|k|t)| ( )
and changing variables R |k|¢ = y and bounding 1—¢2 < 1 we get

IS™2| Rk | sin ((M + 1)y)|
ROk| J-Ror| |sinmy|

(2.23)

Call N =M +1 and A = R7|k| for simplicity. We want to analyse

B |sinnNt|

A
f gn(®)dt, gn(t)=— .
_A | siné|

Observe that gy is even and also 1-periodic, since

|sin(mNt+aN)| _ |sintNt| B
|sin(nt+m)|  |sinmt|

gn(t+1)= gn(t).

This allows us to simplify the integral, since

A A 1 1
f gN(t)dtZZf gN(t)dts2[A1f gN(t)dtzzAf gn(t)dt
A 0 0 0
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CHAPTER 2. ANALYSIS IN SEVERAL DIMENSIONS

and we can thus work in (0,1). What is more, gy is even with respect to 1/2, since

[sin(nN/2+7aNt)| |sin(zN/2-nNt)|

1/2+¢) = =
gn(12+0) |sin (/2 + 7t)| |sin (/2 — 7t)|

= gN(1/2— t).

Therefore,
1 1/2
2Af gN(t)dt:4Af gn()dt
0 0
and we analyse it on (0, 1/2), where sinnt only is zero when ¢ = 0. LHopital’s rule asserts that

coant 2.24)

1 t)=N1li
1mgN( )= tl—I»% cost

Also, gn has zeros in t = k/N for k =1,2,...,. Our objective is to bound the function in each of the
intervals (k/N,(k + 1)/N). For that, it is known that

1 .
S<IMY 1 ke (0,m/2),
2 x
S0
[sinTNt| 1 2 2N k k+1
gN(t) = — < — < —=—, €|l—=,—|.
| sini| |sinzt| nwt 7wk N N

Thus, since we are integrating in (0,1/2), we will reach until 2 = [N/2], and the integral can be

bounded by

1/2 [N/Z]]_ZN 2N
tdts—N+ —
fo en(di = Nk T r A E

?vlr—t

By comparison of the Riemann sums with the integral, it is easy to see that
m m+1 dx
Z—: — =log(m+1),
P x

S0 we obtain

1/2 [N/2] 2 2
f gn)dt<s1+= > —=1+=log[N/2]+1<—logN.
0 oo k T /4

Hence, the integral in (2.23) becomes bounded by

n-2 rROE| | " A
IS"2| |s1n(nFM+ l)y)ld _ IS |f gn(D)dt
RO|k| J_gop |sinmy| -

|§n—2| 1/2
< 4A[ gn()dt
0

< 45" 2|logN <logR'™%7,

since recall that N =M +1=|R¥29] + 1~ R1"29_ Moreover since R > 1, then R"29 < R, so we
can bound the integral with logR. Hence, (2.22) is bounded by

R* ogR Y R_—Ml.
pet o) (L+RO|kDT
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2.2. ANECESSARY CONDITION

We have already seen that the sum remaining is (2.18) and it is summable. Hence, the integral

from the beginning we wanted to bound, (2.19), is finally bounded by
‘ f L(x,t,0nr)dt| <R%1logR
R

for some 0 € S" 1. Recall that our objective was (2.15), but instead we have obtained also a

logarithmic term. Nevertheless, observe that the reasoning works the same if we see that
R—na—20+1
<

<— VR > 1.
logR ’

Call @ =1—-(n+2)o. By the hypothesis, 0 < 1/(n +2), so a > 0. Now it is enough to see that

a

li =
Rl—I»I;o logR o

By L'Hopital’s rule,

R® Ra—l
lim = lim & = lim aR% =00
R—oologR R—c 1/R R—oo

because a > 0 and we are done.
O

In the following lines we are to prove the property we used to simplify the integral in (2.22).

Lemma 2.8. For constants M,R,0 >0and ke Z",

: a . 1 : g
f 1 |sin(wR°(M + 1)k - 0)| 40 = |§n_2|f |sin(mR°(M + 1)|k|¢)]|
Sn* -

1- )7 dt
SinGiRk - 0)] T IsinGRORY GO Tk

Proof. Observe that we can write

k
k-0=|kl—-0.
k|

We would like that & had the direction of the canonical vector e,, so that

k
|k|ﬁ'9= |klen -0 =|k|O,.

Observe that the inner product in R” is rotation invariant (recall that 2-0 = |k||6|cosl€5), S0
consider P the rotation sending k/|%| to e,. We know that $”~! stays invariant after the rotation,

and that its Jacobian is 1, so if f is some function,
[ re-onao= [ irea-pomas= [ irew-ondo,
Sn—l §n—1 §n—1

where the last equality corresponds to the change of variables 6 — P~1(8). Hence, we see that we

can rotate k£ and set k-0 = |k|0,, and the original integral is

do=

f |sin(mR°(M + 1)k - 0)| |sin(mwR°(M + 1)|k|60,,)] 40
Sn-1 |sin(ZRFE - 0)| -1 |sin(zRC|k|0,)] '
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CHAPTER 2. ANALYSIS IN SEVERAL DIMENSIONS

Now we want to work in spherical coordinates. Observe that any point 6 € $”~! can be decomposed

into an angle and a vector of a lower dimensional sphere:
0=(1,...0,) = 0, =cos¢,, (01,...0,_1)=using,,

for some u € S" 2. We can do the same with u = (u1,...,u,_1) to obtain u,_1 = cos¢,—1 and
(u1,...,up—2) =sing,v for some v € S$"~3_ Therefore, it is clear that we can iterate the process to
obtain

0, =cos¢,,

0,-1 =sin¢, cosp,_1,

) 0n-2 = sing, sing,_1cos P2, (2.25)

ey

09 = sin¢, sin¢,_1...sin @3 cos pa,

01 =sing, sing,_1...sin¢ssin oy,

because cos ¢ = 1. Hence, the change of variables is
¢:U=1[0,271x[0,7] x --- x[0,7] — S" !

with @(¢o,¢s,...,d,) = (01,...,0,). This change of variables is indeed a parametrization of a

surface in R", so we know that we can write
[ fao= rown-actor-o)ay,
where © is the Jacobian matrix of ¢. Computations give
det (q)t . <I>) = (sin2 (pn)n_2 (sin2 ¢n_1)n_3 ... (sin2 <p4)2 sin® o3,

so call

Jp =sin" 2, sin" 3 ¢p,_1...sin% Py sins.

If we write the integral, we obtain

do

f |sin(mR (M + 1)|%16,,)I
st |sin(wR|k|6,)

_fZ”f” f” |sin (TR (M + 1)|k|cos ¢,
“Jo Jo 0 |sin(wR7|k|cos ¢pp)l
[T 7 |sin (TR (M + D)|k|cospn)| .

_j(; fo (/0 SR e cos )] sin” " ¢, d(/)n)Jn_ld(pn_l... do
_f” |sin (TR (M + 1)|k|cos ¢,
b |sin(wR7|k|cos ¢py,)l

Jndn - dpsdps

sin® 2 ¢, d(/)nf do.
gn-2

Thus are only left with a one-dimensional integral, because the right-hand side integral is nothing
but |S”~2|. Hence, call ¢ = cos ¢, , so that sin¢p, = \/1—cos2¢, = V1—t2. Also, dt = —sinp,d¢,,
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2.2. ANECESSARY CONDITION

so by this change of variables we obtain

o (" |sin(mR7(M + D)|k|cos,)| ., _
gn Zf - n—2 d
| | 0 |sin(mR7|k|cosy,)l ST fn & Pn
_ |§n_2|f1 |sin (@R (M + 1)|k|t)|
- ~1  |sin(wRY|k|?)|

(1-12)"7 dt,

which is what we wanted to prove.
O

Once we have proven the auxiliary lemma, we are ready to tackle the proof of Theorem 2.5.

Proof of Theorem 2.5. Choose R > 1. Observe that we can clearly reduce the time interval to
(0,1/27R), since

b

o . .
sup |e'ZRAf|= sup [ef] < sup [e"Af
O<t<1 0<t<ﬁ O<t<1

because 2R > 1. Also, observe that if we let supp ]? c B(0,2R), then several dilations show that
11 e eny = [ IFEOPA+1EP) dE = f IF(ROIP(1+R2EP R dé
B(0,2R) B(0,2)

<R f FROPA + 161 R dé (2.26)
B(0,2)

=R% f If(f)|2(1+—|£|2)sd€s5sR2SIIfll22
B(0,2R) R? L@y

where in the last inequality we have noticed that |¢|? < 4R? and used Plancherel’s identity. Hence,

for functions with Fourier transform supported in B(0,2R) and with R > 1, we get

” OS<1:p1 |eiﬁAf| ”LZ(B(O,I)) = CSRS ”f||L2(Rn)~ (227)
<

1_ 1
2 n+2

function, so that applying the new hypothesis (2.27) to it we will obtain the result we desire.

If we are able to prove s = using (2.27), we will be done. For this, we will find a particular

Let0<o < n% and define
Q={¢eR"7": &1 <R} +B(0,p),

where p >0 will be a small constant which will later be determined. Observe that Q is nothing
but a grid with separation R'~7 inside the ball B(0,R) whose intersection points have become
small balls of radius p. Observe that since the measures of a ball of radius R and a cube of side
length 2R are comparable, we can estimate the number of grid points inside B(0,R) by looking at
the number that lie in [0,2R]". Indeed, since the separation is R, there are (2R?)" grid points

in the cube. Hence, there are ~ R™? grid points inside Q and
1Q| = |B(0,p)IR™ = p"R"’. (2.28)
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CHAPTER 2. ANALYSIS IN SEVERAL DIMENSIONS

We take the function whose Fourier transform is the characteristic function of this newly

defined set, )
f(&) = —=xa(®).
¢ \/ﬁm ¢

Consider also a direction 6 € S*~! and the function fy defined as

fe(x) — e—iﬂR fo(x)

Observe that at Fourier’s side we have made a translation because

~ ; e ~ RO
fo(&) = f Fx)e imROx2mix g, — F (f - 7) ) (2.29)
[Rn

S0 ]?9 is supported in Q + %. The above formula shows that by Plancherel’s identity,

Ifollzs = 1fle = —=lyalz =1, VOes™!

vQ ’
We define also for e >0
A=({xeR"'Z:|x| <2} +B(0,eR™)) x {teR*1Z:0<t<1}. (2.30)

In what refers to the space variable, A is defined in a similar way as Q. It is a grid of separation
R~ ! inside the ball of radius 2 whose grid points have been substituted by small balls of radius
eR~L. On the other hand, we are considering time values in (0,1) with separation R2°~1. Our
objective is to see that we can bound our solution elzmd f from below when we are lying in this
new set A. Recall that in the counterexample of Section 1.2, we were looking for certain time
values for which the solution was very big. It is the same idea which we are following now. More

precisely, we are looking for

Q1< eiﬁAf(x)], V(x,) € A. (2.31)
Observe that by the definition of f,
. ¢ 1 . 22
elﬂAf(x) — _f e2mx~€—2m§|§| df, (2.32)
VvQlJa

and we want to work with the phase. It is good for us if the phase is very small, since this allows
to bound the expression from below by taking only the real part, which is a cosine. For that, we
need to analyse the magnitude of x- ¢ and ¢|¢|%/R. Observe that if £ € Q and (x,¢) € A, we have

e {=RY I +v, wherel€ 7" R'"?|I|<R and |v| < p.
e x=R° 'm+w, where me 7", R 1im| <2 and |w| <eR L.
e t=R?%1jwhere R?*1j<1.
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2.2. ANECESSARY CONDITION

Thus,

x&=1-m+RYL-w+R  'm-v+v-w,

where [-m € Z and
IR1"91-w|<e; IR 'm-vl< 20; |v-wl SepR_l.

If we choose €, p <« 1 (for example, ¢, p < 1/100), then

1 1 1
— =t < —,
100 50 10000R 20

so we see that x-¢ € Z+ B(0,1/20). On the other hand,

€+2p+€pR_1 <

t
§|5|2 =R 2RI+ v = jlIl2+ R 2jju2 + 2R L5l -v),

where j|l|2 € Z and
R*2ju2 <R p%  2R°7Lj(l-v)<2R°R%p =2p.
Hence,
+ 2 < L
1002R 1002 20’

and we can write %I{ 12 € Z + B(0,1/20). Summing the two terms, we can easily see that

t 1 1)
- = 7+|-—— —
¥ pltlhe +( 10°10)’

so the phase at (2.32) is very close to 0. The cosine of the phase is thus close to 1, or at least can

R 1p%2+2p<

be bounded by 1/2 from below. Therefore, if we bound the integral by its real part, we get

o' f)| = % ’fgcosZn(xf— }%Ifl2)df‘
1 1 1
fﬂgdf‘ :5\/5,

> —

VQ

which is what we wanted to prove as said in (2.31) for points (x,%) € A.

We want to see if inequality (2.31) can be extended the function fy. We first observe that if we
explicitly write the solution for fy, using (2.29) we see that

t

2

eiﬁAfe(x)| = fn}?
R™

||| Fepemtsccsrsinit o0 g
[Rn

showing that

b
elmﬂfg(x)| -

eiﬁAf(x—te)|.
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CHAPTER 2. ANALYSIS IN SEVERAL DIMENSIONS

Recall that if we want to apply bound (2.31) to fy, by what we have seen we need to ask
(x—t6,t) € A. Since t needs no changes, looking at the definition of A in (2.30) that is the same as
asking

x€{x€R71Z:|x| <2} +B(t,eR™1) = A p.

Therefore, if x€ Arg and te{t e R?°~17.0<t< 1}, we have
VIOl S |e'7m A fo(w)|.
If we take the supremum in ¢, we see that

;_t
Q| < sup ‘elanAfg(x)‘, Vxe A= U Agt.
teR29-17n(0,1) teR29-17n(0,1)

Moreover, we can also take the supremum in (0, 1) and obtain

VIQI < sup

te(0,1) teR%20-17n(0,1)

)

eiﬁAfg(x)L VxeNg= U Not.
Take L2 norms in Ay to obtain
Pt
VIQIAGIS | sup [e'=® % fol] 2y,
te(0,1)
Recall we said that the support of ﬁg is Q+ R6/2, and by the definition of £ € Q,

R R
S|y|+|v|+§sR+p+—<2R,

., RO
U —
Y 2 2

RO
f+7‘=

so Q+R6O/2 < B(0,2R). Moreover, if x € Ay, then there is some ¢ € R2°717(0,1) such that x € ey
and
x| <2+ ¢t/ +eR71 < 4,

so we can use hypothesis (2.27) to say that
it
V 12| Agl 5 ” sup iel2”RAf0|”L2(A9) = CSRSHfG ”L2 = CsRs- (2.33)
£€(0,1)

We have been able to estimate the measure of QQ, but as we see, we also need to manage the

measure of Ag. Observe that if we call
Ep;={xeRZ:|x| <2} +10,
then Ay ; is a neighbourhood of Eg ; and for

Eg= U Eg,
teR20-17n(0,1)

then Ag is a neighbourhood of width eR ™! of Eg. We know by Lemma 2.7 that there exists some
0 € S ! such that for R > 1, Ey is eR~-dense in B(0,1/2), which means that the distance from
B(0,1/2) to Ey is less than eR 1. This implies that B(0,1/2) c Ag and hence

27" = |B(0,1/2)| < | Agl.
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2.2. ANECESSARY CONDITION

Plugging this in (2.33) and recalling (2.28) we get

anU
P \/IQIAg <R,

271

or what is the same,
Rna/2 < RS

for R > 1. This means that there is a constant C > 0 such that R"?2 < CR*®, or what is the same,

é <R ™2 VYR>1.

This implies that s —n0/2 > 0 must hold. Moreover, if we follow the path of the constant along the

proof, we will see that it is
2Cszn/2

C= pn/2

b

which can be done as big as we wish by choosing p small enough so that 1/C < 1. In that case,

s—no/2 =0 is also valid, so we deduce that

no
— <s,

2
where as we have stated in the beginning, 0 <o < n—}r2 Then, take 0 — ﬁ to obtain

1 1 n

- — = <s.

2 n+2 2n+2) "
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A SUFFICIENT CONDITION IN R2

This chapter is devoted to analysing a sufficient condition for our problem (0.7) for the particular
case of n = 2. The result is due to S. Lee and was presented in [7] in 2006. It is the best known
sufficient condition for the two dimensional case so far, which we give in the following theorem

explicitly.

Theorem 3.1. Consider s > 3/8 and f € H*(R?). Then,
lime"**£(x) = f(x)

almost everywhere.

By what we have seen in the previous chapters, pointwise convergence arises from a maximal
estimate in terms of the Sobolev norm of the initial condition /. Moreover, in various moments
we have also checked the effectiveness of proving the estimate for regular Schwartz functions,
since the density of these in every H® space produces, by means of approximation, the result for
the whole space. Therefore, our efforts will be again facing the proof of one of these estimates. In
what follows in this chapter, unless specified, every function will be considered to be a Schwartz

function. The generalisation to H® will follow by the techniques used in previous chapters.

The proof of Theorem 3.1 requires several mathematical tools and techniques, and it is
specially based on the wave-packet decomposition. For this reason, a few first sections will be
focused on the development of these needed auxiliary results. We will first present and explain
the mentioned wave-packet decomposition as well as a Whitney-type decomposition which will

also be useful.
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CHAPTER 3. A SUFFICIENT CONDITION IN R?

3.1 The Wave-Packet Decomposition

Let A > 1, for which we define

the space and frequency grids in R”, respectively. Here, we denote as Q(/) the cube centred at
the origin and of side-length equal to /. Consider any point (y,v) € % x ¥, for which we define the

tube T, , of dimension (AY2)yn x A as
Ty, ={x,) ER" xR:[t| <A, |x—(y+4mtv) < AV2),.

It is easy to see that indeed Ty, is a tube with direction (2v,1) whose centre at ¢ = 0 is the point
y. We call 9 (1) to the family of all these tubes, this is to say,

TN ={Typ | (y,v) e xV}.

Hence, we have a bijection (1) =% x ¥, and for T € (A1), if T =T, ,, we will call y(T') =y and
v(T) = v for simplicity.

Consider now a function 1 € #(R") such that

suppf) < Q(2), Y nt-k)=1 (3.1)
kezn

This can be achieved by means of the Poisson summation formula, which asserts that for functions
in &,
Z f(x +k)e—2ﬂi(x+k)-cf — Z ]?(6 + l)e27'[ix~l.
kezn lezn
holds pointwise. For ¢ =0,

Y fa+k)= Y Fe?ml,

kezn lezn
so if we choose 19 € ¥ with suppng < B(0,1) € @(2) and with 7j¢(0) # 0, we obtain

170(x +k) _

Y nolx+k) =700 = Y - 1.

kezn kezn 70(0)

Hence, the function we seek is 7 = 179/70(0).
We need also to consider v € C3°(B(0,1)) with } rcz» (- — k) = 1. To obtain so, we can consider
Qe 080(3(0,2)) such that ¢(x) > 0 whenever x € B(0,1) and define
@(x)
Yrezn p(x—k)

The support condition is obviously satisfied, and the sum is always a finite sum also for the

w(x) =

support condition. Hence, it is clear that } pcz» w(x— k) =1,Vx € R".
Using these two recently defined functions, for each (y,v) € & x 7 we define

ny@) =1 (%) (&) =y (A (E - v)). (3.2)
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3.1. THE WAVE-PACKET DECOMPOSITION

Let f be a Schwartz function. Then for each T € 9 (1) we define

fr =$7—1(l?1l/u(T))77y(T)- (3.3)

The following lemma shows that these functions (3.3) form a decomposition for the original

function under certain restrictions.

Lemma 3.2. Let f € & be such a function that f is supported in Q(1). Then,

Y fr=f.

Teg (1)

Proof. Observe that by the correspondence between the tubes T' and the grid points we can write

Y fr= Y F'fvurnm= Y, Y. F (Fyony

TeT (A) TeT (1) yeW veV

17 (3.4)
= My 2 F(fy).
ye&  veV
On the one hand, if y € %, then y)L’l/2 eZ", so
x— _
Z ny(x) = Z U(sz) = Z n(ﬂt 1/zx—k) =1, (3.5)
yeW yeW A kezn

because of the definition of 7 in (3.1). On the other hand, since |7| < oo, for the linearity of the

Fourier transform, we can write

Y. F  fy)=F" (f > wv),

veV veV

and

Y v =Y yA2E-v= Y wAM-p),

vev veV kEZ"NQ(2112)

because 1Y2v € Z" N Q(21Y2). But if supp f < Q(1), we are only summing terms such that ¢ € Q(1).
Also, for the support of ¥, we need to ask AV2& — k€ B(0,1), which means that & € B(Amé, 1)c
Q(21Y2) because A > 1. This shows that even if we are summing only some values, the remaining

are zero, so

& Y wWP-R)=f©) Y v -k =F().

kEZ"NQR(211/2) kezn
Hence, from (3.4) we see that

Y fr=F"'f=r.
TeT (L)
Lemma 3.2 justifies the definition of the wave-packet decomposition.

Definition 3.3. The decomposition performed in Lemma 3.2 is called the wave-packet decopo-

sition of f at scale A.
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It will be important to know the relation between the supports of the original f and each of

the wave-packet f7. The following lemma clarifies so.
Lemma 3.4. If {f1} is the wave packet decomposition of [ at scale A, then
suppf;; co(T)+0(~V2)

and also

suppﬁ c supp f+ O(/l_m).

Proof. From (3.3), the very well-known properties of the Fourier transform assert that
f; = va * T/I;)
)
supp f1 < supp fy, +supp.
First we see that by the definition of v,

supp fy, < suppy, = A~ Y2 suppy +v =B, A1)

On the other hand,
e x—y 12 —2miA2Ey 1 1/2
n,(8)=F [n(m)] (E)=A"e nA~7=<),
SO suppfn, = A2 supp7 = Q(21712). Thus,

supp fr cBw, A2+ Q@A Y2)c Bv,A" V2 +41712) = B(v, 517 1?).

Also, supp fy, < suppf, so

supp f7 < suppf +Q2A V%) = supp f + 01 2.

O

We have already presented the basic properties of the wave-packets. Nevertheless, our

interest is not only to decompose the function itself into packets, but to analyse the effect of this

decomposition when treating the solution e’’2f. Indeed, we want to see if we can say something

of e!* fr. The main result we are able to give is that each of the packets fr generates a solution

which is mainly concentrated in the tube 7T'.

In what comes, if m € C*°, we will denote as m(D) to the multiplier operator given by

F (m(D)f)(&) = mE)F(©).
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3.1. THE WAVE-PACKET DECOMPOSITION

Proposition 3.5. Let m € C®°(R") be supported in Q(2) and consider f € (R") such that supp fc
Q(1). Then there exists Cy = Cn(m) > 0 such that for |t| < A,

(3.7

lx = (y + 4mtv)| -N
11/2

e m(D)fr(x)l < Cn M(f * F 1)) (1 *

for every N € N and for every tube T =T, ,, where M represent the Hardy-Littlewood maximal
function. Also, for any set of tubes P < J (A) and |t| < A, we have

Z eitAm(D)fT

1/2
sC( y ||fT||§2) <Clfl. (3.8)
Teo L2(R")

Tez

Proof. We have seen in Lemma 3.4 that suppf;; c B(v,5A7V2). Consider a cutoff function
such that ¢, =11in suppf}. This can be done by considering a cutoff function ¢ for suppf} and
defining (&) = (A~Y2¢ + v). This way, ¥ is also a cutoff function and ¥, = ¢.

Consider the objective at (3.7). By the definition of m(D), we can write

e mD)fr(x) = [ m@Fr@etrie 2 gy,
Rn

Since we are integrating in supp f}, we can introduce 1,. Now observe that by the definition of

the wave-packet, we can use the Fourier transform properties to write

fr=F X Fyur)nym = (F *F w) nyr),

so writing the definition of the Fourier transform we obtain

e m(D)fr(x) = fR mOTOF ((F*F 7y nym) Qe 2D g

3.9

:f m('s){/;v(f) (f (f *gflwv)(Z)ny(T)(z)e*27[if'2 dZ e27[i(x~f*27tt|é|2) dé‘
R™ R™

We want to change the order of integration. For that, it is necessary that the integral be finite
with absolute values in the integrand. Observe that introducing the absolute value generates two

independent integrals . One is
| im@wode,

which is finite because we integrate smooth functions with compact supports. The other one is

fR Nf x 7y @)lIny @)l dz.

Observe that since v, € &, then its Fourier transform is so too and hence it is bounded. Thus,
If * F lyy(2)] < f IF(@)ldz < oo
RVL

because f €.# c L'. we only need to worry for the integral of y, which is finite because n, € ¥

too. Hence, Fubini’s theorem allows to change the order of integration in (3.9) to obtain
eitAm(D)fT(x):[ (f*g—lwv)(z)ny(z) (f m(f)wv(f)e—2ﬂif-ze27’[i(x-(f_27[t‘f|2)d€ dZ
R? R™

:/[R" (f*g_le)(Z)ny(Z)I_{(x,t,Z)dZ.
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CHAPTER 3. A SUFFICIENT CONDITION IN R?

Let us manage the inner integral K. Since Wy(&) = 1/7(11/ 2(&-v)), a change of variables ¢{ — A28 4y

generates
K= A“_n/zf m(/l_l/2f " U)@(f)ezm((lf1/2f+v)‘(x—z)—2nt|1’1/2€+v|2)df
Rn

and we see that K(x,t,2) = K(x—z,t). Call K(x —z,¢) = A""2K (x — 2, ), so that

K(x,t)zf MmO V2E 4+ p)fi(E)e2T A e rora=2nt A o) g o (3.10)
[Rn
and
et (D) fp(x) = A2 f K(x—z,t)n(%) (f * F y)(2)dz. (3.11)
R}'L

Let us estimate K(x,t). On the one hand, it is easy to see that it is bounded, because the fact that

m is bounded and ¥ is smooth and compactly supported implies
K (x,0)| < fR ImAV2E+ 0[P dé < mlloo 111 = C < 0o. (3.12)

But on the other hand we observe that K is an oscillatory integral, so we expect that we will be

able to give a decaying bound. Its phase is given by
AQ) =(AY2¢ v v)-x—2mtIAV2E )2,

and
VAE) = A2 (x — dntv — 4mer12¢) (3.13)

Assume |x —4ntv| = CAY2 for some C > 1. Then we can manage the gradient by means of the

triangle inequality to say that
AV2|VA@©)| = |x — 4mtv] - |4med~V2¢). (3.14)

Observe that [47tA~V2¢| < 4mAV2|¢|. Also observe that we are integrating in the support of i, and
since

y(d) = fﬁu(/l—l/% +v), supp v, = suppf; = B(v,5)L_1/2),

we see that suppy =~ B(0,5), so |4mtA"12¢| < 20mA 2. By our assumption, and since C > 1, we see
that the second term in (3.14) can be bounded, let us say by

1
|4t~ V2¢) < §|x— 4mtv,

and because of that we obtain L
A2IVA@©) = Sl —4mtol.

Then, the higher dimensional results for oscillatory integrals in Appendix A.3 assert that

|K(x,t)| = ‘f m(/l_l/zf-l-v)@(f)ez”iA(f)df
Rn

2212 40)

M2 + o)™ NS g (8.15)

Rn

<C (nA‘1/2|x —47rtv|)_N
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3.1. THE WAVE-PACKET DECOMPOSITION

for every N € N and when |x —4ntv| = CAY2, Estimates (3.12) and (3.15) allow us to write a

general estimate, valid everywhere, which is given by
—1/2 N
IK(x,0)| < Cy (142727 2lu—4ntvl) ~, YNeN. (3.16)

Now we use (3.16) to develop (3.11). After the change of variables z — —z + ¥ and calling

'eitAm(D)fT(x)‘SCN)L_”/2fn(1+ i n /11/2)F(z)

If we are able to bound (after renaming A — A2 for convenience of notation)

lal\™N
b

M)_N ]17 (_TZ)F(Z)) dz < C(MF)0) (1 + 2

I=A" (1+
Re A

N (3.17)

then since

MF(0) = sup][ (f *F -z +y)dz
B(0,r)

r>0

= sup f (f + F Ly ) @) dz = M(f « Fy)(y)
r>0JB(y,r)

we would be done. Hence let us prove (3.17). We need to treat two cases separately: when |a| <A
and when |a| > A.

Assume first that |a| < A. Observe that this means that |x — y — 4ntv| < A so the point (x,t) is
inside the tube. What we first see is that

1+27r|a+z| 14 |z]
R

On the one hand, since |a| < A we have

27|a + z| 2nla|l 2m|z| 2m|z|
1+ <1+ + <1+4+2n+
A A A

|z
s(1+2n)(1+7).

Also, by the triangle inequality,

21|a + z| lz|  lal 2]
et RLE S I
A A A A

and since it is clearly greater than 1, we have

2nla + 2| 1( Izl)
=1+,

A T2 A

1+

so the claimed comparability holds. Hence, (3.17) can be transformed into

e [ (1 B) (R pe]az= [ a(E)n(Z)re)] a=

We know that 1 is a Schwartz function, so it is bounded. Therefore,

ISA"| H (%) IF(2) dz=A"" (H (1) +F)(0).
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CHAPTER 3. A SUFFICIENT CONDITION IN R?

Now we can apply Lemma B.2 to have a bound with the maximal function, so that

Isa™m

~

H(Z) ||L1 MF(0).

That L!-norm can be treated by a change of variables z — Az to obtain

2|

-n Ll — -N — A
A Rn(1+ﬂt) dz= f(1+|z|) dz = Cf (1+r)" r,

which we know is finite if N =n + 1. Hence we get
I <CMF(0).

But by the case we are in,

lal N N
T+1<2 = 1=27|1+— ,

so we can conclude by writing

N lal

MF(0)=Cn (1 + 7) MF(0)

I<CMF©0)<C2N |1+ '%'

as we wished.

The case |a| = A is more complicated. We need to split I into two parts. Write
I=Iy+1;

where I integrates in |z| < A/2 and I; in |z| > A1/2. Let us first analyse Iy. Observe that in this

case,
la| N |a+2|>|a| IZI la|

A A 2/1

This implies that, knowing that 7 is bounded, we can write

lal\” _Nen[lal\N
IgpsA™ |[F(2)|dz=2 — |F(2)|dz.
21 l2]<A/2 A l2]<A/2

The integral can of course be bounded by the maximal function, so we obtain

Io< CN(|ZI) MF(0). (3.18)

This is not precisely the bound we want, but it will not be a big problem as we will later see. Let
us focus now on obtaining a bound for ;. In this case we do not have a ball, so we will split the
outer integral into dyadic annuli to be able to manage them by means of the maximal function.

Write
27|a + z| -N

et ) e
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3.1. THE WAVE-PACKET DECOMPOSITION

Since |a| > 1, we can find the annulus in which it lies, this is to say, |a| = A2% for some k € N. We
will treat each integral separately.

First we suppose j = k. This means that |a| = |z| = A2/ In this case, we will make us of the
rapid descent of 1. Indeed, for any M e N, IzIMln(z)I < Cuy, so

|n(_7z)‘ <Cy ('%')_M ~ CM(l%')_M, VM eN.

Hence, if we simply bound the —N power term by 1, we get a bound for the 12*-annulus integral
of

. (1 + —2”“;”' )_N In (%Z)F(z)( dz

la|

-M
S]L_nCM(—) f |F(2) dz
A z|=A20

lal\™ _.
=Cy (—) ZJnf |[F(2)|dz
A 2|72/

la\™™ _.
SCM(T) 2" MF(0).

Recall that |a| = 127, so the bound becomes

lal

ou [

-M+n
) MF(0), VYMeN,

and since n is the fixed dimension, we get

lal\™™
CM(T) MF(@0), VMEeN. (3.19)

When j # k, we need to use the previously discarded term too, since the decreasing properties
of 1 are not enough this time. Recall that the term |a|/A was obtained through n because |z| = |a|.

Now we cannot do that. Nevertheless, observe that
* When j <k, we have |a| = A2k > 1927 ~ |z|, so
la + 2| = |al - |2| = A28 — 127 = A2"(1 - 2/7%) = |a|C},
where C; =1-2/"% >1-271 = 1/2. Therefore, |a + 2| > |al/2.
* When j >k, we have |a| = A2k < 127 ~ |z|, and in this case,

la+z| =z —lal = M2 —2%) = a2 % = 1) = |a.

In any case, we see that |a| < 2|a + z|, so we can say that

R

la + z|

A

la+ z| -N
1+2n <
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CHAPTER 3. A SUFFICIENT CONDITION IN R?

and we have obtained the desired |a|/A term. Now going back to the integral and introducing also

the same bound for 7 as before, we have

. (1 n —2”";”' )_N [n(=2)F@)| dz

-N -M
Sl_ngN(%) CMfl /12'(%) F@ldz
z|=A27

_N (3.20)
<cop2N (@) 2~ /M zf”][ |F(2)| dz
A 2|~ A2/

N (1a\™ i
<Cy2 = 2/ MF(0).

Thus, we have obtained every bound we wanted. Let us join everything. From (3.18), (3.19) and

(3.20) we have (observing that the first two have given the same bound)

I=1 lal) ™ v (18 g onan
=Ip+I1=<Cy|— MF(0)+ Z Cyu2" | — 2 MF(0)
A G A

JEN—{k}
jal\ ™ N (la ™ Jn-a)

JeN—{k}

Since it is valid for every M € N, choose M big enough so that M > n. Hence, the sum converges
and we see that
lal\ ™V
I<Cyn 7 MF(0). (3.21)
We are almost done, since we are missing a unity inside the power. But observe that |a| = A

implies directly from (3.21) that the bound is also
I <C(MF)O0), (3.22)

a constant in this case. It is a known result that two bounds as (3.21) and (3.22) imply

-N
9N MF o),

I<Cy|[1+—
N A

which is what we asked for in (3.17) to prove in (3.7).
Hence let us prove the second part of the proposition, (3.8). Recall that we saw in Lemma 3.2
that

f= > fr=Y ) fr,-

Teg (L) VETV yeX
For each v eV call f, =% yew f1,,- Thus, f =¥ ¢y f, and we observe by Plancherel that,

2 —~
2:”va
veV

because the sum in 7 is finite. We would like to take the sum out of the norm, but that cannot be

2 3.23
y (3.23)

Irg=|#(x )

done by the triangle inequality directly. Let us use the properties of the decomposition instead.
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3.1. THE WAVE-PACKET DECOMPOSITION

Observe that

fo=Y fr,,= Y. F ' Fwomy=F Fyo) Y. ny=F (Fyp),

ye¥ ye¥ yeW

for the property we saw in (3.5). This shows that f; = f ¥,. Therefore, supp fv C suppy¥, =
B(v, A~1Y2) This allows us to say by Cauchy-Schwartz that

~ 2 ~ 2 ~
Y 2@ =| X 1042 @f@)| = X tpeam @ X IF©,
vey vey

veV veV

/1—1/2

Observe now that the frequency grid 7 has separation , and thus the sum of the characteristic

function is at most the sum of 2" of them for each point. Hence, we can write

~ 2 ~
Y A@| =2" D IA@F (3.24)

vey veV

We want to obtain a reverse inequality too. For that, sum in 7 to obtain
SR OP =IO Y . (3.25)
veV veV

We need to manage this sum. Indeed,

Yw@PF= Y A -R)?,

vey kEZ"NQ(2112)
and an auxiliary lemma will give us the way to treat it.

Lemma 3.6. Let ¢ € L (R") such that Y pezn |P(x — k)| = 1. Then, there exist constants C1,Cso such
that

0<Ci< Y Ipx—k)* <Cy<oo. (3.26)
kezn

Proof of Lemma 3.6. Call F(x) =Y pczn |p(x —k)|?, which is clearly 1-periodic. By the hypothesis
regarding the sum, it is obvious that F(x) # 0,Vx € R™. If we are able to show its continuity, it
will attain both a maximum and a minimum. Moreover, the minimum will not be zero, since the
function itself does not vanish. Hence it is enough to prove the continuity of . By the periodicity

it is enough to prove it in [0,1]". So consider € > 0, x € [0,1]" and y € R”. We write

F@-FI=| ¥ lpc-hE=1oG-k2]+| ¥ 1@k -1g-k)P
|k|<A |k|>A

for some A > 0. We see that

\ Y |<p(x—k)|2—|¢<y—k)|2|s Y p—R)IE+ Y oy -k,

|k|>A |k|>A |k|>A
and by the Schwartz property, any M € N gives
1

Y lpty-R)1E<Cy Y

R
k[>A oA ly —kl
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CHAPTER 3. A SUFFICIENT CONDITION IN R?

Now, if y is near x, let us say |x —y| < 1, then |y — k| > |k| — |y| > |k|/2 because |k| > A > 1. Hence,

we choose A > 1 and M much bigger than the dimension so that

M

2
Yo lpy-RPP=Cy Y —— <elh
k[>A moa Ikl

The same works for the case of x, so the sum in |k| > A is bounded by €/2. Now, the sum in |k| < A
is finite, so it is continuous, so there exists 6 > 0 so that |x — y| <6 implies } <4 |p(y — k)2 <e/2

and we are done. O

Coming back to (3.25), we can bound it with the sum in the whole integer grid to have

~ -~ ~ 2
Y IA@P < Colf @ = 0o ¥ Fi@)| (3.27)

veV veV

Then, joining (3.24) and (3.27) we obtain our first important result,

~ 2
PAGIEIDIWAG] (3.28)
vey vey
This implies together with (3.23) that we have
~ 112 ~ 2 .
IFIE=| 2 Fol, =f WAGIE IS DWAGRED WA (3.29)
vey vey vey vey
Finally, we need to manage || f, II%. We know that
2 2
=] X o], = [| S frof ae
yeW yeW
Again we want to take the sum out of the integral to obtain
| Y fr@©P= Y [ 1fr@PF=Y lfrls. (3.30)

ye¥ yeW ye¥

For that, notice that since we are working with positive functions we can write

A f F L F2 Y Iyl ~ f E A (3.31)

ye¥ ye¥ ye¥

In the last step we have made use of Lemma 3.6. Now by Plancherel that last integral is clearly
Ifw, 2. On the other hand,

'Y frl?= f F Pyl Y 2= f F Fyol? = 1 Folld, (3.32)

ye¥ ye¥

so joining (3.31) and (3.32) we get (3.30) as we desired. In short, we have proven that

IFIZ=1 Y friz= Y Ifulz= Y. Y lfriz= Y Ifrl3. (3.33)

Teg (L) vey veV yed Teg (L)
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3.2. AWHITNEY-TYPE DECOMPOSITION

This is one of the main advantages of working with wave-packets: we have a version of
Plancherel’s identity. Also observe that the equivalences above are still true if we choose
any & < T(1). Hence, for any & < 9 (1) (3.33) implies

Yolfrlz<s Y frlZ=IfI3

Teo? TeT (L)

which is the second inequality in (3.8).
Finally, to obtain the first inequality in (3.8) we only need to take into account that e'*2 is a

linear isometry in L?. The multiplier m(D) is also linear, so
1> eitAm(D)fT”L?(u@n) = ”eimm(D) > fT”L?([Rn) =||m®D) ). fT”LZ([Rn)-
Te2? Tez Te2?

Now, by Plancherel we can change to the Fourier space, and since the effect of m(D) is to multiply

m(&), we bound it to obtain
||m(D) Z fT”LZ([Rn) = ”m”oo” Z fT ”Lz(Rn)-
Tez Teo?

Finally, the very useful (3.33) asserts that

2
<Clml% Y Ifri.

” y e m(D)fr
Te»

Teo?

L2(R?)

3.2 A Whitney-type Decomposition

In Section 3.1 we analysed the decomposition of a function into waves, obtaining a wave-packet
which satisfies very interesting properties regarding the Schriodinger solution e**2f. When we
talk about a Whitney-type decomposition, though, the concept changes since we are looking for
decomposing the space instead of functions. In our case, we will need to decompose the space
R"™ x R"™ in the way we are about to see. The idea is to split the space into dyadic cubes of varying
size so that the closer we stay from the main diagonal I" = {(x,x) | x € R"} the smaller the cubes
are.

The main ingredient needed is a classification of any two points ¢, € R” into certain dyadic

cubes. We present it in the form of the following lemma.

Lemma 3.7. Let &,n € R™ Then, there exist Q1,Q2 unique dyadic cubes such that
* {€Qiand neqy,
e [(@1)=1UQ2), and
* 1(Q1) =dist(Q1,Q2) <4v/nl(Q1)
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CHAPTER 3. A SUFFICIENT CONDITION IN R?

where 1(Q) denotes the side-length of the cube Q.

Proof. The idea is very geometric. What we need to consider is the smallest dyadic size 2/ in
which the cubes containing ¢ and 7 are adjacent. Therefore, consider @1 and @2 the cubes of size
2771 containing ¢ and 7 respectively. By the choice of their parents, @ and @2 are not adjacent
and

1(Q1)=2"1=1Qy).
Moreover, since they are nor adjacent, there must be some other cube between them, showing
that

dist(@1,Q2) =2/ 1.

Now, since the two parents of size 2/ are adjacent , they can be included in a cube of size 2/*1, in
which both @1,®2 must lie. Therefore, the distance between them cannot be greater than the
diagonal of this big cube, so

dist(Q1,Q2) < diag (Q(2f+1)) = /n2/* = 4y/m2i T,

The points, for being in @1 and @2, will be at a distance trivially comparable to the distance

between the cubes. Hence, we see that
1Q1)=1(Q2)=2"""~ dist(Q1,Q2) ~ I -7,
where the comparability constants are 1 and 41/ which only depend on the dimension. O

Lemma 3.7 is the result which will allow us to build a decomposition of the space save the
main diagonal,
R* xR*-T.

Indeed, for (£,n) € R” x R” we have checked the existence of dyadic cubes @1,@2 of length =
dist(¢,n). This means that if we consider (£,1) € @ = @1 x @2, the further the point is from I', the
bigger the cube will be. Analytically,

¢ we denote as ri a dyadic cube of length 27/, and
* we denote ‘L';; ~ Ti;, if they are not adjacent but their parents are so.

Observe that the cubes chosen in Lemma 3.7 are related by the definition we have just given.

Therefore, we can decompose the space as

R*xR"\T'=J U 7} x1}. (3.34)
JEZ e,

Definition 3.8. The decomposition given by (3.34) is called a Whitney-type decomposition

of the space away from its diagonal.

We will refer to this definition when we tackle the proof of the main result of this chapter.
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3.3 Some Auxiliary Lemmas

Once we have the wave-packet decomposition for functions and a Whitney-type decomposition
of the space, we will here present some auxiliary lemmas which play a key role in the proof
of Theorem 3.1. Most of these lemmas will be, as we will see, applications of the wave-packet
decomposition detailed in Section 3.1.

We first present a basic lemma which will be of great help in many steps. For the sake of

concision, we will only give the main steps of the proof.

Lemma 3.9. Let F be a smooth function on an interval [a,b]. Then, there is C > 0 so that for any
1> 0 we have

sup IF(t)|<C (IF(a)I + 2N F a0 + N_1/2||F/||L2([a,b])) :
tela,b]

Proof. Since the derivative of F2 is 2FF’, we write fat 2F(t)F'(#)dt = F2(t) - F%(a), so

b
IF@)I% < |F(a)]? +2 f IF(H)F'(t)| dt.
a
After writing the harmless 1 = y"u™" and by Young’s inequality we have
IF()* < |[F(a)* + 1> I|IF I3 +p 2" | F1I3,

and if we root that expression, we have

_ 1/2
IF#)| < (IF(@)®+p> IFI2+u 2" |F'|12)

< VB(IF(@I+ g IFllz+u"I1Fll2).
The result is obtained by choosing r = 1/2. O
The two following lemmas we are going to see have more visible and direct importance in the
proof of the final result. They are a consequence of the wave-packet decomposition analysed in
Section 3.1, and they give us the way to decompose the initial data f into functions f; so that
e’ f is basically e’ f 7 when we restrict ourselves to certain regions in space or in time. Let

us state them precisely. To clarify notation, as we have used before, we write @ (1) for the cube
centred at the origin and of side-length 1 and A(A) to denote the annulus of radii 1/2 and A.

Lemma 3.10. Let A > 1 and consider a partition of the time interval [0,A%] given by intervals I j
of length ~ A. Consider also a function f such that suppf < A(1). Then, for any € > 0, there exist

functions f; whose Fourier transform is supported in supp f +0(Y) such that

1/2
(Z_ ||f;||§) < CeA°If ll2
J

and also
le A F ) < 1”2 Fi+CA NI flls,  YNeN

whenever x € Q(A) and t € I;.
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Lemma 3.10 represents the idea explained above in the sense that the original time interval
[0,12] can be partitioned into smaller intervals I j where e!®Af can be basically substituted by
eltAf j. The idea underlying Lemma 3.11 is very similar, since it states that we can also partition
the original space into smaller cubes where the whole solution can be managed through an

auxiliary function.

Lemma 3.11. Let A,M > 1 and consider a partition of the cube Q(M A) into cubes Q; of side-length
=~ A. Let f be a function whose Fourier transform is supported in Q(1). Then, for any € > 0, there

are functions f; with Fourier support in supp f + O(A~Y2) such that

1/2
(Z I ||§) < CA°IIf 2
l
and
e 2 fol < e 1l +CAN|fll2,  VNeN

for points x € Q; and time |t| < A.

The decision to state both lemmas at the same time is reasonable on the one hand for their
visible similarity, but also because their proofs are basically the same. Here we will give the proof
of Lemma 3.10 with every detail, and we will comment the points which need a little change for

the proof of Lemma 3.11.

Proof of Lemma 3.10. 1t is clear that by the partition made in the statement, there will be = 1

intervals I;. We denote the spacial region for each of these intervals as
q;= Q) xI j-

Consider the wave-packet decomposition for f at scale 12 (even if suppf is not in Q(1), this
condition given in Section 3.1 can be modified to bigger cubes by taking a slightly bigger frequency
grid 7). Observe that in this case, the grids are

1
@Y =\7", V:ZZ%Q(Z)’

and the decomposition is given by f =} pcg12) fr. We want to use the bound (3.7) at Proposi-

tion 3.5. We know that the maximal function is bounded by
M(f *F 'y )N < If * F Myl

and by Holder’s inequality we have |f * & _11//,,| < \IfllellF ‘11//U lo. Also a change of variables
shows that

171y = Iy = [ W€ - o)dE ="y,

Hence,
M(f * F 1y,)(5) < CA™2|f 2
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and the bound in Proposition 3.5 turns into

|lx — (y + 4ntv)| -N

1 , VNEeN. (3.35)

e fr(x)l < Cy A1 flla |1+
Recalling that the tubes are T'y , = {(x,£) e R" xR: [¢] < A2, |x—(y+4mtv)| < A}, we can say that
|x — (y + 4mtv)| is the distance between the point (x,¢) and the centre of the tube. Then (3.35)
shows that |e?*2 fp(x)| decreases as rapidly as we wish outside the corresponding tube 7.

We are interested in what happens in Q(A) x [0, 12]. Because of this, we will select tubes T'
which intersect A€ (Q(/l) x [0, /12]). The reason for this A¢ term will become clear in the following
computations. We want to count the number of tubes T € I (12) that satisfy this condition (the
rest will have no effect). Recall that if T'=T ,, then the tube is centred in (y,0), has width 21
and has direction (2v,1). Therefore, if we fix v € 7/, a simple counting in the case of R shows
that we must only consider values of y in the interval [-47A%v — 31/2,31/2], which has length
31 +4mA%v. Thus, since the spacial grid separation is A, there are approximately 3 + 47 Av values
of y available. And since |7| = 21, we count 471 -2 = O(A?) tubes. In general, a similar reasoning
in R” gives 0O(A2") tubes.

Hence we have selected only = 12" tubes. Now for each time interval I j we define

fi= ) fr (3.36)

Tﬂ/lﬁ]j#@
From the definition the support property of the statement arises. Indeed, it is consequence of the
fact that it is a finite sum and that suppf} csuppf +0(A7Y).
Considering this selection, we split e*2f in two parts, and using (3.35) we obtain
< +

le" ™A f (x)| = Y e )

Tﬂ/lqu:(D

—(y+4mnt -N
(1+|x (y nv)l) ‘
@

Y )

Tﬁ/lEqﬁf(ZS

Z eitAfT(x)
T

(3.37)

<

)|+ ATl Y

Tﬂ/lgqj': /1

The remaining tubes T'N A°q ; = @ need to be managed. For (x,?) € ¢; we know that
lx — y —4mtv| = dist (T, (x,1)) = dist(T', g ;).

Now, let us fix the direction of the tubes, v. Since % = 1Z", we can find a unique point Ak € AZ" in
each tube T'. Moreover, since TN A°q; = @, it is necessary that k|1 > A€ thus implying |k| > A€.
Also,

dist(T,q;) = |[kIA - A = A|k|,

because |k| > A€ implies |k| — 1 = |k|. Therefore, we have

—(y+4ntv)\ N
+Iac (y +4mtv)|

1
A

<@+|E)N = k7N,
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On the other hand, we have said before that there are = A" different directions in 7, so the second
part in (3.37) can be bounded by

/2 -N
CnAfllz ) [~
keZ" |k|>A¢€

This last sum can be managed by means of an integral, since

Y owNs[ S —ovae N
kezn |k|>Ae |x|>A€ ||

whenever N > n. Because of that, and thanks to this € term we have introduced, and because of

the freedom to choose N as big as we wish, we end up in (3.37) with

et ™A f ()| <

e i@+ CNAN Ifla,

which is the second property in the statement.
Now let us prove the first one. As we saw in (3.33), we can work with the norm of each wave

separately, since

IF13=1 Y frid= Y lfrls,

TnAcq;#o TnA¢q;#®
S0 summing in j we get
A A

Y=Y, Y lfrls.

j=1 J=1TnA°q ;%8
Observe that we are summing, for each j, the tubes that contribute in g;. We want to change
the order of summation. For that, we need to count how many levels A°q; each tube T has effect
in. In other words, for each T' we need to count the number of g; it intersects. We know that the
tube has direction (2v, 1), so a space move of magnitude A makes the tube grow 2|v|A. Now, since
the tube has a base of length (diameter) A, it has a vertical section of height 2|v|A. Also, since
we are considering the levels are dilated by a A€ factor, the tube increases its height by 2|v|A1*¢.
Therefore, the tube T occupies a height less than 4|v|A1*¢. Remember that each ¢ j has height 1,
so the tube can intersect at most 4|v|A€ levels g ;.

On the other hand, recall that suppf < A(1) and that f} has support in B(v,A"12). Also

supp}/”;; csuppf +0A12)= A1)+ O(A"12). Since A > 1, this error is very small and hence we
could say that suppf; c A(1/4,2). This means that

supp fr < A(1/4,2) N B(v, A~ Y?),

so in order for it not to be empty, we must ask |v]| = 1. In other words, it cannot be neither big nor

small. Thus, each tube T intersects = A€ levels and the previous sum turns into

A
> dfrii= Y AClfrls.

J=1TnAq;#p Teg (1)
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And for the norm equivalence wave packet decomposition properties seen in (3.33), we write
A 2 2 2
YooY frlz=Ac Y lfrlz = ACNFIS.
J=1TnA°q;#8 TeT ()
This concludes the proof because if we rename ¢ — 2¢ we have
A 1/2 A 1/2
(Z ||fj||§) ~ (Z Y ||fT||§) = ACN £ s
=1 JE1TNAcq %9
U
Remark 3.12. Before the proof of Lemma 3.10 we have said that the proof of Lemma 3.11 is
almost the same. Indeed, the proof follows the same steps, but now we have to consider the

wave-packet decomposition at scale 1. For each partition cube @;, we concentrate the waves

whose tubes intersect @; into a block to define

fi= > fr

TnA(Q; x[0,AN#D

and the rest of the proof follows by repeating the steps (from time to time having to fix some
calculation because of the change A — 12 we have performed). For the inequality of norms, we
have measured the occupation of each tube vertically in @(A). Now, since the partition is in
space and the time interval [0, 1] is fixed we will have to measure the occupation of each tube

horizontally up to time A.

The next property we are going to state is about a time-rescaling property when considering

mixed norms of the solution e**2f. It is, as we will see, a consequence of Lemma 3.10.
Lemma 3.13. Let q,r = 2. Suppose that for functions f with supp f < A(1) we have
||eimf||LgL;(Q(1)X[0,,1—1]) <CA%lIfllz. (3.38)
Then, for any € >0 we have
||eimf”LzL;(Q(l)x[o,l]) < CA™™If 2. (3.39)

Proof. We first rescale the problem. By the mixed norm, we mean, as usual,

1/q

) /1—1 ) q/r
IIe”Af||LzL;(Q(1)x[o,A1]):(fQ(D(/0 |9”Af(x)lrdt) dx) ,

and by changing variables x — x/A,t — t/A? we see that (3.38) turns into

itA —n/2
22/r+nlq lle’ fl//l”Lng(Q()t)x[o,;L]) =CA*™™" I fualle, (3.40)
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where f1/1(x) = f(x/A). Observe that if Z(f1/))(&) = A"f(xlf), so if supp fc A(A), then supp F(f1/1) <
A(1). By the same change of variables, (3.39) turns into

1 itA —n/2+
2\ 2rnlg e fuallLarr@myxionzy < CeA* ™ lifualle. (3.41)

Hence, it is enough to see that (3.38) implies (3.39) for functions with Fourier support in A(1)
and substituting the working region to Q(A) x [0, 1] and Q(A) x [0, 12] respectively.

For this, consider the decomposition given in Lemma 3.10, so partition [0,A2] into disjoint
intervals I; =[t},t;+1) of length = A. Then, we have functions f; satisfying the properties given
in the lemma. Since we are going to work with this decomposition, we want to translate the
hypothesis (3.40) to each of the f; functions. We will use the fact that the Schrodinger operator

generates a group
{eitA | te IR}, eitlAeitzA — ei(t1+t2)A’ th,tQ eR.

Then, since I; has length = A, we translate s = ¢ —¢; to obtain

1/r
A i tA
il LarQuxry = (fI e fj(x)lrdt)
/ LUQ)

) ) Ur
- (f |el(t—tj)AeltjAfj(x)|rdt)
I;

1/r

LI@QW)

A .
— (j(; |eLsAeltjAfj(x)|rds)

_isAitiA o
= le "™ fillLiLruxio,an-

LLQM)

Observe that by what we saw in the formation of ¢**2f in (0.5), we know that =?(eithfj) =
e~ 4ntit el fj, S0 since f] has almost the same support as f, we can use the hypothesis and say
that

e zsA it;A fJ”LqL’(Q(A)x[OA]) C/lalleitjAfjH[ﬁ:C/la||fj”L2’

S0 we obtain
" filsry@ry < CAIFjlLe. (3.42)

We now need to consider two cases. We first suppose that g = r. Then, since we want to take
advantage of (3.42), we split the time integral into the subintervals I; and we use the bounds in

Lemma 3.10 to write
qlr
LtA itA
I @uyeions = fQ W(Z e A f )l dt) dax

“Joul £

qlr
(|e”AfJ(x>|+ca N||f||2)rdt) dx.
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We can take the power r inside by paying a constant 2" and sum each term separately. Since the

second sum is a sum of constants and does not depend on the integral parameter, we can write

2 . qlr
2" f (Z |e‘tAfj(x)|fdt+A2(CA-N||f||2)f) dx

Q) Jj=1 IJ'
(3.43)

2 ' ql/r
2r9a’r fQ (M(Z ! Ie”Afj(x)Irdt) dx+1QUIA*T(CANIfl2)7,
j=1v14;

where again we have taken the power g/r inside by paying a constant 27". Observe that the
right-hand side term is controlled by A~N9+7+24/" and works for every N € N so by making N as
big as we wish we can make it as small as needed. Hence we focus on the left-hand side term.

Indeed, if for simplicity we call F(x) = flj lettAf i(x)|" dt, this term is, save constants,

fQ(A)

and Minkowski’s inequality is available because ¢/r = 1 and thus we are working with norms.

q/r q/r

dx =

A
Z Fj(x)

Jj=1

ki

L@

A
Z Fj(x)

J=1

Hence,

qlr
”Fj(x)”Lg”(Q(,n)

) qlr A
Y Fj) <
J=1 L Qm =l

( A
j=1

eitAfj‘

qlr
r
LZL;(Q(A)xlj)) '

Therefore, we have been able to obtain

qlr
T Sc(ji e f; lzLi(Q(A)ij)) +CANIf I (3.44)
By (3.44) and (3.42) we can write
A qlr
”eimf”ZZL;(Q(A)x[O,AZ]) <C (;Cﬂlmllfj“;ﬁ) + C)L_NHfllg
= ) o2 (3.45)
<CA%® (j_l ||fj||iz) +CANIFIE,

where the last equality comes from the fact that p-norms in R” are decreasing and r = 2. Also by

the norm inequality in Lemma 3.10 we can carry on bounding to obtain

1€ P12 qaretoan < CACATNF 1S+ CAN IS
=C (299 2V 71

< C AT £,
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which is precisely the result we sought.

Consider now ¢ < r. In this case, Minkowski’s inequality cannot be used since q/r < 1. Never-
theless, this condition will allow us to use another property we could not before. Indeed, we can
take the same steps as in the case g =r up to (3.43). Now observe that we have a power of a sum,
but since the power is smaller than 1, we can take it inside without having to pay any constant
depending on the number of summands. In other words, we can write

itA q
e F Iz @uxionzy

A . qlr
<C Z(f |e“fAfj(x)|’dt) dx+CAN|fI
Q(/l)j:l Ij

gl
— itA g 4 -Nr19
—Cj:lele fJ”LZL;(Q(]L)ij)_FC/I 71l
Again, by (3.42) we have

A

274\ -N

1" Vg quamin,ien S CA™* L M, + CAT I/
J:

q/2
nnﬁJ +CANIFI,

A
sC/lq"‘(

j=1

and we have obtained the same estimate as in (3.45), so repeating the steps of the previous case

we obtain the full result and the lemma is proven. O

In the following lemma we present a maximal estimate. To denote the cube centred at a point
&o and of side-length p > 0, we will write @ (¢, p).

Lemma 3.14. Consider A > 1 and a function f € #(R™) whose Fourier transform is supported in
Q(¢o,p) < A(A) with p = 1. Then,

< CpY2||f Il
L2(R")

sup [e*Af|
O<t<A~1

Proof. Observe that a translation & — & + &g in the definition of e?*2 f(x) implies
it £ ()] = U P& + £g)e2ritre-2mtitP—dnteto) gl
Rn

where the phase terms not depending on ¢ disappear for the effect of the absolute value. We want
to bound the L2-norm of the supremum of the above expression. Observe that we have Lemma 3.9
at hand , so by fixing u = Ap, we have

sup e f(x)l<CU +I1I+1ID),
O<t<A~1

where
I=

e8|, (3.46)
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_ 1/2 || itA
IT=p)"*|e" f(x) L2041’ (3.47)
and for the derivative using the alternative expression we have written above,
IIT=(Ap) " f F(& + gg)e2mitr a2 2eboD (g (112 4 2¢ - £)) dE (3.48)
R L2(0,A71)

By the triangle inequality, we need to bound || 1|2, ||II|l2 and || I11]s. First of all, we see that since
fes,
I=

eiOAf(x)| = 1),

so trivially |[I|lg = [|f|l2. In the case of 11, we see that

AT
11115 =Ap fR fo et A F(x)|? dt dx,

and by Fubini’s theorem we change the order to obtain

A A1
||II||§=ApfO ||e”Af||%dt=Apfo IfI2dt =plfI3,

where we have used the fact that e**2 is an isometry in L2. So let us focus on II11. Observe that
the integral in (3.48) is indeed an integral only on B(0, p) because of the support condition of f.
This fact implies a control over the extra term which has appeared by the effect of the derivative.

Indeed,
1112 +2& - &0l < 1€1% + 2I€11E0] < p% +2pA

because Q(&o, p) < A(A) implies |&g| < A. Moreover, that same condition obliges p < A, so we get
p?+2pA < pA+2pA =3pA. Hence, by this bound and then reversing the translation by & — & — &,

we get

2

dx.

eitA x
fx) L2041

(1271p)?
\II1)% < =220 f
Ap R"

Again by changing the order by Fubini and by the isometry property of the Scrodinger operator,

we see that )
N
VIIT)2 scApfO IFI2de=CplfIZ.

Once the bounds needed obtained, we can write

<ClIfl2(1+pY).
L2(Rr)

sup le"2f]
O<t<A~1

Observe that since 1> 1, we can expect p =1, so 1+ p2 <2p'2 and

<Cp2If 2
L2(R")

sup le"2f|
O<t<A1

as we wished. O
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3.4 Proof of Theorem 3.1

In previous chapters we have been able to obtain a maximal estimate of the solution e**2f in
terms of the H® norm of the datum £, like

jtA
Isuple** > fllLe < Clf g
t

for some p € (1,00) and for f € #(R"). The norm in the left-hand side is taken in some time
interval including zero and in some space which could be a ball or the whole space. The result for
regular functions could later be generalised to H® functions. But observe that the properties we
have analysed in Section 3.3 apply to functions whose Fourier support is included in an annulus.
This is not the general situation, but we can manage to reduce the problem to annuli. Indeed, let

us suppose that we have an estimate such as

I sup le“*fllL2@eny < CIf s (3.49)
0<t<1

for f € & with supp }? c A(A) for some A > 1. This 27 size factor might seem strange, but
it is there by matters of technicalities regarding the choice of the definition for the Fourier
transform. The situation can then be managed by means of a Littlewood-Paley-type decomposition.
Consider ¢ € C°(R) such that ¢ =1 in A(1) and with support in A(1/4,2). Consider the dilations
;&)= @(277¢), which have support in A(2772,2/*1). Then it is clear that the sum Yz pi(§) is

always finite and does not vanish. We define

)
V= o e

Then it is clear that Y., w(27%¢) = 1 and that suppy j= A(2772 27+1) Using this decomposition

we split the Fourier transform of f defining
S;F©=w@7OF @), YjeZ
Clearly, suppS/'J7 c A(2772,2/%1) and

Y SiF©O=F@&Y w6 =FO.

JEZ Jjez
We only can work with annuli of big radius, so we will concentrate every small annuli. Indeed, for

some M > 1 we can write

1= @)=Y y@7OH+ Y w7y,

Jez j=M j>M
where we call ¥ ;< w2 =y )= xB(0,2%+1)(&). Then

F&O=Suf©+ Y 87,

i>M
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where S/’JE‘ = 1//Mf and supp§M\f < B(0,2M+1). We see that (3.49) is available for §;7‘ with j > M,
but we need to manage the situation of S/M\f . We can use the same procedure as in the proof

of Lemma 3.14. Indeed, if we use Lemma 3.9 with p =2 and p =1, and denoting Sy/f = g for

L?)

We have to analyse the L2-norms in space. Observe that since g € ¥, we have IeiOAg(x)I =|g(x)l,

simplicity, we have

. . . d .
sup e g(x) <C (Ie‘OAg(x)I + IIe”Ag(x)IILz + “ —elth
0O<t<1 ¢ dt

gw)

so the first summand is | g||2. For the second one, by Fubini,

. 1 T
lle™ gLz 15 = f f e g()* dtdx = f le**gll3 dz,
Q2n)Jo 0

and by the isometry property of the Schrédinger operator, we obtain simply | g|2. Finally, for the

derivative term, we see that
d . .
|_eltAg(x)| — ’f g\(g)e2ﬂl(x~f—2ﬂt|f|2)4ﬂ2|5|2 df’ ,
dt B(0,2M)

and by bounding |¢|2 <4, we are in the same situation as with the second summand times a
constant 4”172, so the bound is C /|| gllg. Writing everything together, we obtain
I sup le"**g()lllz2@en) < Cmlglla.
O<it<1
This is the version of (3.49) for the ball-support case because ||glle < lgllgs .

Now that we have the bound for every element of the decomposition, observe that

eimf(x)=f i STF(E)e2miteE-2ntléd g i SiF(@)e2mitrE-2ntléd g
j=M =M J

¢S f(x).
=M

The change of the order of the sum and the integral is justified by Fubini because f € .%. Then,

by the triangle inequality and basic properties for the supremum, we see that

. o .
sup e f(@) < Y sup [e2S;f(x)l
O<t<1 j=M0<t<1
and hence with the norms and (3.49) we get
I sup le"®f)llz2@emy < X Il sup €S f@llL2@enm <C Y, IS;f s
O<t<1 j=M 0<it<1 j=M

Since S/J\f is supported in A(2772,2/*1) for j > M, we see that

1S, 712, =fA( |

IS FRA+IEP) dE ~ 228 f IS;F12dé = 22711 1.
2J-2 9J+1) A

(2/-2,27+1)

Also recall that the bound we have obtained for the ball-supported element was an L?-norm.

Then, since M > 1, we can write

. o8} .
I sup 1”2 Fllr2@em =C Y. 2°1S;flla.
O<t<1 j=M
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This procedure is valid for any s = 0. Now, if we fix s’ = s + ¢ for € > 0, we see that 2/ = 2Js'g-Je

and since 275 IS;fll2 = IIS;f g, we obtain

. o0 .
I sup e Fr2@em = C Y. 2771S,fll ot
O<t<1 =M

And what is more, since ¥ is bounded,
1,712, = [ W@ ORIFORA+ IR dE < CIFIE,.
This allows us to have a geometric convergent sum Y 277¢ = C,, so we see that for s’ = s +e¢,

I sup " F@)lL2qem < Cell F11%,- (3.50)
O<t<1

This is the maximal estimate we were looking for. Observe that s is the exponent we had in the
result for the annuli, (3.49). This shows that the annulus property can be generalised to every
function for any exponent s’ > s but not for s itself. Therefore, the preceding calculations show

that to prove Theorem 3.1 it is enough to prove the following theorem.

Theorem 3.15. Let A > 1 and € > 0. Then,

it
I sup e Flllz2@eny < CIIf Il ggas+e
0<t<1

for every f € & such that }?is supported in A(A).

Here, s = 3/8 + ¢, and thus the estimate for a general function is s’ = 3/8 + e +¢’. Since both
€,€' can be done as small as we wish, we will obtain the estimate for any s’ > 3/8 as Theorem 3.1

asserts.

Remark 3.16. We know that an estimate like the one in (3.50) implies Theorem 3.1 in the same
way we did in Chapter 1. But observe that for being able to apply that reasoning we need to
cover the whole space. Here we have only obtained an estimate for a cube @(21). Nevertheless,
it is easy to see that e'*®, as an operator, is translation invariant. With this we mean that
e F(x + x0) = e™2(F (- + x9))(x). It is also a fact that translations do not change the H*-norm.
Hence, estimate (3.50) is also true for any cube of side-length 27. Now we can cover the whole
space with countably many cubes. Since in each cube convergence will follow almost everywhere,

so will happen in the whole space, thus obtaining the result of Theorem 3.1.

Proof of Theorem 3.15. Observe that we have said that

3/8
I Nl gorsee = AN F 2,

so it is enough to prove

I sup le"*fllz2@e@m) < CAYE€If 2. (3.51)
O<t<1
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Now Lemma 3.13 gives us the way to rescaling the problem. Indeed, our situation is the same if

we consider r = co and g = 2, so it shows that it is enough to prove that for ¢ > 0,

I sup 1" flllzqemy < CAB*If Iz (3.52)
O<t<A™1
whenever f is supported in A(1). Observe that the extra ¢ term in Lemma 3.13 can be absorbed
by the € term we already have.

The first tool we will need to use to prove (3.52) is the Whitney-type decomposition analysed
in Section 3.2. For convenience, the decomposition we are going to consider will not be exactly
dyadic cubes but with A as an amplification constant. Hence, we will have l(T;;) =127/, Another
variation we will make is that we will not consider every level of the decomposition, which we

will later specify. For the moment, we write

eitAf(x)Z — f f(f)f(n)eZﬂi(x-f_Qﬂﬂfp)e2ﬂi(x-n—2ﬂt|n|2) dé’dn
R x[R"

=> > | . FE)F ()2t E-2mtlel g2miten-2mti®) g g

7 i i T, XT
JEZTiNTi, 7R

= Z Z (fj f(é)e2ni(x-é—2nt€|2)df) (fj l?(ﬂ)ezm(x'"_zmmlz)d{dn
Tk T

j€Z ) T '
J Tk Tk’ k

=y Z (eimf,f(x)) (eitA ]{/(x))’

Jez Té ~T3,
where flg &= f ($)x,/($) is the restriction to the cube ‘L'i. Now if we write the L2-norm formally as
k
a L1-norm and since sup|f|? = (sup|f|)? we can write

itA £121/2
i

itA _
I sup |el f|”L2(Q(2n))—” sup le LYQ©n))

O<t<A~1 O<t<A™1

Hence, for this and for Whitney’s decomposition, to prove (3.52) is equivalent to proving

| osup Y. X le Al ILiqemy < CATIFIS (3.53)

O<t<A~ljez Ti er/

Now, observe that it makes no sense to consider cubes Té which are too big. Indeed, since we
are decomposing the Fourier space and supp f < A(1), we do not need to consider cubes which
have length greater than A. We will also discard too small cubes. Indeed, we will ask 277 = 1714,
which is equivalent to [ (Ti) = 1277 = 1%¥%. Recall that the closer we are to the main diagonal, the
smaller cubes we have. Since we are forcing not to have very small cubes, we will complete their
place with cubes of the smallest possible size. Therefore, the decomposition we are considering is

indeed

e F@Ps Y Y @I ),

1=2/<qAVA LT 3
Ty ~Ty
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where if close to the diagonal, the relation between cubes is not that one by Whitney, but we
simply consider the cubes of length 134 that fill the gaps. In these last cases, since the product
cubes are blgger than what they should be, the cubes T and T , have no separation even if we
write T e k’

Let us come back to (3.53). The supremum of the sum is smaller that the sum of the suprema
if we consider positive functions, so we see that

I sup Y X 1l e

O<t<Al1<2i<pl4j _ i
T~ T

= > X I sup A1 L Qe

j<A4 _J -1
1<2i<) T;szr O<t<A

(3.54)

so we will try to obtain the bound for the inner norm. Fix j. Then, observe that for each % there
are a finite number of %’ related to it. Indeed, in R?, since a cube has 8 surrounding cubes, then
we have to count the sons of all the surrounding cubes of the father of Tj Since each cube has
4 sons, we see that ‘L'] has at most 32 related cubes ‘L' . In the case of cubes of length 134 for
which the relation has been redefined, since adjacency is now allowed, we have to take the father
cube into account too, so there will be at most 36 related cubes. In any case, it is a finite quantity.

Based on this, if we were able to obtain

I sup 1€ F11e ™ FL 1 I1geemy < CAY* I F 2l £ Iz, (3.55)
O<t<A~1

then summing in the couples Ti ~ Ti, for fixed j by Cauchy-Schwarz we obtain

1/2 1/2
CW‘*”ZIlf;fllzllfj,llzsc/ﬁ/‘*“(ZIlf;i“%) (Z”fk’HQ) -

k~k' k~k' k~Fk'

Observe that the symmetry of the relation makes the two sums be identical, and we see that

Y IfE=Y Z 112 < 36ank 12.

k~Fk' k k'~

Recall that {Ti}k is a partition of R?, so

IfIE= Zf FORde = IF12 = If 12,
Applying this in (3.54), we are left with

Z C/fl3/4+€ ”f”% — C(10g2 11/4)13/44—6 ”f ||§

1<2/<AV4

We can say now that since elogy A = logy A¢ < A€, we have logy A < e 1 A€ and
3/4+e C . 3419e o2
—(log2 DA ||f||2 i —A 1713
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which is precisely what we asked in (3.53). The constant depends on €, but observe that the choice
of € determines the choice of the Sobolev space H*8+¢, so each time it will be fixed. Hence we have
shown that it is enough to prove (3.55) for every couple of related Whitney cubes. Let us prove it.

First of all, we consider the case of the cubes of length A%%. This is the case when 27/ = 114,
Recall that these are the cubes which deal with ihe region close to the main diagonal. In this

situation we use Lemma 3.14. Indeed, recalling f,g &= f (©)x,i (&), we see that
k

suppf; =suppf N7, < AN,

Hence we have a function whose Fourier transform is supported in a cube inside an annulus, the

cube having side-length A¥#. Then Lemma 3.14 applies and

< CAPB| £l 2.
L2(Rn)

sup |e"Af)|
O<t<A™1

The same estimate we obtain for f J ,. The result now follows by basic properties for the supremum

and Hoélder’s inequality. More precisely, we write

A £ LiEA ]
||0 Stu21|el fille" 2 il Ly @eny
<i<A™
itA g itA J
<| sup [e"2f]l sup 1e">f] L@
0<t<A~! 0<t<A™!
<l sup 1" fllLzqeny | sup 1" fi 1Lz q@en)
0<i<A-1 O<t<At

which is by the recently remarked consequence of Lemma 3.14 bounded by the desired factor
A4\ f: ;{ l2ll f; J |l2. Observe that here we do not obtain the extra e term in the exponent. This
suggests that this is the good case and that the remaining case will be the one forcing the little
gap.

We thus now focus on 2/ < A4, The sizes of the cubes are hence greater than 1%4. We claim

that we can rely on the following proposition.

Proposition 3.17. Let 2/ < AY* and consider any functions f,g such that their Fourier supports
are in B(A&y,2771) c A(A) for some & € R2. Also we suppose d(supp f, supp@) = 27/ A. Then, for
€>0,

| sup e fe™ gl Lyqam = C2772 A flaligll2, (3.56)
0<t<A™

where the constant C > 0 may depend on € but neither on the functions nor on A or j.

A few remarks are necessary to clarify the convenience of this proposition. Observe that in
our objective (3.55) the bound we give must be independent of j. The result of Proposition 3.17
shows a dependence on j that is trivially removable since 2772 < 1. On the other hand, recall
that our functions f,g and fz, are supported in Ti and Ti, respectively, being cubes of side-length

277) and with a separation of 277 1. Also both functions are supported in the annuli A(1). The
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subtleties may lie in that the supports are cubes not balls, and if they are cubes close to the
boundary of the annulus, they might even be truncated cubes. In any case, they will always be
sets of diameter at most v227/1. We will simply work with balls for simplicity. Hence clearly
functions f}f and [ j, satisfy the hypotheses of Proposition 3.17 and we therefore obtain what we
asked in (3.55). In what remains we will thus focus on proving Proposition 3.17.

To avoid confusion, in the following few lines we explain the way we will follow in this proof,
which is rather long. The main idea is that we can obtain an estimate similar to (3.56) but with

some exponent A% which is probably not as good as 3/4 +¢. This is, we will obtain

| sup e fe® glliLiqem = C272 A% fllaligllz, (3.57)
0O<t<A™

for some a. This will be done by using elementary calculations. Even if this first exponent is not
at all precise, we will see that an iteration process will allow us to reach 3/4 +e¢.
So let us obtain this initial exponent. If in Ie”A f(x)| we take the absolute value inside the

integral, we immediately realize that it is bounded by || ]? 71 for all values of time. Therefore,

| sup le**fe " glliLiqen < IR@DIIFIIZIL = CIFIIZ].
0<t<A~

Now, by the support condition, Hélder’s inequality implies
I£ 1l < 1F121B(Aé0, 27/ MM = €277 A f g, (3.58)

and Plancherel’s identity makes the supremum be bounded by C2-%/A2||f|2llgll2. We have ob-
tained an exponent a = 2.
Once we have the desired initial estimation, we will rescale the problem with several changes

of variables. Indeed, in (3.57) we can dilate x — A 1x and ¢ — A~2¢ so that

. . 1 i LA X -t X
| sup le fe™glliiqeny = 251 sup le' 2 (T) e T2 (3] i qeny.
O<t<A~t A% 0<t<n A A

Writing the definition of the Schrodinger operator, one can easily check that
iGN (XY _ i
e' 2 f (/1) =e"" 2 (fy)(x),
where f1/)(x) = f(x/A). Also ||[fi/1ll2 = Allf ll2, so we can write (3.57) equivalently as

I sup. le"™(Fune ™ (g ulliLi@aeny < C272A% I fualizlgualls.
0<t<

Since m(f )= A2 f (A¢), we see that the supports have been shrank, because supp f1/1 = A~ supp ]? c
B(&,277) < A(1). Also the distance between the supports is now 27/ instead of A277. Thus, if we

rename f1/, by simply f, the information we have is that

I suplle‘”fe‘”gl||L1<Q<m» <C2772 2% fl2liglle, (3.59)
0o<t<
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for functions f, g with Fourier support in B(£o,277/) c A(1) and d(supp f ,suppg) =277,

Next we want to rescale the support so that we are able to work in a ball centred in the origin
and with unity radius, for the sake of simplicity in future calculations. For that we first rotate
the plane so that the ball is centred in e; instead of {y. This is, we want to transform &y — ej,
where e =(1,0) € R2. Assume we need a f-rotation for that. Let Rg be the corresponding rotation
matrix. The symmetry properties of the usual sine and cosine functions show that Rg =R_p, and

because of that we can see that

—

FoRota©) = | | FRotowne *7dx= | fx)e MR dc = FiRota(e),
where we have changed of variables x — Rot_g(x) and used the fact that
¢-Rot_g(x)=¢"R_gx =" Rjx = (Ré) x = Rotp(&)-x.
Hence, if we call fg = f o Roty, we see that
e f(x) = fR F(Rotg(@)e?m whotO=2mtiD g — o1t fy(Rot ().

Also observe that rotations do not affect the L?-norm of a function, so ||fyll2 = | fll2. Thus (3.59)

can be equivalently written as

I sup. le A fa(Rot_p(x))e ™ gg(Rot o)L ery < C2772A% I foll2ligell2,
where supp fy = Rotg(supp f) = B(|&ole1,277). The rotation does not change the distance between
the supports of }? and g. Here we have to make a little remark. Indeed, @(271) is not rotation
invariant. Nevertheless, in the beginning we could have started with a ball B(27) instead of
Q(2m), and the space invariance would be a fact here. But the point is that we will need to work
with cubes. Thus, since @(271) < B(211), we would see that (3.59) implies

I sup le’™*fe™ glliLi@eniy < C22A%If I2lgll2, (3.60)
0<t<A
for f ad g Fourier supported in B(|&yle1,277) and with d(supp7,supp@) =~ 277. By a dilation
¢ — |&plé in the Fourier side we can have the support in B(e1,2_j ). More precisely, (3.60) turns
into

I sup le"fe™ glliLi@ueoizny < C272 A% fli2lig 2
0<t<A

for supp f,suppg < B(e1,277/1&o]) and d(supp f,supp &) = 277//|&|. But since the hypotheses force
A& € A(M), we see that |&| € (1/2,1) and we can work with supp f,suppg < B(e1,27/*1) and
d(supp f,suppg) =~ 2.

Once the supports have been sent to the horizontal axis, we translate to the origin by { — {+eq

and dilate by & — 277¢. We know that translation in the Fourier side generates modulations,
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but they will be harmless when working with the absolute value. Indeed, what we get after the

translation is

|eitAf(x)| — ’jl;(02 _)f/'\(f+e1)e2ni(x'€_4”t€'e1_2”“6'2)df ,
-J

and then the dilation gives us

; ~ ; F(9—J -2j1£12 F9=2] ; ;
2—2] f(2—]€+e1)82m(2 JE.(x—47rte1)—27rt2 J‘Sl )dé‘ :el2 JtA(fj,el)(z_Jx_2_']+127[te1)-

B(0,1

Here we write f; ., to denote Ee\l = ]? (277& + e1). Observe that now these functions have support
in B(0,1) and that their supports have separation = 1. If we come back to the space-time as in
(3.60), after making x — 2/x and ¢ — 2%/t we get
I sup le"*fe' gl 1 Qery
O<t<A
=27 sup e )., (x—2/ " 2mter)e" g o, (x — 2/ 2mte ) L1 i@a-sanny-
0<t<272/}
The norm of the new function f; ., will only generate a 277 term with respect to that of £, by the
effect of the dilation. More precisely, we get ||f |2 = 277 [fje, 2. Then, again renaming these new

functions as simply f and g, we see that (3.60) is equivalent to

I sup [l f(x—2/""2nter)e P glx — 2/ 2mte L1 @u-ionay < C2772A%fll2ligll  (3.61)
0<t<272/}
for functions f and g with Fourier support in B(0,1) and such that d(supp 7, suppg) = 1. So we
have reached the setting we were looking for.

In this point we claim that from (3.61) we can get

I sup |e"Af(x—2/"2mter)e gl — 2/ 2mte 1) L1ga-iany
0<t<2-2/ ) (3.62)
< 27722622179 L 1340y Flalgle

for any 0 <¢€,6 < 1, where ¢ > 0 is a constant which does not depend on ¢, § nor a. If this property
were true, we could start an iteration process to reach the desired exponent 3/4. We here show
this argument. To avoid confusion, let y > 0 be the exponent of the statement of Proposition 3.17
so that we look for A34*Y. This y is from now on fixed. Since a has been obtained before, we
choose

Y

o6=—1, €=ad/2.
c+al2

This way, the exponent of the second term in (3.62) is 3/4 +cd + € =3/4+0(c + @/2) = 3/4 +y. That

is our first choice of §,e. Now we have two options regarding the two exponents.
e If a(1-0)=<3/4+ch, then since A > 1 we can say that
/16(1“(1_6) + /13/4-!—05) < 216/13/4-!—05 — 2/13/44—}’
and we are done.
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o If a(1-08) > 3/4 +cb, then the bound we get is 2414179 But the choice of ¢ makes it
21240-8/2) Call o’ = a(1-6/2) < a. The exponent has been improved, but since we have not
yet reached 3/4, we use the claim again, where we keep 6 and we choose

a's

5 =96, =2 <e.

€ 5 <€
Hence, we have A€ (19 (1-9) 4 13/4+¢d) where the second exponent has not changed. Hence,
we have again two options. If @’ has improved enough, this is to say, if a’(1—6) < 3/4 + ¢,
then the governing exponent is 3/4 + ¢6 + €’ < 3/4+ ¢6 + € = 3/4+7y and we have the result.
The other possibility is that the improvement on the exponent is not enough, and the
governing term is A9'A=8)+¢' The choice of € makes it 19192 5o we call the new exponent

a" = a'(1-6/2) = a(1-6/2)? and we again can use the claim.

The iteration of this process shows that every time we obtain new exponents a* = a(1-6/2)*
and ¢ = a®§/2. The exponent a® tends to zero when & — oo, so there exists kg € N so
that a'®9) < 3/4 + ¢6. In this case, the bound from the claim is

2k01€(k0)+3/4+0(5 < 2k0/'l€+3/4+65 — 2k0 /13/4+}’

This shows that the exponent a in (3.61) can be substituted by 3/4 +y. But to reach the statement
of the proposition, or in other words, to unmake every rescaling we have done, we have to deal
with the issue of the balls and cubes. Nevertheless, since we can take a ball included in Q(277271),
say B(27/n 1), we will obtain the estimate of (3.61) for that ball too. If we are integrating on a
ball, (3.61) is completely equivalent to the statement of the proposition. This implies that the
initial @ = 2 we obtained for the result we sought can be improved until we reach 3/4 +y. Hence
the result of Proposition 3.17 follows with the norm taken in a ball instead of the cube prescribed.
This conveys that we should focus on proving the claim (3.62).

Our setting is thus (x,¢) € Q(277271) x[0,27%/1] = Q. Observe that since 1 < 2/, this is a
rectangle whose width is bigger than its height. We see that the functions we have to deal with
in (3.62) are translated by a factor depending on the time. In fact, if we consider some cube, the
mapping (x,¢) — (x —2/*12xte;, ) produces an inclination of the tube in the direction of the first
space coordinate. To be aware of this fact is important for the type of reasoning we are going to
perform.

What we first do is to consider a slightly wider rectangle,
Q=Q(5-2772711) x [0,27% 1],

and we divide it into cubes of side-length 272/ 1. In other words, we are partitioning the domain
in space, and the time-height is kept. Dividing the space area of @(5-277271) with the size of the
partitioning cubes, we deduce that there will be = 2%/ cubes of length 272/ 1. This partition will
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be denoted by {Bj};. From these cubes and inspired by the points in which we are evaluating the

functions in (3.62), for each B}, we define
By ={(x,?): (x—2j+12nte1,t) €B,} = {(x+2j+12nte1,t) :(x,t) € By}

The sets By are no longer cubes, but it is easy to see that they are parallelepipeds. As said,
the linear change of variables only inclines the cubes B}, in the direction of e;. Moreover, these
inclined cubes have slope = 277. The reason for we partition a wider rectangle 6 instead of @
will become clear now. For when we incline @ as we have done with the cubes B}, the resulting
parallelepiped covers the whole original rectangle @. Since B » are a partition of 6, the union of

By, will be precisely the inclined version of @, so the covering property can be expressed as
Qc UB k-
k

If we write the supremum term as an L°°-norm, the expression we are intending to bound in

(3.62) can also be written as
e f(x — 2/ 2nte1)e!  glax — 2/ 1 2nte DIIzize@),
and for the covering property we have just mentioned, this norm is bounded by

Y lle f(x—2 2nter)e g~ 27 2mte Dl iz, = X le fe gl g,y (3:63)
k k

The last equality comes from the definition of B and a translation in space.

We now want to use the result we saw in Lemma 3.11. Observe that in our case, the time goes
as far as 272/, so we will have to make a substitution A — 272/1 according to the notation of the
lemma. Indeed that is also the size of the partitioning cubes. Moreover, the Fourier support of
our functions f and g is B(1), so the lemma can be applied to obtain functions {f%},{gz} such that
their Fourier supports are contained in supp ]? +0((27% 1)~ V2). Moreover, we have the following

estimates,
1/2

1/2
(ankn%) < C27Y 1| f llg, (ankng) <C27¥ 1Y gl (3.64)
k k
and
le" A F )l < e fr@) + C@ PN NIfllz, e g < e gp@)|+C2 ¥ D) Vliglz, (3.65)

VN € N whenever (x,t) € B, x (0,2"2/1). The question is if we can focus in each of the f, and
gr blocks when analysing (3.63), and inequalities (3.65) suggest we can. On the one hand, by

following the same steps as in (3.58), since supp f © B(1), we can say that

e 2 f @) < CIf o
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On the other hand, we need to recall some properties of the proof of Lemma 3.11. From inequality
(3.35) (observing that in Lemma 3.11 the scale was A and not A2 as in the proof of Lemma 3.10)
we have

" fr()l < CA™™ | f la.
Also since each block f7 is defined as a finite sum (there were O(1") tubes to be considered) of

wave-packets, we can write

e fr@) = Y 1 frx) < CA"AT I
o)

Hence, multiplying both inequalities in (3.65) and using these last two auxiliary inequalities we

can write
e A F(x)e ™2 g(x0)] < e Fr(x)e™ g () + C2 P 1) N fllsllglle

for every N € N and when (x, ¢) € B}, x (0,272 1). Plug this in (3.63) to see that we want to bound

Y lle' A fre B grlii g,y + C 2@ PV N If Ialglelxg, Irized,): (3.66)
k k

We know that there are approximately 2%/ cubes B}, and each has measure (272/1)2. Thus, the

second summand is bounded by
C NN 22 flslglle < C AN 2AY2 | Flalgl2

for every N € N. Also observe that by the condition over j, we know that

(2—2j1)—N+2 — 22‘]'(N—2)/1—N+2 < A(N—2)/2—(N—2) — A—(N—Z)/Z.

Notice that we can get rid of the harmless exponent constants and work only with N. This shows
that we can take N as big as we wish to make the exponent of A very low so that it will have no
effect on the bound we obtain in the first summand in (3.66). Let us thus focus on that part. If we

were able to prove that
”eitAfkeitAgk ”lecht’O(ﬁk) < CQ—J./ZAE(/'{(Z(I—(” + A3/4+C6)”fk ”2 ”gk ”2’ (3.67)

for each B}, then we could sum in % to bound the first summand in (3.66) by

C277226(A* 1D 4 A4S il gl
k

1/2 1/2
< 2712 )¢ () 01-0) 4 33/d+cd) (z I % ||§) (Z g ||§)
k k

< C2772)6(A*170) 4 )3/4+¢0y 921 2 )2 £ 1151l g 12

where first we have used Cauchy-Schwarz’ inequality and (3.64) afterwards. We can remove the
272J¢ term and merge the A€ terms. In the end, by joining both parts in (3.66), we get the bound
given by

C(z—j/2/le(/la(1—6)+/13/4+c6)+/1—N) Ifl2lglls.
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Since 17V4 <27/, we can write 1™V < 277/21N+18 34 then the bound has terms
9-Jl2 (Ae(lau—a) +/13/4+06)+A—N)

where A7V can be bounded by the other term which governs the expression. Hence we see that it
is enough to prove (3.67), and for that we have to work on each of the cubes B;.

From now on we fix 2 and we focus on B, f» and g3. To prove (3.67) we will need the wave-
packet decomposition analysed in Section 3.1 and a more technical lemma due to T. Tao in [12].

We present the lemma here in the version of [7].

Lemma 3.18. Let A > 1 and 0<d < 1. Consider Q(A) x[0,A] and a partition by means of cubes
{b;}; of length AY~°. For two functions f,g € L? with Fourier support in Q(1) we consider the
wave-packet decomposition at scale A given by f =Y rfr and g=Y rgr. If d(supp f, suppg) = 1,

there exists a relation ~ between tubes T € I (A) and cubes {b;}; such that for any € >0,

)3

l

2

<CAIfI3; Y
9 [

Y fr

T~b,

Y 8r

2
<CA°lgl3. (3.68)
T~bl 2

Moreover, if we fix b;, then for any smooth m1,ms functions supported in Q(2) which generate

multiplier operators and € > 0 we have

<CA A4 Fl2llgllz. (3.69)
L2(by)

" (m1(D)fr)e ™™ (ma(D)g 1)
Tobyor T'»b;

In particular, for trivial multipliers we have

<CA AT F a1l
L2(b;)

eLtAfTeLtAgT,
Tob; or T'b;

Moreover, the sum in {T ~ b; or T' = b;} can be replaced by the sum in {T ~ by, T' € &} or by
{Te?, T~ by} for any P < T (A).

We want to apply this lemma to B:,fr and gr. Observe that B isa space-time cube with
side-length 272/, and that suppﬁ csuppf +0(2 Y 1)~V2) suppgs < suppg+0((2-2 1)~ 12). We
see that 2/ < 14 implies 1¥* <272/, so (272 1)"12 is very small. Also recall that f and g were
Fourier supported in B(1), so the first support condition holds for f3,gz. On the other hand, since
d(supp f ,suppg) = 1, we also have d(supp}/‘;, suppgz) ~ 1 and the lemma can be applied. Thus
consider the wave-packet decompositions of f;, and g, at scale 27%/1,

fr=" Y.  fur gk= ). 8rT-

TeT (2727 2) T'eT (2721 1)

We also partition our cube B » into cubes of length (272/1)17% which we will call b k,I}. We can
even fix the size slightly so that the union of these cubes is exactly B},. It is easy to see that there
will be O((272/1)3%) small cubes, so that

Ek = ng,l- (3.70)
l
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Thus, estimates (3.68) and (3.69) are available after substitution of A by 2%/ A.
Now by using (3.70) in what we need to prove (3.67), the triangle inequality shows that

A £ itA itA o itA
le"> fre"  grllpizs,) = ; le'® fre" grllpipo, -
We also write the wave-packet decomposition for both f;, and g, to write

itA LtA itA itA
Z”el fkel gk”L}CL?O(gkl)SZ” Z e' fk,Tel gk’T/”L}CL‘Z"(I;kl)‘
l ’ I T, T'eT(2°%}) ’
Notice that having sums in both the cubes {gk,l}l and the tubes T, we can use the relation in

Lemma 3.18 to split the above expression depending if the tubes are reated to 5k,l or not:
it itA it it
Z” Z elt fk,Telt gk,T’”LchL?O(gkl) SZ || Z elt fk,Te”L gk,T’|
I T.TeT(2%1) ' LT T~y

+2 H 2 eitAfk,TeitAgk,T’)
I

T"“gk,l or T’oogk,I

LIL®(By))

_ (3.71)
LLL%(byy)

=I+11I.

In other words, I concentrates the tubes related to each gk,l and I1 the cases in which some tube
is not related to it. We will treat them separately. More precisely, we will prove that for €,0 >0

there is ¢ > 0 independent of € and 6 such that
I<CA 27722220 ¢ £ 15l gl (3.72)

and
I1 <CA2772234%90 | £l g o (3.73)

Notice that since 2/ < /11/4, we have 229 < 1972, Hence, 1179220 < AL-02, Moreover, since we
already have a A€ term, we bound 11792 < A€ Then (3.72) is bounded by

CA%¢27712 2001 £, 15l g o

The sum of (3.72) and (3.73) gives the desired result we sought in (3.67) after renaming 2¢ — ¢
and 6/2 < §, so we are left to prove the estimates for I and I1.

The proof of I is shorter and will be tackled first. Observe that we look for a bound depending
on a, so we will need to use the hypothesis (3.61). Let us define, in the same way we defined By,

out of Bj, the parallelepipeds b k.1 by
bk’l = {(x,t) | (x—2j+12ﬂte1,t) € gk,l } .
It is clear that since B, = U 5;@,1 we have

By = Ubk,l-
l
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We also decide that the cube-tube relation will be kept. In other words, by ; ~T < 5k,l ~T.
From the expression of I in (3.71) we fix [ and we consider the norm. By the change of

variables used to define b;; we see that I can be written as

I=Y 1 Y e frrx—2"""2nter)e™ gp (x -2 2nte D)l L1, ),
I T.1~by,

which is in the shape of the hypothesis (3.61). Nevertheless, the norm needs to be taken in a
rectangle, not in a parallelepiped. So we want to consider a rectangle R containing b; ;. We know
that the height of b;,; is the same as that of Ek,l, which is (272 1)170 = 27279279 31-0 (Onp the other
hand, as we said when we defined B, the inclined cubes have slope =~ 27/. It is easy to see that
the inclination produces an extra length in direction e; of 2/7127(272/1)17% . Then, the total

length of the cube in the direction e; is
@ 210 + 27 20272 )10 < 2272 1)1 02727 = 82/ 220 ) 170,

Hence consider R = Q(xo, 872 7220 A1-0) x [¢,t0 + 4 -272722/9 11791 where x¢,t( are such that
make by ; © R. Observe that this way,
IsY I Y e"fprx—2"""2nter)e" gy r(x -2 2nte )i rom),s

L T,7~by,
and R has the appropriate sizes to apply (3.61). Also observe that when proving (3.57), there
is no problem translating the time interval or the space cube. Indeed, the time played no role
and the important fact about the cube was its size. Then, we can say that (3.61) is translation
invariant, so substituting A for 4-22/91179 we can write

< (09 /12(4.92/0 3 1-8ya ” itA , ” ” itA , “ '

I1<C277%(4-29° 1% ; Nzg'k,le fer ) T/Nzgk’le frr )

The sum in / can be managed by means of the Cauchy-Schwarz inequality, and together with the

estimates in Lemma 3.18 we write
1/2

1/2

X . . 2 . 2

I <C272(4.9%0 )1-0)a ZH y eltAfk’THZ Z” y eszkj”z
l TN’I;]E,Z l T’NEk,l

<C2772(4- 229 A1 272 )¢ | fllall g 2

< CAS(AY0227%)2 972 £, ol g o

where in the last inequality we have used the fact that 272/¢ < 1. This is the estimate we were
looking for in (3.72).

Therefore we are left to prove the estimate for 11 given in (3.73). We are going to prove that
estimate for each of the norms we are summing. In that case we should sum the bound in (3.73)
in I. We know that there are =~ (272/1)3% cubes b %, for each &, so since the bound does not depend

on /, we have

IT < CA°2772 A3 £y ol gnlla(272 1)30 < C A2/ A3 30 £ 1ol g o
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3.4. PROOF OF THEOREM 3.1

We have used 272/ < 1. Hence we would obtain the result with the constant ¢* = ¢ + 3, which will

be independent of € and § if ¢ is so. Thus we focus on proving

”l=|ﬂ > e frpe' ™ gp <CA272 Q340 mlls gl (3.74)

T”“gk,l or T/oogk,l

LIL®(By )

for fixed /. We first decompose the sum into the three possible combinations (that is to say, when
T is related and not 7”, when 7" is related and not 7' and when neither T nor 7" is related to

gk,l)- In other words, we define

itA itA
= “ 2 e frre’ " grr LL®(, )
T”"Ek,l,T”?“gk,l x t( k,l)
L tA it
Iy = H Z e frre"  gr 1 L1L®(G
T”",l;k,l,T/Ngk,l x t( k,l)
and
FAAY it
II3= H Z el fk,Te‘ ghr LG
T~5k,Z,T/ao5k’, +L3°(br )

sothat II; <IIi+ 115+ 113. We will see that the three have the same bound, so the bound for I1;
will follow with a constant factor equal to 3. The key point is that Lemma 3.18 allows to use the
same bound for the three cases, so we will only work with one, I15.

For simplicity, we define

F=Y fur; G= ) gr

Toagk,l T’~l~)k,l

so that after the usual change of variables we get

112=|

eztAFeltAG |

. = ”eimF(x — 92/ onte 1)eitAG(x - 2j+12nte1)
LJICL?o(bk,l)

LILP(byy)
Our next objective is to treat the norms in space and time separately. But observe that b, ; is not
a cube any more so it cannot be trivially split. Assume that the original small cube ng has the

form
bri=Qy, 2P V) %) x [s,s +(272 1)1 70]

for some y = (y1,y2) € R2, s € R. We have only fixed what we could call the centre of the cube. Once

we have done this, let us call @ to the projection of b ; in space. This is to say,
Qo=1{xe€ R? | (x,t) € by for some ¢},

For each x € Q, it is rather clear that the time values ¢ such that (x,%) € b3 ; form an interval.
Let us call that interval
I={teR| (x,) € by} =(a—(x),a.(x)).

This allows us to write

IIs = | sup

tel,

M F(x — 27 25 ¢e 1)eitAG(x - 2j+12nte1)’ |

LYQo)
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CHAPTER 3. A SUFFICIENT CONDITION IN R?

For the management of the supremum we recall Lemma 3.9. It requires to work with the lower
bound of the interval, a_(x), which we will need to specify. It is given by a straight line of slope
277/47 in direction e; which goes through the right border of the cube y1 +(272/1)179/2. It is also

important to notice that it cannot go below s, so we have

a_(x)= max{ s, i—n(xl — 91— (272 1)170%/9) } (3.75)

Hence, we apply Lemma 3.9 with u =2/ to obtain

sup [e!2F(x— 2/ 12nte1)e!  G(x — 27 1 2nte1)
tel,

< el -WAR _9itlony (x)e l)ei“*(x)AG(x -2/ 1970 _(x)e 1)|

(3.76)

+272| oI AF(x — 2712580 )e TG (x — 2/ 12 te )

L2(I,)
+92772 ||0t (eitAF(x — 2/ 2mte)e A G (x - 2j+12ﬂt61))

LI,

Let us manage the derivatives. Observe that by the Schwartz regularity of the functions we are

working with, we can take the derivative inside the integral to say that
at (eitAF(x _ 2j+127tte1)) — _4n2if F\(E)(K'Z + 2j+1el . é-)eQHi(xf—QT[t\f|2_2j+127'[t61~f) dé‘
[Rz

If we recall the differentiation properties of the Fourier transform, together with the absolute

value, we see that

|0t (eitAF(x _ 2j+127‘[te1)) | — f2 (ﬁ({) _ 2j+127_[51\F(é))e2ni(x-f—2ntlflz_2j+12ntel.§)dé‘
R

= | MAF — 2127 D1 F)(x — 271 2nteq)|,

where D1F =0, F is the partial derivative in direction e;. Hence, observe that the derivation
has generated a multiplier operator, which is given by m(¢) = 4n2(|¢|? + 2/*1&1). The differential
operator it generates in the solution is m(D) = A — 2/*127D;. Then, by the usual product rule in

(3.76), we can write

. . . . . 3
sup [e""AF(x — 2/ 2nte1)e A G(x — 2/ 2nte1)| S Q-(F,G)x) + 272 Y Qi(F,G)(x) (3.77)
tel, i=1

where
Q_(F,G)(x) = [ DPF(x — 2741 27a _(x)e1)e'* W2 G(x — 271 271a _(x)e 1)),

Q1(F,G)(x) = ||e"*F(x — 2/ 127te)e! P G(x — 2/ 1 27te )

L2(I,)

Q2(F,G)(X) — eitA(z—jAF _ 47.[D1F)(x _ 2j+12nte1)eitAG(x — 2j+1277:tel) L2 )a

Q3(F,G)(x) = ||e" AF(x — 271 2nte1)e" ™™ (27 AG — 4nD1G)(x — 271 2te ) Ly
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3.4. PROOF OF THEOREM 3.1

where to write the last two terms we have multiplied a 27/ term so that in (3.77) we can have a

27”2 factor outside the sum. By virtue of this, we have
/2 i
Iy SIQ-(F,Dlpygy +27 Y I1Q4F, DLy (3.78)
i=1

so our objective is to bound every L!-norm above. We start by the estimates of Q;, i = 1,2,3. Ob-
serve that the multipliers will not affect when applying the estimates (3.69) seen in Lemma 3.18,
so we can manage the three cases in the same way. Consider for instance the case of Q. If we

write the original meaning of F' and G we see that

1Q2(F, ®lip1g)

:||T b ZT ) ™82 A~ 4nD D fp r(x -2/ 2nte1)e "  gp i (x — 2 2mte )12, )
b, T'~bp,

because b, ; = Uxeq, {x} x I,. Now we use Holder’s inequality in space, in Q. This way we can

write the Li-norm by also considering |Qo|2. More precisely,
|QO| — (2—2.]./1)1—5(1 + 2n2j+1)(2—2‘]‘1)1—5 ~ 27T2j+1(2_2j/1)2(1_6),
so if we call f?;T =@27A- 4nD1)fr T, we have

192(F,G)lIL1qy)

< 272272 )19 > eimf;}(x—2j+12nte1)eimgk,;pr(x—2j+12nte1)||Lz (bao)-
T’%fbk’l,T/~bk’l ® '

Now we can use the estimates in Lemma 3.18 to say that

1Q2(F,@)li1qy < C272@ 2 D02 V) Y4 £ l2 1k N2

‘ ‘ (3.79)
= C272Q 2 )y DO £ 1o 4.
We can see that since 1 <2/ < 114, then 1 <1274 < 1272/ and hence (3.79) is bounded by
C272 7V frllaliplle < C2I AT 2Nk 2,

where we have removed (27%/)¢*% < 1. Therefore, observing that the procedure is the same for
Q1 and Qg3 (in one case there are no multipliers and in the other case we define g, 7 the same

way we have defined f;}), we have the estimates
1Q:(F,Plipigy < C27AF 34 frlallpll,  Vi=1,2,8. (3.80)

Thus we are left to prove the estimate for Q_(F,G). For this we present a lemma.

Lemma 3.19. Let A =1 and a_(x) be the bound of 1, defined in (3.75). Consider a function [ with
Fourier support in Q(1) and x € R2. Then, there exists a constant C > 0 independent of xo, s and y

(recall that a_(x) depends on s,y) such that
le™ % f(x — 27 21 _(x)e Dl 2@ 1 < CAYIf N2
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CHAPTER 3. A SUFFICIENT CONDITION IN R?

Moreover, if in the support of f we have |é1] = 1, then
-2 £(x = 27 2ma_(x)e Dl 2oy < C272 1 £ 2.

Let us prove this lemma. We easily see that the phase of the integral expression of e?*- A f(x—
2/1971a_(x)eq) is 2n(x - & — 2ma_(x)|€]? — 271 27wa_(x)é1), which depending on the value of a_(x)

can be

1. 27(x-&—2ms(|E12 +2/7%1¢y)), or

2. 2m (v §—2m L (1 - y1 - @ FIORE + 270 y).
Observe that in case 1 we have

el WALy _ 2/ 1974 _(x)eq)=F ! (}?(f)e_4”2is(|5|2+2j+151)) = f1,
where by Plancherel’s identity | f1ll2 = || fll2. On the other hand, if we are in case 2, we can write
18- £ —921*1904 (x)eq) = f 763 27 E-2m L (w1 -y @ W VORI ) g ¢
f Fo(£)e2mite - 2n T m (€2 6) g (3.81)

=T fox),

where (&) = F(©)e?* 1% 0@ RN Obviously || fallz = I lz-

We can manage the two cases at the same time if we sum both norms, so that

l[e?a- @A f£(x — 2j+12na_(x)e1)||L2(Q(x0,,1)) s \fille+1Tf2llz = 1f 2 + 1T f2ll2. (3.82)

So we need to work on the operator T'. Observe that the phase in its definition in (3.81) can be

simplified so that

2 : i i
1§ = 2m (7 + 27760 = o+ 98y = 27 a8 - a8y = 2985 27l
Observe that we can work with the Fourier transform in the second variable, since
~ o :9—j-1 2 : _ ~ _9xi9-i-1 2
Tfox) = fR P72 kR 2mints g = gl ( fR Fa(©e 27 T d gy | ().
Plancherel’s identity says that the norm in the second variable does not change, so

~ o 2
”Tf2”124§2 = ||[%f2(f)e—2n12 Ty €12 déy ,

Observe that by the triangle integral inequality we can write

f ( | |f2(€)ld€1) dés.

| [ Ao 2miz =k agy |
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3.4. PROOF OF THEOREM 3.1

Recall that supp ]?2 = supp f c Q(1), so in the inner integral we are only integrating in (—1,1).

Hence by Holder’s inequality we can say that

2
(fRn?z(fndfl) =CIfal?, .

so we get ||Tf2”%2 <C Jrlr 1fo(O)12déE1déEy = ||]?2||§- Now recall that we were interested in the
X9

norms in @(xg, ), so
9 x()+/1/2 9 ~ 9
ITf2 s e 1 = C f L 1Tl dx<CAIAI

If we recall that ||}?2||2 = ||f||2, we see that we have

1T 2l 2oy < CAMZ 1 Flls,

and in all, going back to (3.82) we see that
le" @A f(x - 27+ 27a (e 1)l 2oy = £ 2 + CAY2 [ Flla < CAY2|If |12

as desired.
Now suppose that we have |{1] = 1 in supp f. In that case, we do the change of variables
(M1,m2) = (=277 1£[2,&2). Then we have

Tf) = [ | Falestns,n,na)etm =) 7 d,

We know that the Jacobian can be represented by d¢ = |6E/61;| dn =|J|dn. But in this case it is
easier for us to work out |6n/6€ | It is easy to check that

| _o-i
‘66 =27

Since the Jacobian of the change we have performed is the inverse of the above expression, we get

1

Tf2(x):2jf Fa(é1(n1,m2),no)e?iamtaans) ____— gy
R2 1<1(m1,m2)l

Call g(n1,m2) = f2(€1(1,m2),72)/1E1(11,m2)| so that
T folx) = 2/ F 71 (& (11,12))(x).

By Plancherel we have
ITf2ll2 =27 18]l

Next step is to revert the change of variables. Indeed,

2
igi3= [

2

aln:fR2

2

f2(S1,m2) 0-i|e1|dE =27
R2

31

fa(&1,E2)
[€1]

|fa(E)[2

1$1] @
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CHAPTER 3. A SUFFICIENT CONDITION IN R?

By hypothesis, |£1] = 1, so we deduce || T fall2 = 2j2_j/2||f2||2. Since we know that f5 has the same
L?-norm as f, we conclude that
1T fallz =272 f 2,

which is enough to assert that
le? =% £(x — 27 2ma _(x)e ) | L2 ay < I 2 + 27211 Fll2 < C272 Fllg

and the lemma is proven.
Recall we wanted the lemma to obtain the estimate of 2_. Now we can do it. Indeed, since we

need to estimate the L1(Qo)-norm, we use Holder’s inequality to obtain L2?-norms, so
IQ-(F, @iz, < e F(x - 27 2ma_(x)e )l 2, lle™® P2 Glx — 27 2ma_(x)e 1)l 2y

We will apply a consequence of Lemma 3.19 to each term. Observe that we are working with
supports in B(1) and d(supp ,supp2) = 1. That means that both supports cannot be arbitrarily
close. A consequence of this is that it cannot happen that both of them are close to zero. We can
also make one of them not to be lying on the vertical axis, so that |£1| = 1. Suppose it is the case
of f. Then, since F is defined by a sum of wave-packets of f, suppF is a little perturbation of

supp f, so we can assume |é1] = 1 there. Hence, by Lemma 3.19,
le’ AR (x - 27 27a _(x)e 1)l L2y < C272I1F |la.

The lemma can be applied since we are integrating on a rectangle @¢ whose largest side is
(27272)17927+1 5 1. On the other hand, we apply the first consequence to G to obtain

le’*-0G(x -2/ 2ma _(x)e 1)l 2y < C@H V)02 HV2|Gl;.
Joining both estimates together we see that
1Q-(F,PliL1q,) < C2722772/0 =290 D2 7|15 G|,
On the one hand, save the norms, we obtain a bound of
0971290+ 1/29=j9jb 1121 ~0/2 _ (190 Y 121 ~0/2 _ (196 12

On the other hand, the norms can be controlled by the results of Lemma 3.5, and more precisely

by means of the Plancherel-type equivalences we proved in (3.33). Indeed,

2
2 2 2 2
IFE=| > for|,~ X Uferld <X iferi3=ifa3,
T

Txbp, Tby,

and the same follows for G and g;. Hence, we have shown that
1Q-(F, @Dz, = C2° A2 frlizlge 2. (3.83)
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3.4. PROOF OF THEOREM 3.1

With the estimates for ; (3.80) and (3.83) at hand, we go back to (3.78) and we see that
I15 = C (27212 + 272 AT 3] | £, |5 gyl = C (270412 + 277222434 £ 31 g .
Observe that 270 112 < 10/4+1/2 _ 13/4+5/43-1/4 _ 9—j 13/4+6/4 oo
[Ty < C (277 A3 1 g i pere0s34) £y o | gy I < C2T2AA P fiy gz,

with ¢/ = max{c, 1/4}, which is precisely what we asked for in (3.74). We can go through the
argument we have performed for 175 to see that it is valid for 171 and /13 because Lemma 3.18

allows the same bounds. We are therefore done. O

83






OSCILLATORY INTEGRALS OF THE FIRST KIND

Definition A.1. Let ¢ :R— R and ¥ : R — C be smooth functions and (a,b) R an interval . The
function defined by

b
I = f MOy dx, A>0 (A1)

is called a oscillatory integral of the first kind. The function ¢ is called the phase of the

integral.

The main objective is to analyse the behaviour of the integral I(1) when A tends to infinity.
We will here treat two phenomena of these integrals: the localisation and the scaling principles.
A.1 Localisation

To deal with the asymptotic behaviour of the integral, we assume first that ¢ has compact support
in (a,b). In this case, the asymptotic behaviour of I(1) is determined by the points in which

¢'(x) = 0. As we will see, the main argument is integration by parts.

Proposition A.2. Let ¢, be smooth functions so that v has compact support in (a,b) and
¢'(x) #0 in (a,b). Then,
IM=0"") asA—oo

for every N € N.
Proof. Define the differential operator
_1df
Df(x) = (idd'@) " ==,
fx) = (iAg'(x)) Ix
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which is well defined because ¢'(x) # 0. If we work with the inner product of L2((a, b)), we know

that the transpose (or adjoint) operator, which we will denote by D?, must satisfy
(f,.Dg)=(D'f,8). (A.2)

Observe that
<f’Dg> =T

and integration by parts gives

g(x) 3 f(x) _(f(x))
ff()¢>() </>() fa() ¢7()d

If we consider that either f or g is compactly supported in (a, b) (related to the hypothesis of v),

then the boundary terms disappear and

f(x) )
D — dx.
(f,Dg)= 1 glx ) ( \¢@
Hence, the transpose operator (as we have seen, only under certain restrictions for the functions)
must be )
X
D! A3
Fla) = dx(m(x)) (A.3)

We observe that if we apply D to the exponential term involving the phase in (A.1),

e MOVAY (X)) _ ape)

T

and thus DV (e19®) = ¢ for all N € N. Therefore, in (A.2) consider f = ™) and g = v,
which has compact support. Then,

D(ei/ld)(x)) —

IA) = (€, 9y = (DN (), ) = ("M, (DHN ()

and hence

b
L) < f (DY ()| .

We need to know something more about (D?)". But observe that from (A.3) we deduce

(Dt)zw:_ii(ix(%)):(_ifi(ii(z))
ildx ¢ id) dx\¢'dx\¢p'))’

and since ¥ and ¢ are smooth, it is clear that

t\N 1 N
(DY) ‘”:(‘a) Iy,

where Ay is a smooth function depending on the derivatives of ¥ and ¢ and hence bounded in
(a,b), say by By. Therefore, (D)Ny(x)| < By|AI™N and

I < (b -a)ByIA™N = AnIAI™Y,

where Ay = (b —a)By, which gives the desired result. O
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Remark A.3. Observe that if ¢p(x) = x, then for compactly supported v,

b .
I\ = f w(x)eM dx = Fy(l)

is nothing but the Fourier transform of v, and Proposition A.2 asserts that it is a function of
rapid descent (though not in the sense of the derivatives as in the Schwartz space, even if we
know more, that it is indeed a Schwartz function for being the Fourier transform of a compactly

supported function).

Remark A.4. If the condition of compactness for the support of ¥ is removed, then D and D!
defined above are no longer transposes of each other. In fact, it is necessary to consider the
boundary terms, and we get

i ei)tc/)(x)w(x) )b

<e”‘”,w>:<DeiM’,W>=M e a+<eiA¢,th>.

Therefore, iterating we obtain

. . 1 N-1 ei/L(/)(Dt)kw
@,y =, DWWy + — Y ———

i1 kgo ¢
which shows that the best we can get is I(1) = O(A~1). This fact is clearly shown if ¢ = 1 and

¢(x) = x, since

J

ei/lb _ ei/la
il
Remark A.5. As a last remark, we can say that even if the support is not compact, if both ¢ and

b
IN) = f e dy =

w and their derivatives up to order N have periodic boundary conditions, this is ¢®(a) = ¢ (b)
and the same for y for £ =0,1,...,N — 1, then the boundary terms will clearly disappear and the

main result will hold, having an estimate of 1.

A.2 Scaling

We now suppose that the only information we have is [¢*(x)| = 1 for some % € N. We want to

obtain an estimate for the oscillatory integral with v =1,

b
f W) gy
a

which does not depend on the interval (a,b). The following results are usually referred to as Van

der Corput estimates.

Proposition A.6. Let ¢ be a smooth and real valued function in (a,b). Suppose that |<p(k)(x)| >1
for some k €N and for all x € (a,b). Then,

b .
f oM@ gl < o, A~ VE
a
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1. k=2 or
2. k=1and ¢' is monotonic.
Moreover, the constant cy, is independent of ¢,A and (a,b).

Remark A.7. We see that the case k£ =1 is special and needs a different treatment. Indeed, it
is not enough to ask |¢/(x)| = 1. Consider A = 1 and suppose ¢’ = 1 (since ¢’ is continuous, the
hypothesis makes it either positive or negative. We consider it is positive and thus ¢ is increasing).
Suppose also that ¢’ oscillates, so that it is big when cos ¢(x) < 0 and it is relatively small when
cosp(x) > 0 (we can also see this as ¢’ ~ 1 when ¢(x) € ... U(-7/2,7/2)U(871/2,57/2)U... and ¢' > 1
when ¢(x) €...u(n/2,37/2) U (57/2,77/2)...). In this case,

m({x| cos ¢p(x) > 0}) > m({x| cos p(x) < 0}),

and thus . .
Re[ e gy = [ cosPp(x)dx — oo when b — oo.
a a

This is the reason for which we need to ask the derivative to be monotonic, so that it does
not oscillate. Observe that when % = 2, these oscillations cannot occur since |¢”(x)| = 1 asserts

precisely that ¢’ is monotonic.

Proof. We first prove case 2. Consider the operator D of the proof of Proposition A.2. Then, as we
have seen in Remark A.4, and with ¢ =1 in this case,
1 ei/l(/)(x)

iAp 1y — AP 1y — (nidd Tt 1
(e, 1) =(De""",1) =(e'*",D (1)>+i/1 e

b

(A.4)

r
The second term in (A.4) can be bounded as follows:

1 @it
il ¢'(x)

b

IA

2
A

1( 1 1 )
< |l—t—
ANP' B ¢ (a)l

a

because |¢'(x)| = 1. On the other hand,

[beiw(x)i( 1 )
o dx \idg'(x)

Since ¢’ is monotonic, its inverse is so too, and hence % (

l(eM Di(1))| =

1 rb
S_
i,

1
e
that we can take the absolute value outside the integral to write

d 1
e (m)‘ ax.

) does not change sign. This means

. 1 1 1 1 1 1 2
9 Dyl <= |—— — s—(—+—)s—.
e = 1v® v = ligwr @) =2
Therefore, (A.4) can be bounded by
: 2 2 4
lﬂ(b 1 - E——
(e, 1) = 1 + 1T
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and the property holds with ¢; = 4.
Case 1 is proven by induction on k. So consider I([)(k+1)(x)| > 1. We can assume that (p(k+1)(x) >1
(by continuity it is either positive or negative. If it were negative, the argument is analogous).

Hence, ¢'® is increasing in (a,b), so there are two options:

i There exists z € (a,b) such that c/)(k)(z) =0, so Igb(k)(z)l is decreasing in (a,z) and increasing in

(z,b). Hence, it has a unique minimum in z.

ii The function ¢® is not zero in any point. In that case, it is either positive or negative, and

hence the unique minimum of |<,b(k)| isina orin b.
We treat both cases separately.

i We know ¢®(2) =0, and since ¢*+D(x) = 1, then |¢p*®| increases or decreases faster than x,
so for 6 >0,
PP (@) =6, VYxe(z—5,z+0).

Then, by induction, since the property is true for %2, we can use it in the intervals (a,z — §)
and (z + 6, b), because I(p(k)(x)l/é =1 there. Hence,

0w e 1k
M Gl = e 5 dx|<cp(A6) ",
a a

In the same way,

<cp(A8)"VE,

b e b s
f e“pxdx:f e’ 5 dx
z+0 z+0

z+0 .
f ez/l([)(x)dx
z—0

b
f RN
a

Also,
<z+0—-(z—-06)=26.

Hence,

<26 +2¢,(16) VE.

ii Consider for simplicity that the minimum is in a. Then, by the same argument, [¢*)(x)| = 6

when x ¢ (a,a + 6), and by induction,

b idp(x) b i(A5) 2%
f M gy f e 5 dx
a+d a+d

a+d |
f ez/lqb(x) dx
a

a+d |
f el/l(/)(x) dx
a

< cp(A8) "V,

On the other hand,
<.

Therefore,

<6+cp(A8)VE,

If the minimum is in b, the same argument works.
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We see that in both cases, we obtain a bound of 26 + 2¢;(18)~V%. Since we want a A~V*+1 hound,

let us choose an appropriate 6. Indeed,
(16)*1/]6 — A*l/(kJrl) o 51/k — Al/(k+1)*1/k — A*I/k(kJrl)
Thus, we need § = A" V*+D_ 5o that
26 + 2Ck(/16)_1/k — 2/1—1/(k+1) + 2Ckﬂ_1/(k+1) — 2(1 + Ck)/l_l/(k+1)-

Therefore, it is enough to choose cj.1 =2(1 + cp). O

Remark A.8. Observe that as we have said before, for the case £ +1 =2, we are able to use case

k = 1 because the fact that |¢"| = 1 implies that ¢’ is either increasing or decreasing.

The result in Proposition A.6 allows us to give a similar estimate also when v is included.

Corollary A.9. Let ¢ be a smooth real-valued function on (a,b) which satisfies | (x)| = 1 in
(a,b) for some k €N. In case k =1, we also assume that ¢' is monotonic. Then, if v is a smooth

(and possibly complex-valued) function,

b
II)] < cp A~ VE [|w(b)|+f ly/(x)| dx

b

where I(M) is the oscillatory integral defined in (A.1).

Proof. Define
x .
F(x)= f M0 gy,
a

As we know, F'(x) = ¢/**® and hence I(1) = ff F'(x)y(x)dx. If we integrate by parts, we see that
b b b
IA) = Fxy(x)|, —f F(o)y'(x)dx :F(b)u/(b)—f F(o)y'(x)dx,
a a
because F(a) =0. Then, by Proposition A.6 we obtain
IF(x) <cp ™, Vxe(a,b),

so the triangle inequality gives

b
II(A)] < cpA~VE [|w(b)| + f ly'(x)| dx
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A.3 In Higher Dimensions

Only some of the properties examined in Sections A.1 and A.2 can be generalised to higher
dimensions. Fortunately, the localisation principle generalises. We will only state the result, since

it follows from the one dimensional case. For more details the reader can check [11, Ch. VIII, §2].

Proposition A.10. Suppose ¢ and y are smooth functions so that v has compact support. Assume

also that ¢ has no critical points in the support of y. Then,
IM=017"), asd-oo

for every N € N.
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OTHER AUXILIARY RESULTS

B.1 The Hardy-Littlewood-Sobolev Inequality
Proposition B.1. Consider f € LP(R") and indices 0 <y <n, 1< p < q <oo such that

noy
—.

(B.1)

Q| =
==

Then,

If * Iy Loy < Ap g I f I Lr@r)-

Proof. The proof consists on splitting the integral

fx—ylyl"dy +f fx—ylylVdy
lyl>R

(f # 1y 7)) = f

lyI<R

for some convenient R > 0 which will later be specified.
The first part will be treated by means of the Hardy-Littlewood maximal function. Observe
that

f fa=Myl™"dy=Ff*lyl"" xBo,R):
lyl<R

We notice that the function |y|™ xp(o,r) is nonnegative, radial and radially decreasing. Also,

R R™Y
f IyI_Ydy:f / I rdr=C ,
lyI<R s»-1Jo n-y

so it is integrable as long as y < n. Hence, Lemma B.2 asserts that

n=-y

f*1y""xpor)(x)<C Mf(x). (B.2)

n-y
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For the second integral, we use Holder’s inequality to write

If * 1y xRy | < IF IIp 117 xBOR)Y (X1, (B.3)

where p and p’ are conjugates. Observe that

C
n-yp

n— !
R"YP

!

’ / oo
It morre @I = [ i dy=c [T

lyl>

whenever n —yp’ < 0. A substitution of the value of y using (B.1) gives the equality

np'

yp'-n=—,
q

which is positive because ¢ < co. Hence, joining (B.2) and (B.3) we see that
If * 1y @I < Cyp (Mf(x)R"‘Y + ||f||pRn/p’—Y) _

Now choose R > 0 so that

Mf(ac)=
1£1p

Mf@R" 7 =f,R"" " & np'n = RP.,

Hence, from condition (B.1),

Mf(x))—f’”f

If * Iyl 7T (@)| <2C(M f(x)R" T = 2C(Mf(x))( T
p

(B.4)
= 2C(M )P fIly P,

Mf(x))—l’(é—é)
171,

If we now estimate the L? norm, we see that after renaming constants,

= ZC(Mf(x))(

fu@n If = IyI‘V(x)quxsCIIfIIZ"’fWMf(x)pdx=C||f||Z"’||Mf||§,
and since for p > 1 the maximal function is a bounded L? — LP operator,
fw Iy @I dx < CIFISPIFIE = CIFIC,

so finally we get [||f *y|™"llq < Clf|p, where the constant C depends on n,p,q and y (and since

these four are related by (B.1) we may remove the dependence on 7). O
The following lemma is which allows us to estimate the integral in |y| < R in the proof above.

Lemma B.2. Let ¢ be a nonnegative, integrable, radial and radially decreasing function in R".
Then, for every f € LP(R") with 1< p < oo,

If * )| < Mf(x)lpl1,
where M f(x) is the Hardy-Littlewood maximal function of f.
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B.1. THE HARDY-LITTLEWOOD-SOBOLEV INEQUALITY

Proof. 1t is clear that we can assume |¢|l; = 1. The proof will be done by approximation. If we

consider s(x) to be a simple, positive, radial and radially decreasing function, so that

N
s(x) =) crxBos®), r&>0,
k=1
then
N
5% flx) = f sfe-yndy=Y ¢ Flx—y)dy
R~ k=1 B(0,rp)

(B.5)

N
< ) cklBO,rp)IMf(x) = Mf(®)llsl 1
k=1

and the result is satisfied. Now, the key fact is that every positive, integrable, radial, and radially

decreasing function can be approximated by means of these simple functions. These functions are

4n71 1
sn(@) =) FX{xI<P(x)>k/2”‘1}(x)‘
k=1

It is obvious that s,41(x) = s,(x), for all points x and every n € N. Observe that if 2/2" 1 < ¢(x) <
(E+1)/2""1 then s, is summing precisely & terms in x so s,(x) = E/2"1, Since while n — co the
intervals are smaller, the more precise the estimation is, showing that s, — ¢ pointwise. Also,
sp(x) < p(x) for every n €N, so [Is, ll1 < l¢ll1. Once we see this, the monotone convergence theorem
asserts that

lim s, * f(x) = ¢ * f(x),

n—oo

and hence
$* F@) = lim (s, * F(0) < M) Tim lls,lp < MF@IPIL.
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