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Abstract 

In the field of cognitive diagnosis modelling there has been scarce research related to 

the item fit evaluation. Although general cognitive diagnosis models might provide 

better model–data fit than reduced models, there are several reasons that make reduced 

models preferable to the general models. Mainly, reduced models require smaller 

sample sizes, have parameters with a more straightforward interpretation, and lead to 

better classification rates when the sample size is small. Thus, it is relevant to assess if 

item fit indexes allow to select the most parsimonious model for each item. This study 

investigates the performance of various item fit statistics and provides information 

about the usefulness of these indexes on different scenarios. Five statistics were 

considered: RMSEA, S-X2, the LR test, the Wald test, and the LM test. Results show 

that the empirical significance of the LR test and the Wald test conforms more closely 

to the nominal significance level and these statistics have a higher statistical power 

when items are highly discriminative than the others statistics. However, both tests are 

highly affected by the item discrimination. It implies that we cannot differentiate 

between DINA and A-CDM models in practical settings when the item discrimination is 

low. 

Keywords: cognitive diagnosis modeling, model fit, simulation study, validity 
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Theoretical introduction 

Cognitive diagnosis modeling 

 Over the last years there has been an increase of interest in psychometric models 

referred to as cognitive diagnosis models (CDMs). Based on the review of existing labels for 

these models that have been used in the literature (e.g., cognitively diagnostic models, Henson & 

Douglas, 2005, cognitive psychometric models, Rupp, 2007; multiple classification models, 

Haertel, 1989; structured IRT models, Rupp & Mislevy, 2007), Rupp and Templin (2008) 

offered the following definition:  

Diagnostic classification models (DCM) are probabilistic, confirmatory 

multidimensional latent-variable models with a simple or complex loading 

structure. They are suitable for modelling observable categorical response 

variables and contain unobservable (i.e., latent) categorical predictor variables. 

The predictor variables are combined in compensatory and non-compensatory 

ways to generate latent classes. DCM enable multiple criterion-referenced 

interpretations and associated feedback for diagnostic purposes, which is 

typically provided at a relatively fine-grain size. This feedback can be, but does 

not have to be, based on a theory of response processing grounded in applied 

cognitive psychology. Some DCM are further able to handle complex sampling 

designs for items and respondents, as well as heterogeneity due to strategy use. 

(p.226). 

 Following this definition, we find that cognitive diagnosis modeling (CDM) is 

an interdisciplinary approach to diagnostic assessment. So that the psychological 

processes underlying performance on items can be modeled, cognitive models need to 

be developed for those domains that need to be assessed. In this regard, CDM 

establishes a link between cognitive psychology and statistical modeling. 

 In the field of education, researchers have proposed different theories about how 

students represent knowledge and develop competence in a subject domain (e.g. 

Mathematics). In addition, CDM can facilitate inferences more relevant to learning. 

That is the reason why are widely employed in cognitively diagnostic educational 

assessment (Leighton & Gierl, 2007; Nichols, Chipman, & Brennan, 1995). Despite the 

fact that few empirical studies have been published out of the educational context, 
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CDMs can be applied to other contexts. Two good examples are the study of Templin 

and Henson (2006) who demonstrate how the hypothesized underlying factors 

contributing to pathological gambling can be measured with the deterministic input, 

noisy "or" gate (DINO) model, and the study of García, Olea, and de la Torre (2014) 

who found that CDMs could achieve an accurate fit to the responses of a situational 

judgement test (SJT) measuring 6 professional competencies based on the great eight 

model (Bartram, 2005). Moreover, SJTs conforms another promising context of use for 

CDMs. Some authors consider that one of the most critical issues for the future of SJT 

research is to provide enough evidence about the constructs included therein. In essence, 

experts call for a new approach to the nature of the construct in SJTs. In a recent review 

of SJTs (Weekley, Hawkes, Guenole, & Ployhart, 2015), it is recognized that, among 

the current and principal lines of research in SJTs, the application of CDMs to SJTs is 

included. 

 Unlike traditional Item Response Theory (IRT) models, which generally model 

continuous latent variables, the latent variables in CDMs are discrete, consisting either 

of dichotomous (e.g., mastery vs non-mastery), or polytomous levels (e.g., "good 

performance", "fair performance", and "poor performance"). Over the last two decades, 

several CDMs that can be successfully applied across a wide variety of settings have 

been developed. At present, most of research has been focused on CDMs for 

dichotomous attributes. In contrast, only a few CDMs accommodating polytomous 

attributes can be found. Thus, taking into account that basic topics are still needed of  

further investigation, in this work we will focus on CDMs for dichotomous attributes.  

 Through this section we will illustrate the main characteristics of CDMs with 

empirical data: their multidimensional nature, their confirmatory nature, the complexity 

of their loading structure, and the type of latent predictor variables they contain (Rupp 

and Templin, 2008). Data were taken from the administration of a SJT composed of 23 

items that presented situations about various student-related issues (teamwork, studying 

for exams, organizing, accomplishing assignments, interpersonal skills, social 

responsibility, perseverance, integrity). This database was used by Sorrel, Olea, Abad, 

Aguado, and Lievens (2015) to propose that CDMs could represent a new psychometric 

approach to obtain evidence of validity for SJTs, to assess their reliability, and to score 

the different skills or abilities that are theoretically measured by the test. Items 1 and 2 

are shown in Figure 1. 
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ITEM 1: When studying for an exam, do you find that you reach best results when: 

a. you start planning and setting aside time in advance 

b. work in a clean environment, even if it means taking time away from studying 

c. wait for inspirations before becoming involved in most important study tasks 

d. wait until the last day or so to study, knowing that you have to get it done now  

 

The most effective response to this situation would be: 

 

ITEM 2: Your professor announces in class that undergraduate students are needed to 

help run subjects for his upcoming study.  While you would not receive any formal sort 

of extra credit, the professor would appreciate any volunteers. Given the following 

choices, which option would you choose? 

 

a. Examine your schedule and offer to volunteer a couple hours a week when it 

is personally convenient. 

b. Examine your schedule and offer to volunteer as many hours as you can. 

c. Realize that you would have to give up some of your free time and choose 

not to volunteer. 

d. Offer to run subjects only if you are paid. 

The most effective response to this situation would be: 

Figure 1. Items 1 and 2 of the SJT. Most appropriate answers are shown in bold 

As we said before, CDMs are inherently confirmatory, as shown by their loading 

structure. The loading structure of a CDM, which is commonly known as Q-matrix 

(Tatsuoka, 1983), is a mapping structure that indicates the skills required for 

successfully answering each individual item. In the CDMs literature there is a consistent 

notation that will be employed in this work. Respondents (e.g., learners, patients, 

applicants) are indexed by i = 1, . . . , I, assessment items are indexed by j = 1, . . . , J, 

and attributes (e.g., borrowing numbers, a diagnostic criteria for Pathological Gambling, 

a professional competency) are indexed by k = 1, . . . , K. Observed responses of 

respondent i to item j are denoted Xij, while the skill profile vector of a respondent is 

denoted αi, such that αik indexes whether respondent i has mastered skill k (αik = 1) or 

not (αik = 0).  

In the database that we are employing to illustrate, Sorrel et al. (2015) identified 

four attributes based on the test specifications and the expert’s ratings obtained by a 

Delphi method. The four attributes underlying performance on the SJT are Study habits, 

Study attitudes, Helping others, and Generalized compliance. More details about these 

attributes are provided in Annex 1.  
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A Q-matrix can be viewed as a cognitive design matrix that makes explicit the 

internal structure of a test. A portion of the Q-matrix used for the illustration purpose is 

displayed in Table 1. The Q-matrix is a J x K matrix of zeros and ones, where the 

element on the jth row and kth column of the matrix, qjk indicates whether skill k is 

required to correctly answer item j (qjk = 1) or not (qjk = 0).  

Table 1   

Q-matrix 

Item Study habits Study attitudes Helping others Generalized compliance 

1 1 0 0 0 

2 0 1 1 0 

3 1 0 0 0 

4 0 1 1 1 

5 1 1 0 0 

Note. 1 = the attribute is required to choose the most effective response option; 0 = the 

attribute is not required to choose the most effective response option. 

As can be seen from the Table 1, two items involved only one attribute, two 

items involved two attributes, and one item involved three attributes. Item 1, shown in 

Figure 1, measures Study habits. Students who engage in regular acts of studying 

probably will answer this item correctly. Item 2, which is also shown in Figure 1, 

measures Study habits and Helping others. Probably, students who approve the broader 

goals of education (e.g. education should be within everyone's reach) and tend to help 

others will correctly answer this item. 

Confirmatory Factor Analysis (CFA) models and IRT models usually have a 

simple structure, that is, each item loads only in one factor (for a detailed discussion, 

see McDonald, 1999). Factors as defined in these models are generally broader 

dimensions (e.g. number ability). On the contrary, in the case of CDMs factors, 

commonly referred to as attributes, are narrowly defined (e.g. fraction subtraction). 

Each item typically requires more than one attribute. This leads to a complex loading 

structure where each item is specified in relation to multiple attributes. This complex 

loading structure, in terms of multidimensional IRT, is known as within-item 

multidimensionality (Adams,Wilson & Wang, 1997) and is reflected in the "1s" of the 

Q-matrix as it happen, for example, in the componential IRT models (Embretson, 1999; 

Fischer, 1995; Van der Linden & Hambleton, 1997).   
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We will now graphically compare a few prototypical models that we have 

discussed. Figure 2 depicts three different psychometric models so that we could better 

understand the difference between simple structure and complex structure. Note that the 

bars for categorical variables reflect thresholds (i.e. the probability of a respondent 

possessing or mastering dichotomous attributes and probabilities of correct response for 

dichotomous observed responses). In these figures, these bars are located at arbitrary 

points to simplify the illustrations. The number of underlying attributes has been 

reduced to two for didactic purposes.  Figure 2A and 2B shows a bi-dimensional CFA 

and IRT models with simple structures and contrast it with Figure 2C which shows a bi-

dimensional CDM with a complex loading structure (i.e. items 1, 3, 6, and 9 load on 

both dimensions). In this way CDMs could be understood as an extension of traditional 

multidimensional IRT and CFA models that are particularly suitable to a complex 

loading structure. 

 

Figure 2. Representation of the different prototypical models. Model A = Two-

dimensional CFA model with simple loading structure; Model B = Two-dimensional 

IRT model with simple loading structure; Model C = Two-dimensional CDM with 

complex loading structure. 

In short, CDMs are latent class models (Haagenars & McCutcheon, 2002) that 

classify respondents into some latent classes according to similarity of their responses to 

test items. They are called restricted latent class models because the number of latent 

classes is restricted by the number of attributes involved in answering items of a test. 
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With K attributes underlying performance on a given test, the respondents will be 

classified into 2
K
 latent classes (the number 2 indicates that there are two possible 

outcomes for each attribute: mastery or non-mastery). Latent classes are indexed by l = 

1, . . . , 2
K
. For example, with four attributes required to perform successfully on the 

items of a given test, test takers will be classified into 2
4
 = 16 latent classes. Table 2 

shows the attribute class probabilities of a sample composed of 138 respondents which 

were classified these 16 latent classes.  

Table 2.  

Latent class probabilities  

Latent Class Attribute profile Class probability Class expected frecuency 

1 0000 .09 12 

2 1000 .00 0 

3 0100 .06 8 

4 1100 .00 0 

5 0010 .01 1 

6 1010 .04 6 

7 0110 .01 1 

8 1110 .04 6 

9 0001 .10 14 

10 1001 .11 15 

11 0101 .08 11 

12 1101 .08 11 

13 0011 .00 0 

14 1011 .16 22 

15 0111 .00 0 

16 1111 .21 29 

The main output of CDM for each respondent is a vector of estimates denoting 

in terms of probability the state of mastery of the ith respondent on each of the 

attributes. These probabilities are converted in dichotomous scores (i.e., mastery or non-

mastery) by comparing them to a cut-off score (usually .5; de la Torre, Hong, & Deng, 

2010; Templin & Henson, 2006) to define these attribute profiles. 

 Generally, CDMs can be grouped into three families as shown in Table 3. These 

are some of the widely employed CDMs. A more detailed classification could be found 

in Rupp, Templin, and Henson (2010). Considering the manner in which the latent 

predictor variables are combined, CDM can be divided into compensatory and non-

compensatory models. In non-compensatory latent-variable models, a low value on one 
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latent variable cannot be compensated by a high value on another latent variable 

whereas in compensatory latent-variable models a low value on one latent variable can 

be compensated by a high value on another latent variable. Non-compensatory models 

are better aligned with cognitive theory in some cases in which it is strongly believed 

that the respondent must have mastered all the attributes within the item in order to get 

the item correct. For example, if a fraction substraction item measures separate a whole 

number from a fraction, subtracts numerators, find a common denominator, and reduce 

answers to the simplest form, all of these operations/attributes are required to answer 

the item correctly, and a lack of certain attributes cannot be compensated by possessing 

other attributes. General CDMs allow for both types of relationships within the same 

test.  

Table 3.  

CDM Types. 

CDM type Examples Author(s) 

Non-

Compensatory 

1) deterministic-input, noisy-and-

gate (DINA) model 

Junker & Sijsma (2001) 

 2) non-compensatory reparamatrized 

unified model (NC-RUM) 

DiBello et al. (1995); Hartz 

(2002). 

Compensatory 1) deterministic-input, noisy-or-gate 

(DINO) model  

Templin & Henson (2006) 

 2) compensatory reparamatrized 

unified model (C-RUM) 

Hartz (2002) 

General 1) general diagnositc model (GDM) Von Davier (2005) 

 2) log-linear CDM (LCDM) Henson, Templin, & Willse 

(2009) 

 3) generalized DINA model  

(G-DINA) 

de la Torre (2011) 

 A critical concern is selecting the most appropriate model from the available 

CDMs. To a great extent, the process of determining the most appropriate model is a 

validation process given that the results of statistical models are meaningless when the 

model fit is poor. The process of model selection involves checking the model-data fit, 

which can be examined at test, item, or person level. Extensive studies have been 

conducted to evaluate the performance of various fit statistics at the test level (e.g. 

Chen, de la Torre, & Zhang, 2013) and at the person level (e.g. Liu, Douglas, & 

Henson, 2009; Cui & Leighton, 2009). At the item level, some item fit statistics have 

also been recently proposed.  
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 This study investigates the performance of various item fit statistics and provides 

information about the usefulness of these indexes on different scenarios within the 

generalized DINA (G-DINA) model framework developed by de la Torre (2011). In the 

next sections we will describe the G-DINA framework, the item fit evaluation in CDM, 

and the objectives of the current study. 

The generalized DINA model framework 

As shown by de la Torre (2011), many of the widely known CDM can be 

represented via the generalized deterministic inputs, noisy “and” gate (G-DINA; de la 

Torre, 2011) model, which is a generalization of the deterministic inputs, noisy “and” 

gate (DINA; de la Torre, 2009; Junker & Sijtsma, 2001) model. Thus G-DINA allows 

to estimate a different model of each item on the same test. The G-DINA model 

describes the probability of success on item j in terms of the sum of the effects of 

involved attributes and their interactions. This model partitions the latent classes into 

2𝐾𝑗
∗

 latent groups, where 𝐾𝑗
∗ is the number of required attributes for item j. Each latent 

group represents one reduced attribute vector 𝜶𝑙𝑗
∗  and has its own associated probability 

of success, written as 

𝑃 𝜶𝑙𝑗
∗  = 𝛿𝑗0 +  𝛿𝑗𝑘𝛼𝑙𝑘

𝐾𝑗
∗

𝑘=1

+   𝛿𝑗𝑘 𝑘 ′𝛼𝑙𝑘𝛼𝑙𝑘 ′ …

𝐾𝑗−1
∗

𝑘=1

𝐾𝑗
∗

𝑘 ′ =𝑘+1

+ 𝛿𝑗12…𝐾𝑗
∗  𝛼𝑙𝑘

𝐾𝑗
∗

𝑘=1

 ,     (1) 

where 𝛿𝑗0 is the intercept for item j, 𝛿𝑗𝑘  
is the main effect due to 𝛼𝑘 , 𝛿𝑗𝑘 𝑘 ′  is the 

interaction effect due to 𝛼𝑘  and
 
𝛼𝑘 ′ , and 𝛿𝑗12…𝐾𝑗

∗ is the interaction effect due to 

𝛼1,..., 𝛼𝐾𝑗
∗ . Thus, there are 2𝐾𝑗

∗

 parameters to be estimated for item j. 

 In this work we will focus on two reduced models which are nested in the G-

DINA model: DINA model and additive CDM (A-CDM; de la Torre, 2011). DINA 

model is one of the most widely used CDMs. In the case of A-CDM, as we will see it 

has more parameters per item than the DINA model. It is therefore interesting to 

compare the performance of the item fit statistics for these two different models. These 

two models are described below. 
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 If several attributes are required to correctly answer the items, the DINA model 

is deduced from the G-DINA model by setting to zero all terms except for 𝛿0 and 

𝛿𝑗12...𝐾𝑗
∗. Therefore, the probability of success could be written as 

𝑃 𝜶𝑙𝑗
∗  = 𝛿𝑗0 +  𝛿𝑗12...𝐾𝑗

∗ 𝛼𝑙𝑘

𝐾𝑗
∗

𝑘=1

.     (2) 

 That is, in the DINA model, except for the attribute vector 𝜶𝑙𝑗
∗ = 1𝐾𝑗

∗ , the 2𝐾𝑗
∗−1 

latent groups have identical probability of correctly answer the item j. As such, the 

DINA model has two parameters per item, commonly known as guessing and slipping 

parameters.  

 When all the interaction terms are dropped, the G-DINA model reduces to A-

CDM. The probability of a correct response for the A-CDM is given by 

𝑃 𝜶𝑙𝑗
∗  = 𝛿𝑗0 +  𝛿𝑗𝑘𝛼𝑙𝑘

𝐾𝑗
∗

𝑘=1

.    (3) 

 This model indicates that mastering attribute 𝛼𝑘  increases the probability of 

success on item j by 𝛿𝑗𝑘  independently of the contributions of the others attributes. The 

A-CDM has 𝐾𝑗
∗ + 1 parameters per item. 

 So that we may better understand the differences between these two reduced 

models, Figure 3 depicts the parameter estimates for G-DINA for two items taken from 

the SJT test. The vertical axis shows the point estimate for each parameter and the 

associated standard-error band (i.e. parameter value ± standard error); the red horizontal 

line indicates the value of 0 as visual reference point. We can identify a likely candidate 

CDM for each item. For example, the pattern of parameter estimates for Item A shows 

that the interaction effect is essentially 0 ( 𝛿𝐴12 = −.09). This pattern is consistent with 

the A-CDM model where mastering each has a positive effect on the probability of 

success independently of the contributions of the others attributes ( 𝛿𝐴1 = .30 and 

 𝛿𝐴2 = .47). The pattern of estimates for Item B, on the other hand, shows that both 

main effects estimates could potentially be 0 ( 𝛿𝐴1 = .05 and  𝛿𝐴2 = 0), which is a 

pattern that is consistent with the DINA model. 
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Figure 3. Parameter estimates for G-DINA model for Items A and B and the derived 

probabilities of success for the different latent classes.  

Item fit evaluation in CDM 

 As Sinharay and Almond (2007) noted, model checking is a crucial part of any 

model-based statistical analysis: not only provides a vital sanity check that the theory 

underlying the model can actually predict the phenomena observed in the data, but also 

suggests improvements to the model. To a great extent, the first concern refers to 

absolute fit (i.e. the discrepancy between a statistical model and the data), whereas the 

second one is related to the relative fit (i.e. the discrepancy between two statistical 

models). 

 Regarding absolute fit evaluation at item level, the S-X2 item fit statistic 

(Orlando & Thissen, 2000, 2003) for dichotomous data, which emanates from IRT, has 
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been adapted to the field of CDM based on test scores (i.e. number of correct scores; 

Sinharay & Almond, 2007). The S-X2 statistic is defined as 

𝑆 − 𝑋𝑗
2 =  𝑁𝑘

 𝑂𝑗𝑘 − 𝐸𝑗𝑘  
2

𝐸𝑗𝑘  1 − 𝐸𝑗𝑘  

𝐽−1

𝑘=1

 ,     (4) 

where k is the test score, 𝑁𝑘  is the number of examinees in group k, and 𝑂𝑗𝑘  and 𝐸𝑗𝑘  are, 

respectively, the observed and predicted proportions of correct responses for group k. 

The degrees of freedom equals J −1 −𝑚, where m is the number of item parameters 

estimated and J the number of items. 

 Within the CDM field, a statistic called item-fit RMSEA has been proposed to 

absolute fit at the item level (Kunina-Habenicht, Rupp & Wilhelm, 2009). The RMSEA 

statistic is defined as 

𝑅𝑀𝑆𝐸𝐴𝑗 =   𝑝 𝜶𝑙  𝑃𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑  𝑋𝑗 = 1|𝜶𝑙 − 𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  𝑋𝑗 = 1|𝜶𝑙  
2

2𝐾

𝑙=1

,     (5) 

where l denotes the latent class and 𝑝 𝜶𝑙  is the estimated class probability of 𝜶𝑙 . 

 Considering the relative fit evaluation, when comparing different nested models 

there are three common tests than can be used (Buse, 1982): the likelihood ratio (LR) 

test, the Wald (W) test, and the Lagrange multiplier (LM) test (sometimes called score 

test). The null hypothesis (H0) for all three tests is that the reduced model is the "true" 

model whereas the alternative hypothesis (H1) sets that the general model is the "true" 

model". That is, H0 defines a restricted parameter space. For example, for an item j 

measuring two attributes in the A-CDM model we assume that the interaction term is 

equal to 0. We can represent this belief in the form of a null hypothesis and its alternate: 

𝐻0:  𝛿𝑗12 = 0 and 𝐻1:  𝛿𝑗12 ≠ 0. A large test statistics indicate that the null hypothesis is 

false so that the reduced model could not be assumed. These three procedures are 

asymptotically equivalent (Engle, 1983). In all cases, the statistic is assumed to be 

asymptotically 𝜒2distributed with 𝑔 = 2𝐾𝑗
∗

− 𝑝 degrees of freedom, where p is the 

number of parameters of the reduced model. 
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 Let 𝜽  and 𝜽  denote the maximum likelihood estimates under H0 and H1 

respectively (i.e. restricted and unrestricted estimates of the population parameter). 

While all three tests address the same basic question, they are slightly different (see 

Figure 4). In the case of the LR test, we estimate the model under H0 and under H1 and 

look at the loss in the likelihood. If we plot the log-likelihood function, the value of LR 

can be obtain directly from the values of log 𝐿 𝜃  at 𝜽  and 𝜽 . When computing the W 

test, we estimate the model only under H1 and look at the distance 𝜽 − 𝜽  . Finally, in the 

case of the LM test, we estimate 𝜽  under H0 and see if the restricted maximum 

likelihood estimates are near the unrestricted estimates.  

 

Figure 4. The relation among likelihood ratio test, Wald test, and Lagrange multiplier 

test. 

 In this section these three statistical test will be described in greater detail and its 

application to CDM will be exposed. Before, it is necessary to mention few points about 

the estimation procedure in CDM. The estimation implemented in the CDM package 

(Robitzsch, Kiefer, George, & Uenlue, 2015) of R (R Core Team, 2014) is based on an 

EM algorithm as described in de la Torre (2011). The parameters estimates of the G-

DINA model are estimated using marginalized maximum likelihood estimation 

(MMLE). The conditional likelihood of the observed data X is 

𝐿 𝑿𝑖|𝜶𝑙 =  𝑃 𝜶𝑙𝑗  
𝑋𝑖𝑗
 1 − 𝑃 𝜶𝑙𝑗   

1−𝑋𝑖𝑗

𝐽

𝑗=1

 .     (6) 

 Following this, the log-marginalized likelihood of the response data can be 

written as 
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𝑙 𝑿 = log 𝐿(𝑿) = log  𝐿 𝑿𝑖|𝜶𝑙 𝑝 𝜶𝑙 

𝐿

𝑙=1

𝐼

𝑖=1

 ,      (7) 

where 𝑝 𝜶𝑙  is the prior probability of 𝜶𝑙 . In the G-DINA model the probability of a 

correct response on item j, 𝑃 𝜶𝑙𝑗  , can be written as 𝑃 𝜶𝑙𝑗
∗   which represents the 

reduced attribute vector from of 𝑃 𝜶𝑙𝑗  . By taking the derivative of 𝑙 𝑿  with respect to 

𝑃 𝜶𝑙𝑗
∗  , the maximization of 𝜕𝑙 𝑿  with respect to 𝑃 𝜶𝑙𝑗

∗   is the so-called score 

function in the LM context 

𝑆 𝜃 =
𝜕 log 𝐿

𝜕𝑃 𝜶𝑙𝑗
∗  

=  
1

𝑃 𝜶𝑙𝑗
∗   1 − 𝑃 𝜶𝑙𝑗

∗   
  𝑅𝑗𝑙 − 𝑃 𝜶𝑙𝑗

∗  𝐼𝑗𝑙   ,     (8) 

where 𝐼𝜶𝑙𝑗
∗  is the number of respondents expected to be in the latent group 𝜶𝑙𝑗

∗ , 𝑅𝜶𝑙𝑗
∗  is 

the number of respondents in the latent group 𝜶𝑙𝑗
∗  expected to answer the item j 

correctly, and 𝑝 𝜶𝑙𝑗
∗ |𝑿𝑖  represents the posterior probability that examinee i is in latent 

group 𝜶𝑙𝑗
∗ . Thus, the MMLE estimate of 𝑃 𝜶𝑙𝑗

∗   is given by 𝑃  𝜶𝑙𝑗
∗  =

𝑅𝜶𝑙𝑗
∗

𝐼𝜶𝑙𝑗
∗

 . 

 The second derivative of the log-marginalized likelihood with respect to 𝑃 𝜶𝑙𝑗
∗   

and 𝑃 𝜶𝑙′𝑗
∗   can be shown to be (de la Torre, 2011) 

−  𝑝 𝜶𝑙𝑗
∗ |𝑿𝑖 

𝑋𝑖𝑗 − 𝑃 𝜶𝑙𝑗
∗  

𝑃 𝜶𝑙𝑗
∗   1 − 𝑃 𝜶𝑙𝑗

∗   
 

𝐼

𝑖=1

 𝑝 𝜶𝑙 ′ 𝑗
∗ |𝑿𝑖 

𝑋𝑖𝑗 − 𝑃 𝜶𝑙 ′ 𝑗
∗  

𝑃 𝜶𝑙 ′ 𝑗
∗   1 − 𝑃 𝜶𝑙 ′ 𝑗

∗   
  .     (9) 

 Using 𝑃  𝜶𝑙𝑗
∗   and the observed X to evaluate (9), the appropriate information 

matrix for the parameters of item j, 𝑰 𝑷 𝑗
∗ , where 𝑷 𝑗

∗ =  𝑃 𝜶𝑙𝑗
∗   , can be obtained. The 

square roots of the diagonal elements of 𝑰−1 𝑷 𝑗
∗  represent the standard errors 

𝑆𝐸 𝑃  𝜶𝑙𝑗
∗   . 

Likelihood ratio test 

 As previously noted, the LR test requires the estimation of both unrestricted and 

restricted models. The likelihood function is defined as the probability of observing X 
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(i.e. the data) given the hypothesis. The likelihood function is defined as 𝐿 𝜃   for the 

null hypothesis and 𝐿 𝜃   for the alternative. The likelihood of the null hypothesis over 

the alternative is 

𝐿𝑅 = 2 log 𝐿 𝜃  − log 𝐿 𝜃   ~𝜒2 𝑔 .     (10) 

 In the CDM context the LR test can be conducted to determine if the unrestricted 

model fits the data significant better than the reduced model. Having a test composed of 

J items, the application of the LR test at the item level implies that JK comparisons will 

be made, where JK is the number of items measuring at least K = 2 attributes. For each 

of the JK comparisons, a reduced model (i.e. DINA or A-CDM) is fitted to a target item, 

whereas the unrestricted model (i.e. G-DINA) is fitted to the rest of the items. This 

model is compared to a model where the unrestricted model is estimated for all items.  

Wald test 

 The W test takes into account the curvature of the log-likelihood function, which 

is denoted by 𝐶 𝜃   and defined by the absolute value of 𝑑2 log 𝐿 /𝑑𝜃2 evaluated at 

𝜃 = 𝜃 . If 𝑟 𝜃 = 0 is a vector of g functional restrictions imposed by H0 on the k-vector 

𝛉 (k > g), then asymptotically (Buse, 1982) 

𝑊 =  𝑟 𝜃   
′
 𝑅𝐼 𝜃  

−1
𝑅′ 

−1

 𝑟 𝜃   ~𝜒2 𝑔 ,     (11) 

where R is the g x k matrix of partial derivatives 𝜕𝑟 𝜃 /𝜕𝜃, evaluated at 𝜃 .  

 In CDM research, de la Torre (2011) originally proposed the use of the Wald test 

to compare general and specific models at the item level under the G-DINA framework. 

For item j and reduced model p, this test requires setting up 𝑹𝑗𝑝 , a  2𝐾𝑗
∗

− 𝑝 × 2𝐾𝑗
∗

 

restriction matrix which includes the specific constraints that make the saturated model 

to be equivalent to the reduced model of interest (the same that were exposed above). 

The Wald statistic is then computed as 

𝑊𝑗 =  𝑅 × 𝑃𝑗  ′ 𝑅 × 𝑉𝑎𝑟 𝑃𝑗  × 𝑅 
−1
 𝑅 × 𝑃𝑗  ~𝜒

2 𝑔  ,      (12) 
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where 𝑃𝑗 =  𝑃 𝜶𝑙𝑗
∗    are the probability estimates under unrestricted model and 

𝑉𝑎𝑟 𝑃𝑗   is the inverse of the information matrix.  

Lagrange multiplier test 

 The LM test is based on the slope of the log-marginalized likelihood, which is 

called score function, 𝑆 𝜃 = 𝑑 log 𝐿 / 𝑑𝜃 . By definition, 𝑆 𝜃  is equal to zero when 

evaluated at the unrestricted MMLE of 𝜃 (i.e. 𝜃 ), but not when evaluated at 𝜃 . If the 

constraints were true, we would expect 𝑆 𝜃   to be small, so that the rejection of the null 

hypothesis is associated with large values of LM. This score function should be 

weighted by the information matrix. The LM statistic is then defined as 

𝐿𝑀 = 𝑆 𝜃  
′
𝑉𝑎𝑟 𝑃𝑗   𝑆 𝜃  ,         𝐿𝑀~𝜒2 𝑔 .     (13) 

 Following the parameter estimation of these models under the G-DINA 

framework, de la Torre (personal communication, October, 2014) noted that the score 

function could be assumed to be (8).Then, if we estimate the reduced models (i.e. DINA 

and A-CDM) in their saturated form, we also have an estimation of the information 

matrix for these reduced models. Thus, we can implement the LM test in CDM 

research. 

The current study 

The mayor purpose of item-level evaluation is to find a parsimonious model to 

fit the sample data while maintaining theoretical meaningfulness. Although general 

CDMs might provide better model–data fit, as pointed out by de la Torre & Lee (2013) 

there are several reasons that make specific models preferable to the saturated model. 

First, in comparison to reduced CDMs, general CDMs require larger sample sizes for 

item parameter calibration. Second, they have parameters with less straightforward and 

meaningful interpretations. Third, appropriate reduced models lead to better attribute 

classification accuracy than the saturated model, particularly when the sample size is 

small (Rojas, Olea, & de la Torre, 2012). 

Hypothesis testing concerns the question of whether data appear to favor or 

disfavor the null hypothesis. We either reject or fail to reject the null hypothesis. There 

are two ways to make incorrect inferences. Type I errors denoted by α are committed 
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when the null hypothesis is falsely rejected. Type II errors denoted by β occur when the 

null hypothesis is incorrectly accepted. The power of a test is the probability of rejecting 

the null hypothesis when is false (1- β). One test is said to be better than other if it has 

the maximum power among all test with Type I error less than or equal to some 

particular level. As far as we know, the statistical properties of RMSEA, S-X2, LR test, 

and LM test are still unknown. The Wald statistic has already been studied in terms of 

Type I error and power rates (de la Torre & Lee, 2013) and it has been found that it has 

a relative accurate Type I error rate, particularly with large samples and small number 

of parameters. It also has a high power to detect when a reduced model is not 

appropriate. The effect that other factors not considered in de la Torre and Lee's (2013) 

study (e.g. test length, item quality) may have on the performance of this statistic 

remains unclear. Thus, the main purpose of this study is to systematically examine the 

Type I error and power rates of the item fit statistics described above and provide 

information about the usefulness of these indexes on different plausible scenarios. 

Method 

 A simulation study was conducted to investigate the performance of the item fit 

statistics. The following factors varied: a) generating model (MOD): DINA model and 

A-CDM model; b) test length (J): 12 and 24 items; c) sample size (N): 500 and 1,000; d) 

item quality (IQ) or discrimination (defined as the difference between the maximum and 

the minimum probabilities of correct response according to the attribute latent profile): 

.4 and .8. The probabilities of success for individuals who mastered none of the required 

attributes were fixed to .10 and .30 for the high quality and low quality conditions 

respectively. The probabilities of success for individuals who mastered all of the 

required attributes were fixed to .90 and .70 for the high quality and low quality 

conditions respectively. For the additive model, an increment of .80/𝐾𝑗
∗ and .40/𝐾𝑗

∗ was 

associated with each attribute mastery for the high quality and low quality conditions 

respectively (see Figure 5); e) dimensional magnitude of correlational structure (DIM): 

one unidimensional scenario (all the attributes correlated at .5) and two bi-dimensional, 

varying the between-dimensions correlation (r = .5 so that each attribute correlates at .5 

with the other attribute measuring the same dimension and .25 with the other attribute) 

or 0 so that each attribute only correlates at .5 with the other attribute measuring the 

same dimension. The levels for the data factors were chosen so that they were 
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representative of the range of values that are encountered in applied settings. A 

summary of the simulation design can be found in Table 4.  

Table 4.  

Independent Variables According to the Research Design 

Independent 

variables 

Levels 

L1 L2 L3 L4 L5 

Data factors 
     

Generating 

model 
DINA A-CDM 

   

Test length 12 24 
   

Sample size 500 1,000 
   

Item quality 
High item 

discrimination 

Low item 

discrimination    

Dimensional 

magnitude of 

correlational 

structure 

Unidimensional 
Bidimensional 

(r =.5) 

Bidimensional 

(r =.0)   

Method factors 
     

Model fitted DINA A-CDM G-DINA 
  

Item fit 

statistic 
S-X2 RMSEA LR test 

Wald 

test 

LM 

test 

 Table 4 shows a 2×2×2×2×3 (MOD × J × N × IQ × DIM) between-subjects 

design that produces a total of 48 factor combinations. The number of attributes was 

fixed to K = 4. The Q-matrix used in simulating the response data and fitting the models 

is given in Table 5. Please note that the item fit statistics for relative fit are only 

necessary for items with more than one required attribute. For each condition, 200 data 

sets were generated and DINA, A-CDM and G-DINA models were fitted.  

 Type I error rate is computed as the proportion of times that we reject H0 when 

the reduced model is the generating model. We did not simulated data under the G-

DINA model. However, both reduced models are nested in the G-DINA model. That 

allows us to examine the power rate of the each reduced model when data is generated 

under the other reduced model. For example, in the case of the DINA model power rate 

is computed as the proportion of time that we fail to reject H0 (e.g. DINA is the 

generating model) when the generating model is A-CDM. Type I error and power of the 

𝜒2distributed item fit statistics (i.e., S-X2, LR, W, and LM) were investigated using .05 

as significance level. The RMSEA item fit statistic is bounded below 0, with lower 
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values indicating a better fit to the data. Kunina-Habernicht et al. (2009) suggest that 

RMSEA values lower than .10 and .05 are indicative of moderate and good fit to the 

data, respectively, so we assess the Type I error rate and power considering these 

values. A Type I error rate of .05 and a test power of at least .80 will be considered 

adequate. 

Table 5.  

Simulation study Q-Matrix for the J=12 condition. For the J=24 condition the number 

of item measuring 𝐾𝑗
∗ =1,2, and 3 attributes is doubled. 

 
Attribute 

Item 𝛼1 𝛼2 𝛼3 𝛼4 

1 1 0 0 0 

2 0 1 0 0 

3 0 0 1 0 

4 0 0 0 1 

5 1 1 0 0 

6 1 0 1 0 

7 1 0 0 1 

8 0 1 1 0 

9 1 1 1 0 

10 1 1 0 1 

11 1 0 1 1 

12 0 1 1 1 

As a mean to summarize and better understand the results of the simulation 

study, separate ANOVAs were performed for each of the item fit statistics that met the 

Type I error and power criteria (i.e. Type I error ≅ .05 and power > .80). Dependent 

variable in the ANOVAs was the Type I error rate associated to each statistical test for 

all items with the five data factors as between subjects factors. Due to large sample size, 

most effects were significant. For this reason, omega squared (𝜔 2) measure of effect 

size was chosen to establish the impact of the independent variables. Since it is less 

biased, 𝜔 2 is preferable to others effect size measures as 𝜂 2 (Fowler, 1985). It should be 

taken into account that it is possible to obtain a negative value of 𝜔 2 for F<1. According 

to Cohen (1988), values near to .01 represent small effects, .06 medium effects, and .14 

or greater large effects. With regard to the interaction effects, a cut-off of 𝜔 2 > .06 was 

used to establish the most salient interactions. We also checked that the estimates of 

observed power in the ANOVA were greater than .80.  
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Figure 5. Representation of the generating model (DINA vs A-CDM) and item quality 

(high item discrimination vs low item discrimination) data factors for items measuring 

two attributes (𝐾𝑗
∗ = 2).  

 A R (R Core Team, 2014) code was written to generate the item responses, 

calibrate the models, and estimate the item fit statistics. In doing so, the gdina, 

gdina.wald, itemfit.sx2,and sim.gdina included in the CDM package (Robitzsch et al., 

2015) were employed. Another R code was written to compute the LM statistic as it has 

not been implemented yet for CDM. 

Results 

 As will be exposed, the effect sizes for dimensional magnitude of correlational 

structure were not relevant for any of the statistics (i.e. 𝜔 2 < .001). Taking this into 

consideration and due to space limits, only results regarding the one of the levels of the 

factor correlation among the attributes are presented. The chosen level was the 

unidimensional scenario. The results in their entirety are shown in Annex 2 (type I 

error) and 3 (power). 

 Type I error. Type I error rates are shown in Table 6. When we employ .05 as 

cut-off point of RMSEA the Type I error reaches unacceptable levels, especially when 
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the number of items is high (J = 24) and the items have a high discriminative power, 

reaching values of .813 and .878 for DINA and A-CDM models respectively. These 

values improves when the number of subjects is larger (N = 1000). When we consider 

.10 as cut-off point, the Type I error drops to approximately 0, with the only exception 

of the A-CDM model with a high number of highly discriminative items (J = 24) and a 

small sample size (N = 500), where the value is .112. Regarding the S-X2 statistic, the 

Type I error is between .037 and .096. With regard to LR test, Wald test, and LM test, 

Type I error rate is close to the nominal significance level when items are highly 

discriminative. On the contrary, values are much greater than the nominal value when 

the discriminative power is low, with the only exception of the values reached for LM 

test when the true model is the A-CDM. No much variability regarding the sample size 

is observed. 
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Table 6.  

Type I Error of the item fit statistics (RMSEA, S-X2, LR, Wald, and LM) for the Two Reduced Models: unidimensional scenario. 

Factors 

RMSEA S-X2 LR Wald LM 

cut-off point cut-off point 

.05 .10 .05 

Model IQ J 
N 

500 1000 500 1000 500 1000 500 1000 500 1000 500 1000 

D
IN

A
 HD 

12 .396 .030 .000 .000 .037 .040 .059 .054 .031 .052 .159 .093 

24 .813 .201 .006 .000 .054 .052 .071 .064 .033 .064 .158 .091 

LD 
12 .019 .000 .000 .000 .052 .055 .343 .288 .449 .357 .180 .182 

24 .389 .025 .000 .000 .073 .062 .263 .170 .299 .172 .200 .184 

A
-C

D
M

 HD 
12 .558 .168 .006 .000 .085 .088 .136 .090 .017 .011 .029 .028 

24 .878 .526 .112 .000 .078 .074 .099 .086 .005 .004 .051 .032 

LD 
12 .055 .000 .000 .000 .096 .081 .314 .292 .246 .221 .086 .042 

24 .164 .001 .000 .000 .083 .087 .295 .268 .250 .197 .021 .002 

Note. LR = Likelihood ratio test; W = Wald test; LM = Lagrange multiplier test; IQ = Item quality; J = Test length; N = Sample size. HD = High 

item discrimination; LD = Low item discrimination. Shaded cells correspond to values in the [.02, .08] interval. 
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 Power. Power rates are shown in Table 7. Both cutt-off points of RMSEA 

values leads to acceptable values when the generating model is A-CDM and the items 

are highly discriminative. Power rate does not increase with a large sample size (N = 

1,000). Regarding the S-X2 statistic, we see that inacceptable values are found across all 

conditions, being the average power .31. Power values are greater than .80 only when 

the A-CDM is the generating model, the items are highly discriminative, and the sample 

size is high. With regard to LR test, Wald test, and LM test, power is generally 1.00 in 

the high discriminative items conditions. When items are not highly discriminative, 

values drop to an average value of .53 and .54 in the case of LR and Wald tests 

respectively. A higher power is obtained when the sample size is high (N = 1,000). 

Power rates for the LM test are close to 0 when the quality of the items is poor. 

 The results exposed above lead us not to consider RMSEA and S-X2 for further 

analysis, as the Type I error (e.g. RMSEA, .05 as cut-off point) and power (e.g. S-X2) 

are far from reaching acceptable values. 

 ANOVA results. 𝜔 2values associated to each effect are shown in Table 8. As 

noted above, the effect sizes for dimensionality were not relevant for any of the 

statistics 𝜔 2
DIM

2 
< .001 in all cases. None of the interactions had a salient effect (i.e. 𝜔 2 

< .06). Regarding the main effects, item quality has a large effect on LR and Wald tests 

(. 𝜔 2
IQ = .295 and .527 respectively), but small on LM test (𝜔 2

IQ = .025). Also notable 

was that Wald and LM attained a similar pattern in its performance across the simulated 

conditions. Besides item quality, both are affected by the sample size (𝜔 2
N = .022 and 

.026 respectively), and the generating model. The effect of the generating model had a 

medium effect on the Wald test, but a large effect on the LM test (𝜔 2
MOD = .059 and 

.316 respectively). In addition, test length has a small effect on the Wald test (𝜔 2
J = 

.041). Marginal means for the main effects are given in Table 9. Type I error rate was 

well kept around .05 in the high item discrimination conditions. As described above, 

item discrimination has the most salient effect for LR and W test: when the item 

discrimination is low Type I error is much higher than the nominal level (.28, .27, and 

.11 for the LR, W, and LM tests respectively). This makes it difficult to interpret the 

marginal means for all the others factors, because conditions with high item 

discrimination and low item discrimination are mixed. That is why the marginal means 

are higher than .05 in almost all the cases. This is also true but to a lesser degree for LM 
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test. Regarding sample size and test length, marginal means are more close to the 

nominal level as the sample size and the number of items increase. There were no 

relevant effect of the dimensional correlational structure: marginal means are almost 

equal across the levels of this factor. A different pattern of results for the statistics is 

obtained with respect to the effect of the generating model. In the case of the LR test, 

the marginal mean for the DINA model is more close to the nominal level than the one 

for the A-CDM (.16 vs .20), but the effect is small considering the effect size. In the 

case of W and LM tests, the effect is much salient and the marginal mean is closer to the 

nominal level in the case of A-CDM (.18 vs .12 and .16 vs. 04, respectively). The power 

observed for all the effects described above is equal to 1.000, except for the dimensional 

of correlational structure factor were the power observed is equal to .218, .860, and 363 

for the LR, W, and LM tests respectively. 
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Table 7.  

Power the item fit statistics (RMSEA, S-X2, LR, Wald, and LM) for the DINA Model (A-CDM generated data) and A-CDM (DINA generated 

data): unidimensional scenario. 

Factors 

RMSEA S-X2 LR Wald LM 

cut-off point cut-off point 

.05 .1 .05 

Model IQ J 
N 

500 1000 500 1000 500 1000 500 1000 500 1000 500 1000 

D
IN

A
 

HD 
12 .715 .695 .303 .213 .112 .225 .985 1.000 .967 1.000 .909 .998 

24 .845 .695 .660 .658 .258 .405 .995 1.000 1.000 1.000 1.000 1.000 

LD 
12 .023 .000 .000 .000 .065 .058 .491 .482 .489 .533 .253 .251 

24 .200 .015 .000 .000 .062 .063 .468 .576 .488 .525 .337 .412 

A
-C

D
M

 

HD 
12 .954 .942 .644 .534 .710 .892 1.000 1.000 .999 1.000 .826 .899 

24 .999 1.000 .922 .895 .772 .938 1.000 1.000 .999 1.000 .954 .999 

LD 
12 .045 .002 .000 .000 .083 .100 .324 .447 .380 .477 .086 .042 

24 .313 .078 .011 .004 .133 .142 .634 .845 .640 .810 .019 .014 

Note. LR = Likelihood ratio test; W = Wald test; LM = Lagrange multiplier test; IQ = Item quality; J = Test length; N = Sample size. Shaded 

cells correspond to values over .80. 
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Table 8.  

Anova Effect Sizes. 

Effect Type /  Item fit statistic 

Data factors LR W LM 

Main Effects 

   N 0.015 0.022 0.026 

DIM 𝜔 2 < 0 0.001 0.000 

J 0.011 0.041 0.004 

IQ 0.295 0.527 0.025 

MOD 0.016 0.059 0.316 

Two-Way Interactions 

   N * DIM 𝜔 2 < 0 𝜔 2 < 0 𝜔 2 < 0 

N * J 𝜔 2 < 0 0.000 0.000 

DIM * J 0.005 0.037 0.001 

N * IQ 0.001 0.001 0.002 

DIM * IQ 𝜔 2 < 0 𝜔 2 < 0 0.000 

J * IQ 𝜔 2 < 0 0.001 0.002 

N * MOD 0.000 0.000 0.001 

DIM * MOD 0.005 0.037 0.003 

J * MOD 0.002 0.022 0.004 

IQ * MOD 𝜔 2 < 0 0.007 0.029 

Three-Way 

Interactions 

   N * DIM * J 0.000 𝜔 2 < 0 0.001 

N * DIM * IQ 𝜔 2 < 0 𝜔 2 < 0 0.000 

N * J * IQ 0.000 0.000 𝜔 2 < 0 

DIM * J * IQ 0.000 0.000 𝜔 2 < 0 

N *DIM * MOD 0.000 𝜔 2 < 0 0.000 

N * J * MOD 0.003 0.009 0.008 

DIM * J * MOD 0.000 𝜔 2 < 0 0.000 

N * IQ * MOD 0.000 0.000 𝜔 2 < 0 
DIM * IQ * MOD 0.000 0.000 0.000 

J * IQ * MOD 0.009 0.027 0.006 

Four-Way 

Interactions 

   N * DIM * J * IQ 0.000 0.000 𝜔 2 < 0 

N * DIM * J * MOD 0.001 𝜔 2 < 0 𝜔 2 < 0 
N * DIM * IQ * 

MOD 0.000 0.000 0.000 

N * J * IQ * MOD 0.001 0.000 0.001 

DIM * J * IQ * MOD 𝜔 2 < 0 0.001 0.000 

Five-Way Interaction 

   N * DIM * J * IQ * 

MOD 0.000 0.000 𝜔 2 < 0 

Note. LR = Likelihood ratio test; W = Wald test; LM = Lagrange multiplier test. MOD = 

Model, J = Test length; N = Sample size; IQ = Item quality; DIM = Dimensional magnitude 

of correlational structure. Main effects with ηp
2 

values greater than .02 are shown in bold.  
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Table 9.  

Marginal means Type I error rates. 

  Data factor / 

  Level 

Item fit 

statistic 

N DIM J IQ MOD 

500 1000 Uni. 
Bi.  

(r =.5) 

Bi.  

(r =.0) 
12 24 HD LD DINA A-CDM 

LR .20 .16 .18 .19 .19 .20 .17 .08 .28 .16 .20 

W .17 .13 .15 .16 .15 .17 .13 .03 .27 .18 .12 

LM .11 .08 .10 .10 .10 .10 .09 .08 .11 .16 .04 

Note. LR = Likelihood ratio test; W = Wald test; LM = Lagrange multiplier test. MOD = 

Model, J = Test length; N = Sample size; IQ = Item quality; DIM = Dimensional magnitude 

of correlational structure. Uni. = Unidimensional; Bi. =  Bidimensional. HD: High item 

discrimination; LD: Low item discriminaiton. 

Discussion and conclusions 

 The proper application of a statistical model requires the assessment of model-data fit. 

The process of model selection involves checking the model-data fit, which can be examined 

at the test, at the item or at the person level. While extensive studies have been conducted to 

evaluate the performance of various fit statistics at the test-level (e.g. Chen, de la Torre, & 

Zhang, 2013) and at the person-level (e.g. Liu et al., 2013; Cui & Leighton, 2009), in the field 

of cognitive diagnosis modeling, the statistical properties of the majority of the item fit 

statistics proposed (e.g. RMSEA, S-X2, LR test, and LM test) remains unknown or need 

further investigation (e.g. Wald test; de la Torre & Lee, 2013). Taking the above into account, 

this study focused on how model fit can be evaluated at item level. 

 Our study contributes to two domains. First, we evaluate the potential usefulness of 

some statistics proposed to assess absolute fit (RMSEA and S-X2) and relative fit (LR test, 

Wald test, and LM test) at the item level. In order to employ these statistics in practical use, it 

is necessary that its Type I error rates are close to the nominal value and that they have a 

great power to reject false models. Our findings show that, in general, RMSEA, regardless 

the cut-off point, and S-X2 do not reach an accurate power. This problem is compounded 

when the generating model is the DINA. Such a great limitation allows us not to consider 

these two statistics for practical use. With regard to the three procedures for assessing relative 

fit at the item level, when the quality of items is good accurate rates of Type I error and 
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power are reached, even when the sample size is small (N = 500). Considering the LM test, 

there are two major limitations. First, Type I error rates are slightly higher when DINA model 

is the generating model. Second, when data were generated with the DINA model and items 

had not a high discriminative power, the LM test was not able to consistently flag each item 

as not conforming to the A-CDM model. 

 The overall message regarding the performance of these item fit statistics is that the 

empirical significance level of the LR test and the Wald test conforms closely to the nominal 

significance level. In addition, power comparisons also favour these two test over the LM 

test. The LR test was found to be more robust to the data factors than the Wald test. However, 

both tests are highly affected by the item discrimination. When items are not discriminative, 

the power rate tend to be low. It implies that we could not differentiate between DINA and A-

CDM models in practical settings when the item discriminations is poor. The choice between 

the LR test and the Wald test has to do with its implementation requirements. The LR 

requires JK + 1 models to be estimated, where JK is the number of items measuring at least K 

= 2 attributes. A model where the unrestricted model (i.e. G-DINA) is applied to all items is 

compared with JK models each of them having one item estimated under a reduced model. On 

the contrary, the Wald test requires only the unrestricted model to be estimated.   

 When presenting these conclusions, several important caveats are in order. First, we 

expected that the dimensional magnitude of the correlational structure to be a determining 

factor; however, its effect was negligible. A second caveat relates to the salient effects of the 

generating model. Alternative models also nested in the G-DINA, such as DINO (Templin & 

Henson, 2006) and the reduced reparameterized unified model (R-RUM, DiBello, Roussos, 

& Stout, 2007; Hart, 2002), could also be employed. In addition, it would be interesting to 

use different model combinations (e.g. a model derived from the combination of the DINA 

and the A-CDM ; de la Torre & Lee, 2013). Third, the Type I errors for items measuring a 

different number of attributes could be documented separately (i.e. 𝐾𝑗
∗ = 2 and 𝐾𝑗

∗ = 3) as it 

is done in de la Torre and Lee (2013). Fourth, in the cognitively diagnostic educational 

assessment field the number of attributes tends to be high. For example, Lee, Park, and 

Taylan (2011) applied the DINA model to the responses of 25 mathematics items included in 

the TIMSS 2007. Based on the 2007 TIMSS Framework for Fourth Grade Mathematics, they 

specifically constructed a Q-Matrix composed of 15 attributes. The same applies to the 

application of CDMs to the widely analyzed Tatsuoka's (1984) fraction subtraction data set 

(e.g. DeCarlo, 2011; Tatsuoka, 2002), where all test items are based on 8 attributes. It is 
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recommendable that future research examine the effect of the number of attributes. Finally, 

all items were simulated to have the same discriminative power (i.e. high or low 

discriminative power). In a more realistic scenario, discriminative and non-discriminative 

items are mixed. Clearly, more research is needed along these lines.  
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Annex 1 

Attribute descriptions based on test specifications. 

Attribute Definition 

Typical behavioral patterns 

for people mastering the 

attribute in the 

educational environment 

Study habits. 

Study habits refers to the pattern of behavior 

adopted by students in the pursuit of their 

studies that serves as the vehicle of learning. 

It is the degree to which the student engages 

in regular acts of studying that are 

characterized by appropriate studying 

routines occurring in an environment that is 

conducive to studying. 

 

Reviews of material, study 

every day, take practice 

tests, efficiently organize 

his/her work, etc. 

Study 

attitudes. 

Study attitudes refers to a student’s positive 

attitude toward the specific act of studying 

and the student’s acceptance and approval of 

the broader goals of education. 

Think education is relevant 

to their future, persist with 

enthusiasm or effort, have a 

good opinion of their 

teachers, etc. 

Helping 

others. 

Helping others refers to voluntary actions 

that help another person with a problem. 

These helping behaviors can both be 

directed within or outside the organization. 

Carry out volunteer actions  

that do not directly benefit 

them, share notes with their 

peers, help peers who are in 

troubles, etc. 

Generalized 

compliance. 

Generalized compliance refers to following 

rules and procedures, complying with 

organizational values and policies, 

conscientiousness, and meeting deadlines. 

Stick with the existing 

timetable, be always 

punctual, do not defy the 

teacher, etc. 
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Annex 2 

Type I error of the item fit statistics (RMSEA, S-X2, LR, Wald, and LM) for the two reduced models. 

Factors 

RMSEA S-X2 LR Wald LM 

RMSEA cut-off point chi-square distribution cut-off point 

0.05 0.10 0.05 

Model IQ J Dim. 
N 

500 1000 500 1000 500 1000 500 1000 500 1000 500 1000 

D
IN

A
 

HD 

12 

Unidimensional .396 .030 .000 .000 .037 .04 .059 .054 .031 .052 .159 .093 

.5 .403 .030 .000 .000 .049 .042 .064 .058 .031 .064 .146 .097 

0 .387 .030 .000 .000 .048 .044 .072 .062 .036 .063 .184 .102 

24 

Unidimensional .813 .201 .006 .000 .054 .052 .071 .064 .033 .064 .158 .091 

.5 .793 .205 .005 .000 .045 .053 .066 .058 .039 .058 .139 .092 

0 .797 .226 .006 .000 .062 .053 .07 .062 .038 .053 .166 .116 

LD 

12 

Unidimensional .019 .000 .000 .000 .052 .055 .343 .288 .449 .357 .18 .182 

.5 .025 .000 .000 .000 .046 .047 .401 .258 .482 .349 .205 .182 

0 .030 .001 .000 .000 .055 .052 .339 .257 .428 .318 .197 .173 

24 

Unidimensional .389 .025 .000 .000 .073 .062 .263 .17 .299 .172 .2 .184 

.5 .380 .034 .000 .000 .064 .064 .245 .174 .287 .169 .202 .175 

0 .433 .034 .000 .000 .071 .061 .251 .185 .27 .174 .199 .185 

A
-C

D
M

 

HD 

12 

Unidimensional .558 .168 .006 .000 .085 .088 .136 .09 .017 .011 .029 .028 

.5 .564 .167 .006 .000 .1 .094 .131 .099 .011 .011 .037 .033 

0 .575 .150 .007 .000 .122 .094 .131 .104 .009 .006 .051 .033 

24 

Unidimensional .878 .526 .112 .000 .078 .074 .099 .086 .005 .004 .051 .032 

.5 .880 .510 .119 .001 .093 .074 .101 .082 .007 .003 .04 .031 

0 .882 .502 .113 .001 .114 .087 .099 .078 .006 .004 .035 .035 

LD 

12 

Unidimensional .055 .000 .000 .000 .096 .081 .314 .292 .246 .221 .086 .042 

.5 .062 .002 .000 .000 .099 .084 .317 .299 .27 .233 .083 .042 

0 .052 .001 .000 .000 .097 .083 .322 .306 .271 .226 .071 .024 

24 

Unidimensional .164 .001 .000 .000 .083 .087 .295 .268 .25 .197 .021 .002 

.5 .172 .002 .000 .000 .088 .082 .318 .298 .261 .211 .023 .001 

0 .192 .001 .000 .000 .092 .095 .365 .256 .258 .172 .015 .002 

Note. LR = Likelihood ratio test; W = Wald test; LM = Lagrange multiplier test; IQ = Item quality; J = Test length; Dim. = Dimensional magnitude of 

correlational structure; N = Sample size. HD = High item discrimination; LD = Low item discrimination. Shaded cells correspond to values in the [.02, .08] 

interval. 
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Annex 3 

Power of the item fit statistics (RMSEA, S-X2, LR, Wald, and LM) for the DINA model (A-CDM generated data) and A-CDM (DINA generated 

data). 

Factors 

RMSEA S-X2 LR Wald LM 

RMSEA cut-off point chi-square distribution cut-off point 

0.05 0.10 0.05 

Model IQ J Dim. 
N 

500 1000 500 1000 500 1000 500 1000 500 1000 500 1000 

D
IN

A
 

HD 

12 

Unidimensional .715 .695 .303 .213 .112 .225 .985 1.000 .967 1.000 .909 .998 

.5 .705 .670 .323 .218 .082 .140 .988 1.000 .964 1.000 .914 .998 

0 .703 .659 .271 .165 .083 .099 .974 1.000 .937 .998 .926 .996 

24 

Unidimensional .845 .695 .660 .658 .258 .405 .995 1.000 1.000 1.000 1.000 1.000 

.5 .831 .690 .661 .655 .194 .319 1.000 1.000 .999 1.000 .999 1.000 

0 .825 .682 .641 .654 .106 .249 .990 1.000 .969 1.000 .986 1.000 

LD 

12 

Unidimensional .023 .000 .000 .000 .065 .058 .491 .482 .489 .533 .253 .251 

.5 .027 .000 .000 .000 .063 .058 .468 .481 .474 .506 .259 .276 

0 .028 .000 .000 .000 .073 .056 .462 .455 .438 .468 .264 .271 

24 

Unidimensional .200 .015 .000 .000 .062 .063 .468 .576 .488 .525 .337 .412 

.5 .247 .019 .000 .000 .064 .060 .472 .542 .484 .495 .359 .414 

0 .260 .020 .000 .000 .064 .058 .489 .487 .490 .455 .381 .442 

A
-C

D
M

 

HD 

12 

Unidimensional .954 .942 .644 .534 .710 .892 1.000 1.000 .999 1.000 .826 .899 

.5 .948 .953 .592 .618 .663 .885 1.000 1.000 .997 1.000 .812 .963 

0 .923 .934 .680 .654 .677 .877 1.000 1.000 .998 1.000 .879 .969 

24 

Unidimensional .999 1.000 .922 .895 .772 .938 1.000 1.000 .999 1.000 .954 .999 

.5 .999 .999 .912 .852 .716 .877 1.000 1.000 1.000 1.000 .947 .999 

0 .998 .998 .856 .850 .641 .869 1.000 1.000 .999 1.000 .797 .947 

LD 

12 

Unidimensional .045 .002 .000 .000 .083 .100 .324 .447 .380 .477 .086 .042 

.5 .050 .004 .000 .000 .081 .091 .387 .485 .432 .544 .053 .029 

0 .036 .007 .000 .000 .095 .108 .393 .477 .435 .533 .042 .013 

24 

Unidimensional .313 .078 .011 .004 .133 .142 .634 .845 .640 .810 .019 .014 

.5 .314 .161 .006 .003 .112 .158 .586 .839 .625 .813 .017 .008 

0 .407 .177 .008 .001 .120 .148 .597 .806 .618 .793 .004 .002 

Note. LR = Likelihood ratio test; W = Wald test; LM = Lagrange multiplier test; IQ = Item quality; J = Test length; Dim. = Dimensional magnitude of 

correlational structure; N = Sample size; HD = High item discrimination; LD = Low item discrimination. Shaded cells correspond to values over .80. 


