
Hydrogen bonds in water clusters from an ELF 
perspective
Victoria Castor Villegas

Máster en Química Teórica y Modelización 

Computacional

MÁSTERES 
DE LA UAM
2021-2022

Facultad de Ciencias



 

 

 

 

 

 

 

 

 

 

 

   
Ma

st
er

 T
he

sis
. C

ou
rs

e 2
0 2

1-
20

22
 Hydrogen bonds in water clusters 

from an ELF perspective  

Victoria Castor Villegas 

Master Erasmus Mundus in 
Theoretical Chemistry and Computational Modelling  

Director: Dra. Julia Contreras-García 
Codirector: Dra. M. Merced Montero-Campillo 

Place where the project was carried out: Laboratoire de Chimie 
Théorique of Sorbonne Université 

Master Erasmus Mundus in 
Theoretical Chemistry and Computational Modelling  



Tutora (Sorbonne University) Dra. Julia Contreras-García

Cotutora (Autonomous University of Madrid) Dra. M. Merced Montero-Campillo

Jury Members

Chair Ismanuel Rabadán

Secretary Cristina Sanz

Paula Pla

Sandra Rodríguez

Felipe Zapata

————————————————–

Dra. Julia Contreras-García

Director

—————————————————

Dra. M. Merced Montero-Campillo

Codirector

—————————————————

Victoria Castor Villegas

Student

This work was done at LCT at Sorbonne University Campus Pierre et Marie Curie. Paris,

Île de France, République française.



Acknowledgements

Mis más sinceros agradecimientos a todas aquellas personas que de una u otra forma han hecho que haya

llegado al punto en donde me encuentro hoy.

A la Unión Europea, a través del programa Erasmus Mundus+ que me ha provisto de lo necesario para

realizar mis estudios de máster. Estudios realizados en las universidades: i) Universidad Autónoma de

Madrid, ii) Université Toulouse III Paul Sabatier y iii) Sorbonne Université Campus Pierre et Marie Curie.

TFM escrito principalmente en ésta última, bajo la supervisión de dos excelentes asesoras, Julia Contreras-

García y Merche Montero-Campillo.

A través de mis 24 años de edad he tenido el apoyo de mi núcleo familiar, con los que me he formado

como persona y siendo un pilar importante para llegar a ser quien soy. Libia Villegas Morales (madre), Victor

Castor Arenas (padre) y Ana Karen Castor Villegas (hermAna).

Expreso mi gratitud a las amistades que he logrado tener a través del tiempo. Jenifer Wences, por tu larga

amistad. Pau LC, gracias por ser parte del Manateam . Andrea FL, hail Ciencias. Angy, por ser de las

mejores entrenadoras Pokémon.

Durante el tiempo vivido en Madrid tuve la grandiosa oportunidad de estar con los mejores compañeros

de piso. Danny, Víctor, José, (Mauri et Ana as honorific members). Pasar el tiempo con ustedes fue de las

mejores cosas que me pudieron haber pasado en este Erasmus. Desde Filomena con nieve en la cocina, hasta

los 40 °C en pleno verano, pasando por cocinar pancakes los findes.

非常感谢，高晗。You smell like a biscuit.

Compañeros del programa TCCM. El tiempo en Aspet, París, Toulouse y en Madrid no hubiera sido nada

parecido sin ustedes. Intentar esquiar, ir al Louvre, caminar por calles occitanas, las tarde noches de terraza...

gracias. Sin olvidar a la camarada no inscrita en este máster, pero presente en casi todo grupo de investigación

científica, Алексáндра Элбакя́н .
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NOTATION

G Gravitational constant.

Ψ Wavefunction.

~ Reduced Plank’s constant, h/2π.

|Ψ〉 Ket of wavefunction, braket notation also called Dirac notation.

∇2 Laplace operator, ∇ · ∇.

π number π.

Ĥ Hamiltonian operator.

c Speed of light in the vacuum.

i Imaginary unit, square root of -1,
√
−1.

kB Boltzmann constant.

n−mer aggregate of n molecules.
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ACRONYMS

BCP Bond Critical Points.

CCP Cage Critical Points.

CFA Central Field Approximation.

CP Critical Points.

DFT Density Functional Theory.

ELF Electron Localization Function.

GGA Generalized-Gradient Approximation.

HB Hydrogen Bond.

HF Hartree-Fock.

HK Hohenberg-Kohn.

IQA Interacting Quantum Atoms.

IUPAC International Union of Pure and Applied Chemistry.

KS Kohn-Sham.
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Acronyms

LCAO Linear Combination of Atomic Orbitals.

LSDA Local-Spin Density Approximation.

MP2 Møller–Plesset at second order.

NCP Nuclear Critical Points.

QTAIM Quantum Theory of Atoms In Molecules.

RCP Ring Critical Points.

RDG Reduced Density Gradient.

SCF Self Consistent Field.

TDDFT Time-Dependent Density Functional Theory.
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CHAPTER 1

INTRODUCTION

Hydrogen Bonding (HB) is one of the most important non-covalent chemical interactions,

in this thesis we will work around that interaction, through the use of Quantum Chemistry

tools such as Electron Localization Function (ELF) and Interacting Quantum Atoms

(IQA) our systems have been analysed, and as shown in Munárriz et al. [1], with those

tools simple correlations have been found, and can be explained with elementary models

such as the homogeneous electron gas.

Published papers as Guevara-Vela et al. [2] and Castor-Villegas et al. [3] have analysed

topology in water cluster, where the IQA partition was done through electron density

analysis by Quantum Theory of Atoms In Molecules. In this thesis we will approach the

IQA partition using the ELF, with the help of Promelf [4] code.

To approach the problem of HB in water clusters, we studied different clusters not

only modifying the size of the clusters, but also with multiple arrangements for the same

cluster size. The clusters were treated by DFT calculations to obtain the energy and

wavefunction, with these results we made the ELF analysis, which allows us to compute

the IQA electronic energy partition.
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1.1. WATER

1.1 Water

In ancient times water was considered as an element, it was not until 1781 Henry Cavendish

(1731-1810) postulated that water is a combination of simpler elements and the first proof

provided that water is made by two volumes of H for every volume of O was developed by

Gay-Lussac in 1804 [5]. Nowadays it is well known that the water molecule is composed

of two hydrogen atoms interacting by a single bond with a central oxygen atom that has

two lone electron-pairs.

The lone electron-pairs are know to play an indispensable role in describing not only

structures but also reactivity of molecules. Classically, a lone pair is defined as a valence

electron pair, bound to a nucleus, not utilized in chemical bonding [6]. However, author

as Kumar et al. [7] brought together various quantum mechanical perspectives to describe

the lone electron-pairs, along Bonding Theories, Molecular Electrostatic Potential, and

Scalar Fields as QTAIM. And as we will discuss in Section 3.7 they are also related with

the ELF.

Work as the published by Gallivan and Dougherty [8] even approach if the electron

pairs in water can have a binding interaction with a π system such as the π that lies in

hexafluorobenzene, concluding with an affirmative answer to the presence of an attractive

interaction. Remarking the importance of those lone electron-pairs.

The electron pairs mentioned above confer particular properties to water [9]. Some of

those properties are: i) water has an autoprotolysis equilibrium [10], ii) the ionic mobility

of the hydronium ion in water is high due to the migration mechanism [11], iii) water

has a high surface tension value (72.88 mN m−1 at 20 °C) due to the strong cohesion of its

molecules [12], iv) water has high melting and boiling points, compared to other hydrogen

chalcogenides [13], v) water has a negative melting volume change, so the density of the

liquid state is greater than that of the solid state [14], vi) the value of the fusion enthalpy

of water is unusually large, 333.6 J g−1 a 0 °C [15]. The above properties, among many

others, make water a molecule worthy of several theoretical and experimental studies.
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1.2. HYDROGEN BOND

1.2 Hydrogen Bond

Figure 1.1: The central water molecule
is accepting two hydrogen bonds and giv-
ing other two, then it can be said that the
molecule has 4 HB, two of these as an ac-
ceptor and two as donor.

Several of the water particular properties are

mostly explained by an special non-covalent inter-

action, the Hydrogen Bond (HB). The Figure 1.1

shows a cluster of five water molecules interacting

by HBs. The total number of HB interactions for a

cluster that is as large as Avogadro constant (NA)

is 2NA. This HB lattice gives the system a cohesion

that is unusual for hydrogen chalcogenides [16].

The HB was discovered more than one hundred

years ago and it is not possible to attribute this

finding to a single author. Moreover, there is no

published paper that can be consider as the begin-

ning of the term. Scientific papers about HB start

to appear at the end of XIX century, in particular in English and German literature. How-

ever, the HB relevance was not enough recognized and almost completely ignored [17, 18].

... there are several interesting ideas in this paper, but there is one you’ll never

get chemists to believe: the idea that a hydrogen atom can be bonded to two

other atoms at the same time...

Hildebrand [19]

Later studies developed around 1920 [17] tried to explain certain phenomena already

known (the vapor phase density of hydrogen fluoride, anomalous freezing points or vapor

density curves of various liquid mixtures [18]), but with a new perspective. “The idea of

a hydrogen kernel held between two atoms as a theory in regard to certain organic com-

pounds” [20], “it seems that the hydrogen nuclei instead of forming duplets with electrons

in the same atom, form duplets in which the two electrons are in different atoms” [21].
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1.2. HYDROGEN BOND

At that time only two research groups (Thomas Lowry of Cambridge University and

Nevil Sidgwick at Oxford) and Huggins (in two papers [22, 23]) use the concept of Hy-

drogen Bond, despite not using the term, in contrast they use terms as “coordination of

hydrogen” [24]. In those works the H atom is bonded to two atoms.

The first one who used the term Hydrogen Bond was Pauling in 1931 [25]. At the

end of 1930 the HB was explained in terms of classic electrostatic phenomena, it was

approached in those terms since the examples found at that time were only weak inter-

actions. Currently, the cases where the HB has a higher interaction energy are known,

where the non-classic contribution cannot be neglected, besides the very weak ones that

are mostly van der Waals.

The Hydrogen Bond interaction is classified as medium range interaction (typically

from 5 to 30 kJ mol−1), in view of the fact that: i) the phenomenon appears over larger

distances than covalent bonds and is weaker than covalent bonds, ii) the conventional HB

are not enough weak to be classified as a dispersion force [26].

Steiner [17] proposed the following definition for HB:

An X-H· · ·A interaction is called a “Hydrogen Bond” if i) it constitutes a local

bond, and ii) X-H acts as proton donor to A.

This way of describing the HB is flexible enough to include a wide range of phenomena,

in which a non-covalent interaction around an H atom is involved. The Steiner definition

is valid from the simplest HB cases in which the donor X has just one H able to interact

with an acceptor A which has only an electron-pair free to make the bond [27]; and also

for more complex interactions as the HBs involved at proteins folding.

The IUPAC defines the HB as follows:

The hydrogen bond is an attractive interaction between a hydrogen atom from

a molecule or a molecular fragment X–H in which X is more electronegative

than H, and an atom or a group of atoms in the same or a different molecule,

in which there is evidence of bond formation [28].

This definition goes far beyond the traditional HB definition usually found in common

textbooks, in which ones where HBs are more closed to interactions of H with F, N or O.
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1.2. HYDROGEN BOND

The IUPAC also provides a list of criteria used to characterize hydrogen bonds, the list of

criteria is based in theoretical and experimental knowledge and evidence. Some of those

criteria are [28]:

1. The forces involved in the formation of a hydrogen bond include those of an elec-

trostatic origin, those arising from charge transfer between the donor and acceptor

leading to partial covalent bond formation between H and Y, and those originating

from dispersion.

2. The X–H · · · Y angle is usually linear (180◦) and the closer the angle is to 180◦, the

stronger is the hydrogen bond and the shorter is the H · · ·Y distance.

3. The Gibbs energy of formation for the hydrogen bond should be greater than the

thermal energy of the system for the hydrogen bond to be detected experimentally.

15



1.3. COOPERATIVITY AND ANTICOOPERATIVITY OF HB

1.3 Cooperativity and Anticooperativity of HB

(a) Homodromic case. (b) Cooperative and anticooperative effects.

Figure 1.2: Cooperative and anticooperative effects. In green the strongest HB (cooperative), in blue
the homodromic interactions and in red the weakest interactions (anticooperative).

The complexity of the HB lattice in water clusters comes from: i) the water capacity to

be donor and acceptor (even at the same time), ii) the HBs encompass a broad distribution

of forces and directions. Then, in the three-dimensional real lattice there lie a big variety

of angles and distances for HB interactions [29, 16].

The cooperative and anticooperative effects found in water clusters are one of the

main phenomena characterizing HBs, which can be found inside interaction lattices, as is

shown in Figure 1.2.

Cooperative effects can be qualitatively rationalized in terms of the acid-base behavior

of each monomer, since the donor acid character increases when the oxygen becomes

protonated while its basic character increase when the OH group gives its proton away [30].

In Figure 1.2a a cyclic homodromic pentamer is shown i. e., all the water molecules

are accepting and giving a proton. While cooperative and anticooperative effects are

shown in in Figure 1.2b, for the cooperative case we need to note how i) the HB donor

(left molecule) is accepting two HBs, having a charge bereft, charge that can be recover

by donating a HB, and ii) the HB acceptor (right molecule) is donating two HB, being

overcharged, charge that can be easily transferred by accepting a HB.

In contrast, in the same system we will see also anticooperative effects, for that we

should thought the last two points trough the other four HB interactions that the system

16



1.3. COOPERATIVITY AND ANTICOOPERATIVITY OF HB

has, where there are i) a HB donor that is doubly charge deprived and ii) a HB acceptor

being doubly overcharged. These effects at the same time results in an anticooperative

phenomenon for the red highlighted HB in Figure 1.2b, not forgetting that the green one

is the interaction that exhibits the cooperative phenomenon. Therefore, in a same system

we can have both phenomena depending which HB is being analysed.

Work such as the ones carried out by Mó et al. [30] show how Pople basis sets as

6-31G* overestimate the cooperative effects at HF level, whereas the 6-311+G(d,p) basis

yields values closer to those obtained with much larger basis. As we will see in our work

we also use a triple-ζ basis set but Dunning instead of Pople, mainly because Dunning

basis sets were developed for post Hartree Fock methods [31].

The capability to act as a donor or acceptor in water molecules also depends on the

coordination of the molecule as shown in Guevara-Vela et al. [2], Castor-Villegas et al.

[3] where the tricoordinated (double donor, acceptor) water molecule is the best acceptor

and the tricoordinated (double acceptor, donor) is the best donor. Particularly, those

two cases are in our water clusters, thus, we intend to forecast the same trend, a match

between the ELF and electronic density topologies.

The above ideas are intended to be the cornerstone for this thesis, and through a quick

overview of the theory behind the quantum mechanical tools that we use, we pretend to

know how we will deal the problems that arise in the realization of this thesis.
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1.3. COOPERATIVITY AND ANTICOOPERATIVITY OF HB
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CHAPTER 2

OBJECTIVES

Several researches of HB in water clusters have been proposed, one of those is the descrip-

tion of the HB interactions between water molecules by the ELF.

The principal objective of this thesis is the study of HB interaction through an IQA

analysis of the ELF, with the particularity hypothesis that the ELF can give us enough

information necessary to understand the HB in water clusters. In particular, to improve

on previous knowledge published in the scientific literature on IQA partitioning of ELF

and water clusters, the next points are searched

1. Describe the HB by an ELF analysis and if possible in different ways.

2. Analyse the non-covalent interactions and how those interactions are related with

the ELF.

3. Analyse how the exchange-correlation and classical contributions are in HB inter-

actions.

4. A computational goal is to compute all systems with Promelf code [4], since

researchers how have already used the code have had problems with “big” number

(more than 300) of Gaussian primitive functions.
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CHAPTER 3

METHODS

In this chapter we will concentrate on the main theoretical bases needed for the compu-

tation of physical chemistry methods used on this work. Starting with the Variational

Principle and ending with ELF and IQA, going through DFT and Hartree-Fock.

Also, with this chapter we purport to have a general idea about the theory and pos-

tulates taken into account for the results and conclusions in this thesis. Additionally, we

will also give details of computational details.

3.1 Quantum Mechanics Foundations

“I think I can safely say that nobody understands quantum mechanics”.

-Richard Feynman

One of the cornerstones of the current physics and one of the biggest (maybe the biggest

until now) paradigm shift for science is Quantum Mechanics. Some sources say that

William Thomson, 1st Baron Kelvin, never said “There is nothing new to be discovered

in physics now. All that remains is more and more precise measurement”, and that is just

a misattributed quote. Whether that quote was said by Kelvin or not, fortunately the

point of the quote is not true.

Now we know that even the most powerful mathematical model of universe that we

have, the Standard Model of Particle Physics, cannot predict all the phenomena that

21



3.1. QUANTUM MECHANICS FOUNDATIONS

mankind has measured. And paradoxically, for people outside of science, the things we

cannot predict are what is really interesting for science.

The scientific community thought that Newton made a mistake in describing light as a

particle, since Young’s interference experiment showed the wave nature of light. However,

Einstein came with Plank’s ideas [32] to say that they both had the correct answer at the

same time. Nowadays we know that is not exactly a duality between waves and particles,

but that idea is really helpful since our brains cannot understand quantum events at all,

we can only imagine them with classic mechanics.

One of the first steps of Quantum Mechanics (as a new theory with its own mathemati-

cal model) was the Schrödinger Equation (Equation 3.1), postulated by Erwin Schrödinger

in 1925, and published one year after Schrödinger [33]. It was reformulated two years after

by Dirac for massive particles with 1/2 spin, taking into consideration relativistic effects

(Equation 3.2) [34], being one of the scant bridges between Quantum Physics and Rela-

tivity [35].

i~
∂

∂t
|Ψ〉 =

[−~2

2m
∇2 + V (r, t)

]
|Ψ〉 = Ĥ |Ψ〉 (3.1)

i~γµ∂µψ −mcψ = 0 (3.2)

Where i =
√
−1, ~ is the reduced Plank’s constant, γµ is the µth gamma matrix, and

∂µ is the derivative over time and space as
(
c−1 ∂

∂t
, ~∇
)
.

Another bridge between Quantum Physics and Relativity was given by Stephen Hawk-

ing [36], with his work about the radiation that occurs at the event horizon of black holes.

This is because this phenomena involves the Heisenberg’s uncertainty principle with the

space-time singularities.

Since the mathematical formulation about the Hawking radiation other mathematical

expressions have been developed, but it was the first expression with constants from

Quantum and Relativity, equation expressed as:

22



3.1. QUANTUM MECHANICS FOUNDATIONS

TH =
~c3

8πGMkB
(3.3)

Nevertheless, in Chemistry we are more interested in the Quantum Mechanics that

does not depend on space-time singularities and for our case, the one that does not

depend on time. That is why the Time-Independent Schrödinger Equation is actually

useful, Equation 3.4:

ĤΨ = EΨ (3.4)

where Ψ is the wavefunction of the system, a mathematical tool that does not have any

physical meaning. However, it is really useful because Ψ is involved in the majority of

Quantum Mechanics development.

That last equation can be solved analytically just for the hydrogen atom. Nevertheless,

since it is an eigenvalue problem, there are several approaches developed for the resolution

of the Schrödinger Equation.

3.1.1 Variational Method

As was described above, the Schrödinger Equation is an eigenvalue problem, then it

is possible to use approaches created for eigenvalue problems, as the variational method.

This method can give an approximate solution for eigenvalues for general form: Ôϕ = ωϕ.

It is common to use this method to compute the energy for atomic and molecular systems

with N electrons.

Let Â be an hermitian operator, and suppose that there exists a finite set of exact

solutions of the eigenvalue equation such that:

Â|φα〉 = εα|φα〉 with : ε0 ≤ ε1 ≤ . . . ≤ εα ≤ . . . (3.5)

23



3.1. QUANTUM MECHANICS FOUNDATIONS

If we suppose that the set εα is a set of discrete values, the eigenfunctions are or-

thonormal and if we apply 〈φβ| by the left in Equation 3.5 we have:

〈φβ|Â|φα〉 = εαδαβ (3.6)

Since the eigenfunctions of Â form a complete set, any function ϕ is a linear combi-

nation of φα if and only if ϕ satisfies the boundary conditions of the system [37],

|ϕ〉 =
∑

α

|φα〉cα =
∑

α

|φα〉〈φα|ϕ〉, (3.7)

and

〈ϕ| =
∑

α

c?α〈φα| =
∑

α

〈ϕ|φα〉〈φα (3.8)

The variational theorem enunciates that if in a system that i) has a time independent

Hamiltonian, ii) the ground state eigenvalue is ε0 and iii) the normalized function ϕ

satisfies the boundary conditions, then:

〈ϕ|Ĥ|ϕ〉 ≥ ε0 (3.9)

The minimization of the electronic energy from a wavefunction is the starting point

of the variational method. Optimizing the coefficients of the expansion, we obtain the

ground wavefunction.

3.1.2 Hartree-Fock Formalism

One of the first ideas developed to obtain an approached solution for Quantum Mechan-

ics problems of many electrons was worked out independently by Douglas Hartree and

Vladimir Fock. The first main assumption in the approach is that every electron interacts

with all the other electrons, as if it were interacting with an electronic density, and not

as a sum of contributions of two-body interactions. Under this assumption, the equation

does not depend anymore on 3(N − 1) spacial coordinates of the rest of electrons, but
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3.1. QUANTUM MECHANICS FOUNDATIONS

only on the distance r. The idea is called Central Field Approximation, taking a spherical

average, it can be expressed as:

V1(r1) =
1

4π

∫ 2π

0

∫ π

0

V1(~r1) sin θdθdϕ (3.10)

To approximate a polyelectronic system as a function of monoelectronic systems, it

is necessary to take an orbital approximation (Hartree product), as shown in Equation

3.11. To guarantee the antisymmetry principle, we use a Slater determinant as described

in Equation 3.12, and most commonly written in its compact form (Equation 3.13).

Ψ =
n∏

i=1

χi(~ri), (3.11)

|Ψ0〉 =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) · · · χN(x1)

χ1(x2) χ2(x2) · · · χN(x2)
...

... . . . ...

χ1(xN) χ2(xN) · · · χN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣

, (3.12)

|Ψ0〉 = |χ1χ2 · · ·χN〉, (3.13)

where χn and xn represent a spin-orbital and spatial coordinates of each electron, respec-

tively, 1√
N !

is the normalization constant.

The energy of the HF system is expressed by Equation 3.14, and through the varia-

tional principle it is possible to get a better wavefunction, since it is the one that provides

the lowest energy, but it depends on the selection of the spin-orbitals.

E0 = 〈Ψ0|Ĥ|Ψ0〉 (3.14)
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3.1. QUANTUM MECHANICS FOUNDATIONS

The minimization of the energy in Equation 3.14 in addition to the restriction of the

spin-orbitals orthonormalized 〈φi|φj〉 = δij gives rise to the Hartree-Fock Equation,

F̂χi(xi) = εiχi(xi), (3.15)

where F̂ is the Fock operator and εi is the energy of the ith spin-orbital χi. The electronic

repulsion inside of the Fock operator is treated as an average, expressed as:

F̂ (i) = ĥ(i) +
Ne∑

b=1

[Ĵb(i)− K̂b(i)], (3.16)

where ĥ(i) is the sum of the operators for the kinetic energy and the attraction due

to nuclei, the operators Ĵb and K̂b are the Coulomb operator (electrostatic) and the ex-

change operator (without classic interpretation, since it is an antisymmetry consequence),

respectively,

ĥ(i) = −1

2
∇2
i −

N∑

A=1

ZA
riA

, Ĵb(1) = 〈φb(2)|r−1
12 |φb(2)〉, K̂b(1) = 〈φb(2)|r−1

12 |φa(2)〉, (3.17)

The operators Ĵ and K̂ are part of the bi-electronic term and are usually used also as the

Coulomb and Exchange integrals, as follows:

Jij ≡
∫
φ?i (i)φ

?
j(j)φi(i)φj(j)

rij
d3τid

3τj =

∫
ρi(i)ρj(j)

rij
d3τid

3τj, (3.18)

Kij ≡
∫
φ?i (i)φ

?
j(j)φi(j)φj(i)

rij
d3τid

3τj, (3.19)

also written as:

Jij = 〈ij|ij〉 = (ii|jj) (3.20)

Kij = 〈ij|ji〉 = (ij|ji) (3.21)
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3.1. QUANTUM MECHANICS FOUNDATIONS

With this it is possible to rewrite the Fock Equation as in Equation 3.22, and it

should be solved as a self-consistent problem, i. e. the solutions of the Fock Equation are

obtained by an iterative process. Hence, it is necessary to start from an initial spin-orbital

set, from which the Fock operator is built and determine the eigenfunctions of F̂ , with

which the Fock operator is rebuilt until the functions with which F̂ is constructed and its

eigenfunctions are as close to the predetermined threshold as wanted. Equation written

as:

(
ĥ(i) +

Nocc∑

b

[Ĵb(i)− K̂b(i)]

)
χa(i) = εaχa(i) ∀a ∈ (1, N) (3.22)

where Nocc means about the occupied spin-orbitals and N all spin-orbitals in the system

(occupied and virtual).

This approach is important for chemical systems, not only because it provides the

energy and the wavefunction of the system, but also because it is a very good starting

point for post-HF approaches.

The Hartree-Fock Equations are not linear, they are also integro-differential equations

so it is complicated to solve them. Thus, other methods are used, as proposed by Roothaan

in 1951 [38] where the HF orbitals are linear combinations of known functions, basis

functions [39]. This approximation is known as the SCF method (Self Consistent Field).

It is based on using a set of basis functions to represent the searched spin-orbitals, where

the basis is normalized, but not necessarily orthogonal. Therefore, it is possible to obtain

a Linear Combination of Atomic Orbitals (LCAO) with k known basis functions as shown

in the following equation:

ψi =
k∑

ν

Cνiφν , (3.23)

where φν represent the basis set functions, and Cνi are the coefficients of each spin orbital.

For a complete set of functions we would reach the exact solution.
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3.1. QUANTUM MECHANICS FOUNDATIONS

But how good is Hartree-Fock? Comparing the values of a system that has an analyt-

ical solution and how far it is from the value obtained by HF approximation, we can have

an idea to answer that question, as Moshinsky shows in 40. The problem of two particles

with spin 1/2 in an harmonic oscillator common potential interacting through harmonic

oscillator forces (in atomic units) is represented by the following Hamiltonian:

Ĥ =
1

2
[p2

1 + r2
1] +

1

2
[p2

2 + r2
2] + κ

[
1√

2(r1 − r2)

]2

(3.24)

where r1, r2 are the coordinates of the two particles and p1, p2 their corresponding mo-

menta. The strength of the interaction is given by the parameter κ. Thus, the energy

expressions of the system analytically and at HF level are:

E =
3

2

[
1 +
√

1 + 2κ
]

EHF = 3
√

1 + κ (3.25)
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Figure 3.1: Graphical comparison between
the energy computed by HF and the analytic
solution for the same system [40].

with the wavefunctions, respectively:

ψ = π−3/2(2κ+ 1)3/8e−
1
2
R2

e−
1
2

(2κ+1)1/2r2 (3.26)

ψHF = π−3/2(κ+ 1)3/4e−1/2(κ+1)1/2(r2+R2)

In Figure 3.1 it is possible to see how the ana-

lytic solution and the Hartree Fock approach are

close at small κ values. For the energy it is possi-

ble obtain 95 % of the exact energy, but just the

65 % for the overlap. In Figure 3.2 it is possible

to see how the HF wavefunction moves away from the exact solution as κ increases.

Therefore, using HF for quantum chemistry can be a cheap and meaningful way in

computational terms, functional for small systems with low correlation, as it is shown

with small κ values in the previous system, e. g. the optimization of the equilibrium

distance for H2 or CH4 [41].
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Figure 3.2: Overlap as a function of parameter k.

In contrast, HF fails for dissociation processes where the total spin value is not con-

served as the nuclear coordinates change [42]. Some other problems that HF has are: i)

it does not respect the Pauli’s exclusion postulate, ii) in Central Field Approximation

(CFA) the spherical harmonics are not necessary eigenfunctions of the monoelectronic

equation, iii) there is not an obvious way to improve the orbital approach, and iv) it does

not consider correlation effects, which are not necessarily despicable in all cases.

3.2 Electronic Density

One of the most important terms to define in theoretical chemical physics is the electronic

density ρ(~r), which for a system of two electrons with spin-spatial coordinates ~x1 and ~x2,

is defined as: |Ψ(~x1, ~x2)|2 [43]. To compute the probability to find simultaneously the

electron 1 in d~x1 and 2 in d~x2, it is necessary to integrate the density function over

dω1d~x2, where: d~xn = d~rndωn,

P (~r1) =

∫
|Ψ(~x1, ~x2)|2dω1d~x2, (3.27)
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3.2. ELECTRONIC DENSITY

and, since the electrons are indistinguishable, we obtain the following expression:

ρ(~r) = 2

∫
|Ψ(~x1, ~x2)|2dω1d~x2, (3.28)

Then, for a system with N electrons, the electronic density can be generalized as follows:

ρ(~r) = N

∫
|Ψ(~x1, ~x2, . . . , ~xN)|2dω1d~x2 . . . d~xN , (3.29)

such that:

∫
ρ(~r)d~r = N, (3.30)

In the case of a Slater Determinant (Hartree-Fock), it is possible to write the electronic

density for a closed shell with spacial orbitals ψa as:

ρ(~r) = 2

N/2∑

a=1

|ψa(~r)|2 (3.31)

For a system with N particles, it is possible to write an operator for the density ρ̂ and

then, get the expected value for the system wavefunction,

ρ̂ =
N∑

i

δ(r̂i − ~r0), (3.32)

then ρ(~r) is a expected value of a quantum mechanics operator, which can be written as:

ρ(~r) =

∫
Ψ?(~x1, . . . , ~xN)

N∑

i

δ(r̂i − ~r0)Ψ(~x1, . . . , ~xN)d~x1 . . . d~xN (3.33)

The value of the electronic density is very important, since it is a value that can be

obtained from experimental data. The experiments from which we can obtain ρ(~r) infor-

mation are the X-Ray diffraction or neutron diffraction [44, 45]. Thus, we can compare

the theoretical values with experimental data, and have an idea of how good are the

theoretical considerations for the computation.

However, it is also possible to establish a density function for an electron couple, also
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3.2. ELECTRONIC DENSITY

called pair density, such that:

ρ2(~r1, ~r2) = N(N − 1)

∫
|Ψ(~x1, ~x2, . . . , ~xN)|2dω1dω2d~x3 . . . d~xN , (3.34)

where ρ2(~r1, ~r2)N−1(N − 1)−1 determines the probability of simultaneously finding two

electrons per volume centered at positions ~r1 and ~r2, commonly expressed by a sum which

involves independent pairs terms and correlations, ρ2(~r1, ~r2) = ρ(~r1)ρ(~r2) + ρxc2 (~r2, ~r1).

The relevance of the electron and the pair densities (Equations 3.29 and 3.34, respec-

tively) comes from the fact that the energy of the system within the Born-Oppenheimer

approximation and in the absence of external fields can be expressed in terms of these

two densities:

E =− 1

2

∫
∇2ρ1(~r1, ~r

′
1)

∣∣∣∣
~r ′
1→~r1

d~r1 −
∑

A

∫
ZAρ1(~r1)

r1A

d~r1 +
∑

A6=B

ZAZB
rAB

+
1

2

∫ ∫
ρ(~r1)ρ(~r2)

r12

d~r1d~r2 −
1

2

∫ ∫
ρxc2 (~r1, ~r2)

r12

d~r1d~r2

= T + Vne + Vnn + Vee + Vxc (3.35)

where the first term is the kinetic energy, the second and the third terms are the nucleus-

electron and nucleus-nucleus energy from Born-Oppenheimer approximation. Then the

electron-electron repulsion is computed by the product of densities. Finally, the last term,

the pair density, it is used to compute the exchange-correlation phenomenon. Subtracting

the product between ρ(~r1) and ρ(~r2) from the pair density we have the information of the

exchange-correlation phenomenon, since this term contains all the information about the

indistinguishability of electrons and how one of the electrons is conditioned by the other

one.

In practice, Equation 3.35 for a electronic structure method requires to express the

density distribution as a function of the molecular orbital basis, φi,

ρ1(~r) =
∑

ij

Dijφi(~r)φj(~r), (3.36)
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ρ2(~r1, ~r2) =
∑

ijkl

dijklφi(~r1)φj(~r1)φk(~r2)φl(~r2), (3.37)

where Dij and dijkl are the matrix elements of the first and second order density matrix.

3.2.1 Density matrix

We know that the expected value for any operator can be obtained as:

〈Q̂〉 =

∫
Ψ?(x1, x2, . . . , xn)Q̂Ψ(x1, x2, . . . , xn)dx1 . . . dxn

=

∫
Q̂Ψ(x1, x2, . . . , xn)Ψ?(x′1, x

′
2, . . . , x

′
n)dx1 . . . dxn,

(3.38)

with emphasis on the fact that the operator does not act for the primed variables.

If we have an operator that involves m variables, with m ≤ n, we can write:

〈Q̂〉 =

∫
Q̂Ψ(x1, . . . , xm, xm+1, . . . , xn)Ψ?(x1, . . . , xm, xm+1, . . . , xn)dx1 . . . dxn

=

∫
dx1 . . . dxmQ̂

∫
Ψ(x1, . . . , xm, xm+1, . . . , xn)Ψ?(x1, . . . , xm, xm+1, . . . , xn)dxm+1 . . . dxn

=

∫
dx1 . . . dxmQ̂(x1, . . . , xm)Fm(x1, . . . , xm;x′1, . . . , x

′
m),

(3.39)

with:

Fm(x1, . . . , xm;x′1, . . . , x
′
m) =

∫
dxm+1 . . . dxnΨ(x1, . . . , xm, xm+1, . . . , xn)Ψ?(x′1, . . . , x

′
m, x

′
m+1, . . . , x

′
n)

(3.40)

The F function can be related to the density matrix Γ at order m defined by:

Γm(x1, . . . , xm;x′1, . . . , x
′
m) =

(
n

m

)∫
dxm+1dxnΨ?(x′1, . . . , x

′
m, x

′
m+1, . . . , x

′
n)Ψ(x1, . . . , xn), (3.41)

where
(
n
m

)
are the combinations of n elements taken in m

(
n

m

)
=

n!

m!(n−m)!
(3.42)
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There is a hierarchy between the density matrix according to their order,

Γm(x1, . . . , xm;x′1, . . . , x
′
m) =

(
n
m

)
(

n
m+1

)
∫
dxm+1Γm+1(1, . . . ,m,m+ 1; 1′, . . . ,m′, (m+ 1)′)

=
m+ 1

n−m

∫
dxm+1Γm+1(1, . . . ,m,m+ 1; 1′, . . . ,m′, (m+ 1)′)

(3.43)

Since in quantum chemistry the operators are mono- or bi-electronic, the density

matrices with useful information are the first and second order density matrices. There

are two normalization criteria, n(n−1)
2

or n(n − 1), exposed by Löwdin and McWeeny

respectively [46, 47],

Γ1(x1;x′1) = n

∫
Ψ?(1′, 2′, . . . , n′)Ψ(1, 2, . . . , n)dx2 . . . dxn (3.44)

Γ2(x1, x2;x′1, x
′
2) =

n(n− 1)

2

∫
Ψ?(1′, 2′, . . . , n′)Ψ(1, 2, . . . , n)dx3 . . . dxn (3.45)

For many applications it is convenient to work with the first order density matrix,

also called Fock-Dirac (Equation 3.44), and when it is integrated with respect to the spin

coordinate it gives the first order reduced matrix,

ρ1(r1, r
′
1) =

∫
Γ1(x1;x′1) (3.46)

Unlike the density functions, the matrix elements have no physical meaning, except for

the diagonal ones, which in the case of the first order reduced matrix coincides with the

electronic density.

It is important to highlight that the sum of the elements of the first order density

matrix, which is an integral because of the continuous nature of the matrix indices, is

equal to the total number of the electrons of the system.

Hence, many properties of the polyelectronic systems, and particularly the energy, can

be expressed as a function of the first order density matrix and bi-electronic density.
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3.3. DENSITY FUNCTIONAL THEORY

3.3 Density Functional Theory

Before starting with the Density Functional Theory,it would be helpful to know about

functionals, a term that has many definitions. For theoretical physics and chemistry the

functionals are really useful, the main idea is that the functional does not depend on a

scalar, vector, matrix or tensor at any order, but on a function; and it renders a number.

This idea is very useful to explore concepts such as the functional derivative, useful

in Lagrange mechanics, or the functional integrals which are the central idea behind the

path integrals exposed by Richard Feynman.

The three most common definitions used to describe a functional are [48]:

• In linear algebra, it makes reference to a linear mapping from a vector space V into

its field of scalars, that is, an element of the dual space V ∗.

• In functional analysis and related fields, it refers more generally to a mapping from

a space X into the real or complex numbers. In functional analysis, the term linear

functional is a synonym of linear form; that is, it is a scalar-valued linear map.

Depending on the author, such mappings may or may not be assumed to be linear,

or to be defined on the whole space.

• In computer science, it is synonymous of higher-order functions, that is, functions

that take functions as arguments or return them.

Clarified the functional term, we can start with a brief summary of Density Functional

Theory, which is one of the most important theories used in theoretical physical chemistry.

Where the Hohenberg and Kohn [49] and Kohn and Sham [50] papers are among the most

cited papers until now, which will be covered in Sections 3.3.1 and 3.3.2.

It is worth noting that it is a variational method where the functional of the electronic

energy is minimized with respect of the electronic density. This is a really important

step, because we are not using anymore the wavefunction per se, which leads to some

computational benefits to solve big systems.
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The electronic density is a scalar magnitude easier to compute because it depends

just on three spacial variables, unlike the wavefunction which depends on 3N variables.

However, except for the easiest cases, DFT has the inconvenience that although although

there exists an exact functional that provides the exact energy of the system, its form is

unknown.

This way of understanding the Quantum Mechanics is a clear exhibition of the Copen-

hagen interpretation. One of the principal drawbacks of DFT is that even being a exact

theory, it can be only applied approximately, because of this there is not a systematic

way of knowing how close the result is to the exact value.

Additionally, the exchange interaction is not correctly treated, thus the exchange-

correlation energy can be very different depending of how the calculation is approached.

Due to the above and some other perspectives, there is a scientific community division,

between defenders and detractors. On the one hand, defenders claim that the results are

really good for the computational cost and it is a good way to approach big systems; on

the other hand, the detractors argue that the results are not as reliable as a classical ab

initio treatment.

Historically, the first approaches to obtain information of a system using the electronic

density started in 1927 with Llewellyn Hilleth Thomas and Enrico Fermi works [51, 52].

The main idea is to take the kinetic energy in terms of the nucleus-electron and electron-

electron contributions, purely treated as classical interactions, in a uniform electronic gas.

Let a fictitious system be with a constant electronic density:

TTF[ρ(~r)] =
3

10
(3π2)(2/3)

∫
ρ(5/3)(~r)d~r (3.47)

Combining THF with the above mentioned contributions, we obtain an expression for

the Thomas-Fermi atomic energy. This approximation, shown in Equation 3.48, works

quite well for alkaline metals and moderately well for alkaline-earth metals:

ETF[ρ(~r)] =
3

10
(3π2)(2/3)

∫
ρ(5/3)(~r)d~r − Z

∫
ρ(~r)

r
d~r +

1

2

∫ ∫
ρ(~r1)ρ(~r2)

r12

d~r1d~r2 (3.48)
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This way of approaching quantum mechanical problems became significantly impor-

tant in 1964 when Hohenberg and Kohn published their theorems [49]. More specifically

i) the energy is a functional of the density and ii) the density of a system minimizes the

functional.

Another big step in DFT was published by Kohn and Sham one year after [50], and

it says that it is possible to write an equation for orbitals of a particle, from which the

density can be obtained.

Nowadays, this method is widely used; however, in the early days it was used more

in solid physics, since it was not considered a method accurate enough to be applied

to chemistry. Although if originally DFT did not contemplate temporal dependency, it

was introduced using relativistic quantum mechanics, being denoted as TDDFT (Time-

dependent Density Functional Theory).

In 1984, a generalization of the Hohenberg-Kohn theorems was published, carried out

by Runge and Gross for the case of the time dependency. It states that there is a one-to-

one relationship between the time dependent density ρ(~r, t) and the external potential of

a body vext(~r, t) to an initial state [53]. Unlike DFT, there is not a general minimization

principle in time dependent quantum mechanics, therefore its proof is more complicated.

3.3.1 Hohenberg-Kohn Theorems

Theorem 1 [49]

The energy, and therefore, the rest of the system properties, are unequivocally determined

by the electronic density. If two systems with N particles are in external fields v1(~r) and

v2(~r), with the same electronic density at the ground state ρ(~r), the difference between

v1(~r) and v2(~r) is necessarily a constant. Therefore, there cannot be two potentials to

describe the same ground state.

Corollary: the potential and all system properties are uniquely determined through

the density of the fundamental state, including the many-body wavefunction of the state.

Particularly, the HK functional is defined as F [ρ] = T [ρ] + U [ρ] (universal density func-

tional), which does not strictly depend on an external potential.
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The value of the ground state of any observable is a unique function of the exact

electronic density of the ground state given by:

〈ψ|Â|ψ〉 = A[ρ0(r)] (3.49)

Theorem 2

The functional that gives the ground state energy gives the lowest energy, if and only if,

the density that gives the functional is the true density of the ground state. i. e., the

energy obtained from the Hamiltonian is the absolute minimum when the electron density

of the ground state is used.

For any potential vext(~r) and natural N , the density function F [ρ] exists as:

Ev,N [ρ] = F [ρ] +

∫
vext(~r)ρ(~r)d3r, (3.50)

and the minimum value is obtained in the ground state density for N electrons with the

potential vext(~r). The minimum value of Ev,N [ρ] is then the energy of the ground state of

the system.

The second theorem establishes that the exact value of the energy is a minimum value

of the functional, i. e., we have an inferior limit for the calculation. Thus, there is a

variational principle for the energy,

E0 ≤ E[ρ] = T [ρ] + VNe[ρ] + Vee[ρ] (3.51)

3.3.2 Kohn-Sham Approximation

Kohn and Sham proposed a new approximation to solve the problem of many electrons

based on the HK theorems. The total energy of the external potential functional vext(~r)

can be described by:

E[ρ(~r)] = T [ρ(~r)] +

∫
vext(~r)ρ(~r)d3r + Vee[ρ(~r)] (3.52)
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with:

Vee[ρ(~r)] =
1

2

∫ ∫
ρ(~r)ρ(ŕ)

|~r − ŕ| d
3rd3ŕ + Exc[ρ(~r)] (3.53)

The first term of Equation 3.52 is the kinetic energy T [ρ(~r)], the second one is the

external potential given by the nuclei arrangement, and the last one is the classic and non-

classical contributions (exchange correlation behind of the mean field theory of electron-

electron interaction). To solve the Kohn-Sham equations it is necessary to assume a

reference system with non-interacting particles with the same density as the ground state

interacting system. Thus, we can write the next equation for the system:

[
−
∑

i

1

2
∇2
i + veff [ρ(~r)]

]
|ψi〉 = εi|ψi〉, (3.54)

where the subscript eff means effective, hence veff means effective potential in the

non-interacting system. We thus have an expression for the kinetic energy of the non-

interacting system:

Teff [ρ(~r)] =
∑

i

εi − Veff [ρ(~r)] (3.55)

The new pseudo-kinetic-energy is used to compute the exchange-correlation functional

of the energy Exc[ρ(~r)] which is expressed as:

Exc[ρ(~r)] = T [ρ(~r)]− Teff [ρ(~r)] + Vee[ρ(~r)]− J [ρ(~r)] (3.56)

Using i) the new exchange-correlation functional of the total energy of the system,

ii) differentiating the new total non-interactive energy and the effective potential with

respect to the electronic density ρ(~r), and iii) the Schrödinger Equation for an electron

moving in a potential veff :

[
−1

2
∇2 + veff [ρ(~r)]

]
ψi(~r) = εiψi(~r) (3.57)
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We have the energy of the interacting system:

E[ρ] =
∑

i

εi −
1

2

∫ ∫
ρ(~r)ρ(ŕ)

|~r − ŕ| d
3rd3ŕ + Exc[ρ(~r)]−

∫
δExc[ρ(~r)]

δρ(~r)
ρ(~r)d3r (3.58)

3.3.3 Exchange-Correlation Functionals

There are many types of functionals for exchange-correlation inside DFT and it is possible

to classify them by the approximations that are used in their construction:

• Local Density Approximation (LDA). In LDA the density is shaped as a local

homogeneous electronic gas, with electronic density ρ. In this system, the electrons

move in a distribution of positive charges, additionally, the gas is electrically neutral

and with an infinite volume which contains an infinite number of non-interacting

electrons [54].

ELDA
xc [ρ] =

∫
ρ(r)εxc(ρ(r))dr

Taking the functional derivative of ELDA
xc we obtain:

vLDAxc = δELDAxc

δρ
= εxc(ρ(r)) + ρ∂εxc(ρ(r))

∂ρ

where εxc can be decomposed in the contributions of exchange and correlation, with

the expression for εx as:

εx = −3
4

(
3
π

)1/3
ρ1/3

Functionals developed in LDA approach have different ways to improve the results.

The Xα method [55] has an empiric value α, The Local Spin Density Approximation

(LSDA) [55] is used to spin polarized system through the employment two spin-

densities (ρα, ρβ).

Unfortunately, there is no known analytical expression for the correlation energy

(εcor). Nevertheless, some studies was developed with Quantum Monte-Carlo by

Vosko, Wilk and Nussar, as published in the functional VWN [56]. Another way to

approach the correlation problem was done by Perdew and Zunger, they used the

values from Ceperley and Alder [57] to adjust an expression that fulfill the conditions

at low and high densities in their functional PL [58].
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3.3. DENSITY FUNCTIONAL THEORY

• Generalized-Gradient Approximation (GGA). In GGA approximation is aim

to correct the density constant introducing the density gradient.

EGGA
xc [ρ] =

∫
ρ(r)vxc(ρ(r),∇ρ(r))dr

As in LDA case, the energy EGGA
xc can be decomposed in the exchange and correla-

tion contributions.

There are many ideas to insert the gradient, one of those was proposed by Becke,

incorporating the concept of correlation hole for its formulation, Becke published

sundry functionals, but one of the most famous is B88 [59]. While other GGA

functionals were developed as an improvement of an previous GGA functional, as

the mPW functional [60], where is improved the long-range behavior.

The functional B88 is frequently accompanied by the correlation functional LYP [61],

which is a correlation functional that considers the term of Weizsacker kinetic en-

ergy [62] to transform the Colle and Salvetti functional [63] (correlation for closed

shells).

Another popular functional in GGA approach is P86 developed with the idea of

the natural separation between exchange and correlation, thus the density-gradient

expansion of each is recovered in the slowly varying limit. Also the uniform-gas and

inhomogeneity effects beyond the random phase approximation are built in [64]. The

gradient dependent term is neglected for uniform densities, therefore, the functional

recover the local form for uniform electron gases.

• Meta-Generalized Gradient Approximation (meta-GGA). In meta-GGA the

Laplacian of the density is also included, ∇2ρ(r). This allows to obtain a better

description of the system. In practice the kinetic energy density is used, where the

sum is over the KS occupied orbitals.

τ(r) =
N∑

i

1

2
|∇ψi(r)|2

EMGGA
xc [ρ] =

∫
ρ(r)vxc(ρ(r),∇ρ(r), τ(r))dr

The kinetic energy density and the Laplacian are related by the external potential:

τ(r) =
N∑

i

1

2
εi|ψi(r)|2 − v(r)ρ(r) +

1

2
∇2ρ(r)
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3.3. DENSITY FUNCTIONAL THEORY

The use of the Laplacian is computationally expensive, and for a long time the

performance was not much improved. Some new functionals (e. g. SCAN [65])

have shown nevertheless an important improve over GGAs.

Two popular meta-GGA functionals are: i) the VSXC functional [66] which ap-

proach the meta-GGA through the density matrix expansion, and ii) the KCIS

functional [67] which propose an accurate self-interaction-corrected correlation with

a gap on the electron gas.

• Hybrid Functionals. These functionals include one part of the exact exchange

energy at Hartree-Fock level, which is computed with the Kohn-Sham orbitals.

EHF
x [θi] = −

N/2∑

i=1

N/2∑

j=1

θ?i (r1)θ?j (r1)θi(r2)θj(r2)

r12

dr1dr2

The most popular hybrid functional is B3LYP, it was built for the first time in 1994,

combining Becke’s three-parameter hybrid functional [68] with correlation functional

LYP [61]. Following the next equation:

EB3LY P
xc = aESlater

x + (1− a)EHF
x + bEBecke88

x + cELY P
c + (1− c)EVWN

c ,

where a=0.80, b=0.72 and c=0.81 are empirical parameters adjusted to the ioniza-

tion, enthalpy of atomization, proton affinity and atomic energies.

Other examples of hybrid functionals are PBEh1PBE [69] and M06-2X [70].

In this work the M06-2X functional is used in the majority of calculations, which is

a Hybrid Functional belonging to the functional series developed by Zhao and Truhlar

at the University of Minnesota [70]. These functionals were developed taking empirical

parameters, but still thinking in the free electron gas model.

The functional is a hybrid meta-GGA with high delocalization, containing 54 % of

Hartree Fock exchange. Also it depends on three variables which are i) the spin density,

ii) the reduced gradient of the density,

xσ =
|∇ρσ|
ρ

4/3
σ

, σ = α, β, (3.59)

and iii) the spin kinetic energy τσ.
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3.3. DENSITY FUNCTIONAL THEORY

The functional M062X includes terms based on the functional VSXC [66], which con-

tains the variable zσ and the functions γ and h, as well as an empiric constant CF , defined

as:

zσ =
2τσ

ρ
5/3
σ

− CF

CF =
3

5

(
6π2
)2/3

γ(xσ, zσ) = 1 + α(x2
σ + zσ)

h(xσ, zσ) =

(
d0

γ(xσ, zσ)
+
d1xσ

2 + d2zσ
γ2(xσ, zσ)

+
d3x

4
σ + d4x

2
σzσ + d5z

2
σ

γ3(xσ, zσ)

)

(3.60)

where α, di(i = 0, ..., 5) are parameters adjusted to experimental data.

The exchange part of M062X came from a linear combination between M05 and

VSXC [70].

EDFT
X =

∑

σ

∫ (
F PBE
Xσ (ρσ,∇ρσ)f(wσ) + εLSDAXσ hX(xσ, zσ)

)
dr, (3.61)

where F PBE
Xσ

(ρσ,∇ρσ) is the exchange energy density from PBE [70], εLSDAXσ
is the exchange

energy per particle in the LSDA approximation, f(wσ) is a correction factor of the density

of spin kinetic energy, and h(xσ, zσ) was already defined in Equation 3.60. That last term

is peculiar in M062X, since M062X takes the exchange part from M05, hX(xσ, zσ) = 0

[70, 71].

The correlation part is composed of two terms, one with opposite spins Eαβ
C and

another one with parallel spins (Eσσ
C ), in where h(xσ, zσ) is not zero as in the exchange

part:

Eαβ
C =

∫
εGEH
αβ [gαβ(xα, xβ) + h(xαβ, zαβ)] dr (3.62)

Eσσ
C =

∫
εGEH
σσ [gσσ(xσ) + h(xσ, zσ)] dr (3.63)
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The functions gαβ and gσσ in Equation 3.63 include empirical parameters, h(xαβ, zαβ)

and h(xσ, zσ) are defined in Equation 3.60, Dσ is a auto-interaction correction factor, and

εGEH
αβ and εGEH

σσ are the correlation energies that depend on spin.

The total correlation energy in M062X is given by:

EDFT
C = Eαβ

C + Eαα
C + Eββ

C (3.64)

As mentioned before, M062X incorporates 54 % of Hartree-Fock exchange, therefore,

the final expression for exchange-correlation energy at M062X is:

EM062X
C =

54

100
EHF
X +

(
1− 54

100

)
EDFT
X + EDFT

C (3.65)

3.4 Topology

Before continuing with the theoretical background of this thesis, it is necessary to take a

short mathematical parentheses on topology, since following topics are based on topology.

One of the awesome steps that the mathematicians made in the XIX century was the

division of “geometriam situs” from geometry, giving rise to topology as a new branch of

math.

Euler was the first to approach a geometry problem in which structural properties

and not metrics were the key to find the solution [72]. Euler called that new branch as

geometriam situs, nowadays called topology, name given by Johann Benedict Listing

(Gauss’s student) to mark the autonomy of topology from geometry [73].

Many applications of topology were developed with time. Graph theory can give

optimized trajectories for flights, and is used in the version-control system git developed

by Linus Torvalds. Knot theory provides a way to relate the knots at DNA and the knots

in a rope. Hairy ball theorem in algebraic topology gives as a corollary that there will

always be a windless place in any planet.
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Currently, topology has a variety of results. One of them is the four colour theorem,

which is a good story because it was one of the first times that the use of computers went

beyond doing jobs like a huge calculator. The theorem says that any map with continuous

regions can be coloured with the maximum of four colours avoiding any adjacent regions

with the same colour [74]. We illustrate an example in Figure 3.3.

(a) Australia map coloured with
four colours.

(b) Australia map with its corre-
sponding graph.

(c) Graphic corresponding of the
Australia map.

Figure 3.3: Example of the four colours theorem.

In 1976 Kenneth Appel and Wolfgang Haken proved the theorem by making 1936 maps

that are part of any counterexample to the theorem, the work to obtain the 1936 maps

was hard. However, the real problem was to prove that all that 1936 counterexamples

could be coloured with four colours. That work was done by a IBM 370 [75] with about

1 000 computing hours. Of course at that time the proof had a lot of criticism because

the computers “have not mathematical rigor ”.

Topology has applications not only in abstract mathematics. In 1874 Carl Schorlem-

mer [75] found the relationship between the number of isomers and the topological trees.

Since isomers are different ways of arranging the same number of atoms, the number of

isomers equals the number of trees with the number of vertices equal to the number of

atoms.

Other applications of topology in science are:

• Quantum Hall Effect

• Topological Insulators

• Topological States
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3.5 Quantum Theory of Atoms In Molecules

The Quantum Theory of Atoms In Molecules (QTAIM) gives useful information on molec-

ular systems. This theory is based on the analysis of the topological properties of the

electron density [76]. QTAIM offers several insights of covalent and non-covalent interac-

tion nature, as the Hydrogen Bonding. This theory provides an approach that recovers

important concepts borned in chemistry on which chemistry is based. As for example the

definition of an atom inside a molecule, and moreover, functional groups, the fragment of

a molecule or a molecule in a cluster can also be defined.

With QTAIM it is possible to define an atom in a molecule using the electron density,

ρ(~r), which is a scalar field as we noted in Section 3.2, which can be obtained experi-

mentally. Also, the chemical behaviour of many systems can be described through the

electronic density [76, 77].

3.5.1 Topological properties of the electronic density

Topological properties of electron density can be examined in terms of critical points, as

for example the saddle points in between maxima [76, 78, 77].

The critical points of any scalar field are given by the positions where the gradient is

equal to ~0:

∇ρ(rc) =
∂ρ(rc)

∂x
i +

∂ρ(rc)

∂y
j +

∂ρ(rc)

∂z
k = 0. (3.66)

Given a critical point (rc) of a scalar field ρ(~r), the way to know if it is a local

minimum, local maximum or a saddle point is via the second derivatives of the scalar

field evaluated at the critical point. There are nine second derivatives of ρ(~r). Each one

of the second derivatives can be fixed on a matrix arrangement, called Hessian matrix,

when it is evaluated at a critical point is written as:
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A(rc) =




∂2ρ(r)
∂x2

∂2ρ(r)
∂x∂y

∂2ρ(r)
∂x∂z

∂2ρ(r)
∂y∂x

∂2ρ(r)
∂y2

∂2ρ(r)
∂y∂z

∂2ρ(r)
∂z∂x

∂2ρ(r)
∂z∂y

∂2ρ(r)
∂z2




r=rc

(3.67)

The Hessian matrix is real and symmetric, thus it is diagonalizable. This diagonal-

ization is equivalent to rotating the system, (x, y, z)→ (x′, y′, z′), taking as new axes the

primed system, which corresponds to the principal axes of the curvature at the critical

point, denoting the new matrix as Λ(rc),

Λ(rc) =




∂2ρ(r′)

∂x′2
0 0

0 ∂2ρ(r′)

∂y′2
0

0 0 ∂2ρ(r′)

∂z′2




r′=rc

=




λ1 0 0

0 λ2 0

0 0 λ3




r′=rc

(3.68)

where λ1, λ2 and λ3 are the eigenvalues of the Hessian matrix and correspond to the

curvature of the density with respect to the primed axes.

The principal characteristics of the resulting critical points of the Hessian matrix

analysis are summarized in Table 3.1.

Table 3.1: Topological description of the critical points (CP) more used at the analysis of the ρ(r)

topology. The range (ω) represents the number of nonzero eigenvalues and the signature (σ) the algebraic
sum of the eigenvalues signs.

(ω, σ) CP Description Interpretation

(3, −3) NCP All the curvatures are negatives and rc
is a local maximum of ρ(r). Nuclear position.

(3, −1) BCP Two negative curvatures and one posi-
tives.

In between two atoms at-
tached by a bond.

(3, 1) RCP Two curvatures positives and one neg-
ative.

Within an atom cluster at-
tached making a ring.

(3, 3) CCP All the curvatures are positives and rc
is a local minimum of ρ(r).

Inside an atom cluster mak-
ing a cage.
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The definition of an atom inside a molecule in QTAIM is marked by the behaviour

of the vector field ∇ρ(~r) and particularly with its flux lines. The flux lines of ∇ρ(~r) are

trajectories σ(t) given by the equation:

σ′(t) = ∇ρ (σ(t)) (3.69)

The nuclei, because of its charge, act as attractors for the flux lines σ(t). The space

region where all flux lines converges to a nucleus is known as atomic basin and corresponds

to the chemical concept of an atom [76]. The atoms in QTAIM, or Bader atoms, are

delimited by their flux lines of the vector field gradient of the electronic density that

fulfill the zero flux condition:

∇ρ(r) · n(r) = 0 ∀r ∈ S(Ω), (3.70)

where Ω refers to the atomic basin, S refers to the surface that bounding Ω, and n(r)

to the normal vector of the interatomic surface. Therefore, in QTAIM an atom can be

understood as the union of a nucleus with its associated basin.

Summarizing, the spatial partition in disjoint Bader regions [76] is based on the gra-

dient of the electronic density, ∇ρ(r), which leads to a vector field F : Rn → Rn that

can be characterized by flux lines, which are trajectories σ(t) : R → Rn, defined by the

equation 3.69.

As shown in Figure 3.4, the borders of the space regions known as atoms satisfy the

zero condition flux 3.70 and in general, an analysis of maximum and minimum electronic

density can be done with the values in Table 3.1.

3.5.2 Atom properties in molecules

The regions Ω defined in QTAIM are identified as atoms in chemistry, and it is provable

that the postulates of quantum mechanics are fulfilled within these atomic basins [76].

Taking the zero flux condition, for an atom inside a molecule, we come to a variational

definition of the properties that the subsystem has [80]. Starting from the borders, iden-
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Figure 3.4: Flux lines∇ρ(r) of the cyclopropanone molecule (C3H4O). These trajectories delimit regions
that can be identified as atoms [79].

tified as interatomic surfaces, and the molecular structure, the molecular properties are

defined as the addition of all atomic properties:

A =
∑

Ω

aΩ, (3.71)

where A is the molecular property and aΩ is the same property inside the basin Ω. This is

based on the atomic variational principle, which states that if Â is an operator equivalent

to a sum of monoelectronic operators, Â =
∑
â, the its expected value is given by:

A(Ω) ≡ 〈Â〉Ω =

∫

Ω

∫
· · ·
∫ ∫

· · ·
∫ [

N

2
Ψ?
elâΨel + (âΨel)

?Ψel

]
dω1 . . . dωNdr2 . . . drNdr1.

(3.72)

This implies that an atomic property is determined across the integration of an asso-

ciated operator density associated with that property,

ρA(r) =
N

2

∫
· · ·
∫ ∫

· · ·
∫

[Ψ?
elâΨel + (âΨel)

?Ψel]dω1dω2 . . . dωNdr2 . . . drN , (3.73)

and

A(Ω) =

∫

Ω

ρA(r)dr. (3.74)
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3.6 Interacting Quantum Atoms

Interacting Quantum Atoms, IQA, allows the electronic energy partition, using mainly

the density matrix [81, 47]. The first order reduced matrix ρ1(r1; r′1) and the pair-

density ρ2(r1, r2) allow compute the non-relativistic electronic energy within the Born-

Oppenheimer approximation, as was shown in Equation 3.35,

Eelec =
1

2

∑

A 6=B

ZAZB
rAB

+

∫
ĥρ1(r1; r′1)dr1 +

1

2

∫ ∫
ρ2(r1, r2)

r12

dr1dr2, (3.75)

Eelec = Vnn + 〈T̂ + V̂ne〉+ 〈V̂ee〉. (3.76)

The monoelectronic energy is a sum of the kinetic energy and the nucleus-electron

attraction, i. e., ĥ = T̂ + V̂ne, the other three terms ZX , V̂nn and V̂ee mean i)the atomic

number of X, ii) the internuclear repulsion and iii) the electron-electron repulsion, re-

spectively.
After a partition of the real space, as Bader proposed, and discussed in previous

sections, in where every space region is delimited by the zero flux condition (Equation
3.70) contains only one nucleus, i. e., the system has no non-nuclear attractor, then it is
possible to rewrite the Equation 3.75 as:

Eelec =
1

2

∑

A6=B

ZAZB

rAB
− 1

2

∫
∇2ρ1(r1; r′1)dr1 −

∑

A

∫
ZAρ(r1)

r1A
dr1 +

1

2

∫ ∫
ρ2(r1, r2)

r12
dr1dr2

=
1

2

∑

A6=B

ZAZB

rAB
− 1

2

∑

A

∫

A

∇2ρ1(r1; r′1)dr1 −
∑

AB

∫

B

ZAρ(r1)

r1A
dr1 +

1

2

∑

AB

∫

A

∫

B

ρ2(r1, r2)

r12
dr1dr2

=
1

2

∑

A6=B

V AB
nn +

∑

A

TA +
∑

A

V AA
ne +

∑

A6=B

V AB
ne +

∑

A

V AA
ee +

1

2

∑

A 6=B

V AB
ee , (3.77)

where the terms are given by:

V AB
nn =

ZAZB
rAB

, (3.78)

TA = −1

2

∫

A

∇2ρ1(r1; r′1)dr1, (3.79)

V AB
ne = −ZA

∫

B

ρ(r1)

r1A

dr1, (3.80)

V AB
ee =

2− δAB
2

∫

A

∫

B

ρ2(r1, r2)

r12

dr1dr2 (3.81)
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The IQA partition divides electronic energy into two main components: i) intra-atomic

energy, which results from regrouping the terms:

EA
net = TA + V AA

ne + V AA
ee , (3.82)

and ii) the interaction between atom-pairs energy, which can be obtained grouping the

following terms:

EAB
int = V AB

nn + V AB
ne + V BA

ne + V AB
ee (3.83)

The addition of these two contributions (Equations 3.82 and 3.83), will result strictly

in the total energy of the system,

Eelec =
∑

A

EA
net +

1

2

∑

A 6=B

EAB
int (3.84)

In the Equation 3.84 we can interpret Eelec as the addition of intra- and inter-atomic

contributions. Additionally to the partition of electronic energy that IQA proposes, the

definition of the internal energy of a fragment, or group of atoms, is of utmost importance

for the development of this work, since the definition of the inner energy of a fragment,

group of atoms, G is given by:

EG
net =

∑

A∈G

EA
net +

1

2

∑

A∈G

∑

B∈G
B 6=A

EAB
int (3.85)

Then the interaction energy between two groups is defined as:

EG H
int =

∑

A∈G

∑

B∈H

EAB
int (3.86)

It is possible to have an expression for the energy analogous to the Equation 3.84,

since we are making groups of atoms, but in this case as a energy function of the groups

that form the system and the interaction energies between them.

Eelec =
∑

G

EG
net +

1

2

∑

G 6=H

EG H
int (3.87)
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The selection of atoms, and their interactions, which are in a fragment G as the atoms

which make a molecule inside a molecular cluster give us a way to study the intermolecular

interaction energy. And in that way, it allows a direct comparison with the non-covalent

interaction and the changes that occur in the interactions when the fragment/molecule is

in presence of another molecule/environment.

3.7 Electron Localization Function

The Electron Localization Function (ELF) kernel, χσ, can be interpreted as a measure

of the surplus of local kinetic energy due to the Pauli Principle, in connection to the

homogeneous electron gas kinetic energy density [82]. The ELF, η(~r), is mapped through

a Lorentzian function 3.88, to a scale ranging from 0 (when χσ →∞) to 1 (when χσ → 0).

η(~r) =
1

1 + χ2
σ

(3.88)

The gradient of this function, ∇η, is used to induce a topological partition which

divides the space into non-overlapping regions (basins). Their properties can be deter-

mined by integrating the appropriate densities over their associated volume. Hence, if one

is interested in, for example, in lone pairs populations, it suffices to integrate the electron

density, ρ, over the corresponding region associated to the lone pair maximum [1].

The energies of the different topological basins can be computed with Interacting

Quantum Atoms (IQA) energy decomposition scheme [81]. This approach provides a set

of unique and rigorous energetic terms that additively recover the exact energy of the

system. Unlike many topological analyses, this method is not only suitable for stationary

points (e.g. equilibrium geometries), such as with virial related energy partitions, but

also for non-equilibrium geometries. This feature was crucial for evaluating the energy

terms along bond elongations in geometry scans. The energy terms are calculated by

partitioning the first- and second-order density matrices with respect to the real space

partitions, usually the QTAIM atomic basins, as in the Equation 3.84, rewritten as:
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E =
∑

A

(TA + V AA
ee + V AA

en ) +
∑

A>B

(V AB
en + V AB

ne + V AB
nn + V AB

ee ) (3.89)

=
∑

A

EA
intra +

∑

A>B

EAB
inter

In this thesis we will apply IQA to ELF partitions. When considering bonding basins

(and valence in general) within the IQA partition, the nuclear terms presented in the

previous equations become null (V BB
en = 0, V AB

nn = 0, V AB
en = 0). Therefore, for a bonding

basin, which interacts with the core basin that represents an atom A, the energy terms

can be expressed as shown in Equations 3.90 and 3.91,

Ebond
intra = T bond + V bond

cou (3.90)

EA−bond
inter = V A−bond

cou + V A−bond
XC (3.91)

This was the selected approach since we are interested in developing an energy model

accounting for interactions between electron pairs. Its is possible to calculate interactions

between atoms and “bonds”, as well as interactions between two “bonds” and “bonds” with

“lone pairs”. For this purpose, the original code was modified so as to perform integration

tasks over ELF basins [83].

The IQA-ELF approach provides and accurate reference that can be used to analyze

the behaviour of the energy terms and to construct energy potentials that take into account

classical and non-classical terms.

The original IQA implementation could only deal with a HF wavefunction. However,

recent developments provide support for DFT-derived ones [84].
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3.8 Non-Covalent Interactions

Most chemical interactions are dominated by non-covalent interactions, e. g. folding of

proteins, self-assembly of nanomaterials, or catalyst and its substrate [85]. This class of

interactions cover many interactions, such as London dispersion, dipole-dipole interaction,

hydrogen bond, π-π interactions, not leaving out repulsive interactions [86].

The non-covalent interaction index is based on the density and its derivatives, which

since as mentioned in Section 3.2, has the advantage over molecular orbital descriptors

because it is an experimentally accessible scalar field, also supported by the HK theo-

rem [49].

Moreover, NCI simultaneously allows an analysis and a visualization of all non-covalent

interaction types as real-space surfaces. Thus, it is an important tool to analyze chemical

systems [87, 88].

The mathematical core of NCI is the reduced density gradient s(ρ), (RDG) it is a

quantity from DFT used to describe how far away the system lies from an homogeneous

electron distribution.

s(ρ) = C−1
F

|∇ρ|
ρ4/3

(3.92)

where C−1
F is the Fermi constant (2(3π)1/3).

Using the above definition (Equation 3.92) we can exemplify an easy case, a single

atomic orbital ψ = e−αr, thus the density is ρ = e−2αr and the gradient is ∇ρ = −2αρ,

such that

s(ρ) = C−1
F

2αρ

ρ4/3
=

2α

CF
ρ−1/3 (3.93)

The reduced density gradient assumes large values in the exponentially-decaying den-

sity tails far from the nuclei. Small s(ρ) values occur close to the nuclei, due to the

combination of large densities and small density gradients. The lower bound on the re-

duced density gradient is zero [89].
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Analyzing s(ρ) versus ρ shows a new feature, one or more spikes in low-density, low-

gradient region are the signature of non-covalent interactions. This is the basis of NCI.

When there is overlap between atomic orbital, a peak appears on the s(ρ) diagram, the

points that form this peak can identify the interaction when mapped the real space.

Particularly, NCI interaction index allows an analysis and a visualization of non-covalent

interactions types as real-space surface [89].

The s(ρ) isovalue determines which features will appear in the NCI plot. Choosing

large values would disclose atomic tails of the density. However, low values might miss

some of the interactions of interest [90].

3.9 Computational Details

The geometries were taken from Force Field data bases. A single point calculation was

carried out in order to obtain the wavefunction for the ELF/QTAIM analysis. The single

point was carried out at the M06-2X/aug-cc-pVTZ [91, 92, 93] theory level, using the

suite of Gaussian16 [94]. The choice of the functional and the orbital basis was based

on Jiménez Gravalos et al. work 95 in which it is shown the behaviour about the HB is

well described for the water cluster with moderate computational time.

Later on, using the electronic densities computed via DFT we proceeded to analyse the

topological properties of Electron Localization Function. Using the TopMod, NCI plot

and Promelf programs for these purposes [96, 97, 4]. The visualization of our results

was carried out with the help of the GausView [94], VMD [98] and VESTA [99] codes.

The Promelf program analyzes first order real space and momentum molecular den-

sities for a polyatomic molecule within basis set of GTO’s function, it can make a topo-

logical analysis for real space densities. The program was developed in 2002 by A. Martín

Pendás at University of Oviedo.

In Promelf code for the topology analysis all the 3D and 1D scalars, not only their

magnitudes, but also their first and second derivatives (gradients and hessians) are com-

puted analytically. This allows us to make automatic topological analyses of them. A

Morse consistency check is done on all topologies, and paths connecting (3,-1) to (3,-3)

points are traced and studied [4].
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CHAPTER 4

RESULTS

As proposed in the objectives, the most important results on the analysis of the ELF, ρ

and NCI in water clusters are shown in this chapter.

4.1 Systems

All systems used in this work were taken from the literature [100]. In particular, there

are divided in 3 groups of systems. Set 1 contains global minimal clusters, increasing

the number of water molecules (from dimer to pentamer) and a pentamer that is a local

minimum. Set 2 contains several dimers with different configurations. Set 3 contains

different local minima from dimer to hexamer. All systems are plotted in the Figures 4.1,

4.2 and 4.3, the three sets mentioned above.

The first group was used as the assessment group for computational processing, choos-

ing the best parameters and methods of integration (topic discussed in Section 4.2). Once

all calculations were completed with good accuracy for Set 1, we started to compute Sets

2 and 3 with the help of some scripts (Supporting Information A.2).
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4.1. SYSTEMS

Figure 4.1: Set 1 of water clusters (global minima).

Figure 4.2: Set 2 of water clusters. Local minima of dimer clusters. Clusters are named by the file
name where the coordinates were taken.
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4.1. SYSTEMS

Figure 4.3: Set 3 of water clusters. Local minima taken from Temelso et al. [100]. Clusters are named
by the file name where the coordinates were taken.
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4.2 Theory level, method election

The choice of the M06-2X/6-311++G(d,p) theory level is justified by the combination of

the exchange-correlation functional with triple-zeta quality basis sets which adequately

reproduce the cooperative and anti-cooperative behavior. This methodology allows an

accurate description at a moderate computational cost, as shown in the work of Jiménez

Gravalos et al 95.
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We also tried an ab initio method,

Møller–Plesset at second order, getting good

results for the energy, but having numerical

problems with the Promelf program (prob-

lems that will be described later on). Then

the use of a DFT method was thought as a

good solution, minimizing most of the nu-

merical issues with Promelf and also pro-

viding similar values for the energy, as we

can see in the Figure 4.4, where even if the

energy variation is bigger for Promelf vs DFT than the difference between MP2 and

DFT, the variation per water molecule is still in the same magnitude order.
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4.2. THEORY LEVEL, METHOD ELECTION

Once we known that we would use DFT, we also decided to compare different func-

tionals, analyzing not only the energy at the same geometry, but also doing a geometry

optimization at each level, looking at how the distances change. See Figures 4.5 and 4.6,

where in case of the energies the differences are around tens of kcal mol−1, and no any

oxygen-oxygen distance change enough large to lend ambiguity between the different cases

of n−mer1 distances.

Later one, when M062X was chosen as the functional that we would use, we did

a systematic analysis of the basis set dependency, through variations within Truhlar’s

calendar [101] we had an idea of the basis set dependency (see Figure 4.7). Particularly,

the numerical value of the correlation energy limit is computable as plotted in Figure 4.8.

In both previous figures we can see that the energy values do not change significantly

after the use of aug-pVTZ, the above added to the fact that using a quadruple zeta

basis set increase significantly the computing time. These observations, together with the

previous assessment carried out by Jiménez Gravalos et al 95, justify our selection of the

M06-2X/aug-cc-pVTZ level of theory.
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The wavefunctions obtained at the M06-2X/aug-cc-pVTZ level were analyzed by

means of ELF thanks to the Promelf program. However, some numerical problems

appeared: i) the energy showed a considerable difference between the one obtained with

Gaussian16 and the Promelf output (around 8 Eh), ii) the charge sum of all centers

1n-mer = aggregate of n molecules.
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4.3. ELECTRONIC LOCALIZATION FUNCTION ANALYSIS

was not equal to the molecule charge value (zero in those cases), where Promelf gave

around 5 atomic units of charge in worst cases.

Those were the reasons why we guessed that the problems came from the numerical

integration method and its accuracy, particularly with the solid angle grid. Because, if

a numerical value is affected by i) the solid angle ii) the radial coordinate, and those

values are (numerically, computationally) zero, the whole DO for loop that computes

the integral is summing zero in all steps.

We tried many different setups for the calculation. Fortunately, the problems were

fixed by modifying: i) the radial coordinate, that specifies the largest value of the radial

coordinate in the integration, by default is 10.0, and we changed it to 6.0; ii) the default

value used for points in the radial grid outside B-spheres is 100, we changed to 512; iii)

the way to define the mapping function r(u) (−1 6 u 6 +1) outside the B-spheres, the

way we use is r(u) = rb
1+u

1−u+η
+ r0 where rb is a measure of the atomic radius (these radii

are taken as the Slater-Bragg radii).

All these alterations of the default values were already available in the code. We

also did attempts modifying the radial quadrature used in the integration within the B-

spheres. However, the trapezoidal method (the easiest one), with the previous changes

gives similar values than those given by more sophisticated methods, with the advantage

that the trapezoidal method is the cheapest method in computational time.

4.3 Electronic Localization Function Analysis

Figure 4.9: ELF in water
molecule (isovalue = 0.9).

The first two systems computed to know how the ELF be-

haves in water clusters were the water molecule and the

dimer, that because in the first one we have the isolated

molecule and in the second one the system has only one ac-

ceptor and one donor, where each molecule has no other in-

teraction(s). Thus, they constituted good references.

All plots were made using the same isosurface value for

all systems in this section, isovalue = 0.9. Thus, we can

compare the systems just by mere visual plot inspection.
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4.3. ELECTRONIC LOCALIZATION FUNCTION ANALYSIS

In the Figure 4.9 we can see how the basins have the same volume for a given ELF

value for both H atoms, and also for lone electron pairs. Then, one of the easiest things

to see in the water dimer (Figure 4.10) is how the ELF changes in the H atoms and in

the lone pairs, since the chemical situation changes for those ELF maxima.

Figure 4.10: ELF in water dimer.

The ELF in the H atom that is involved in the

HB is less diffused than the other H atoms that are

not in a HB, we can see that in Figure 4.10 as a more

compressed volume for the H in the HB. The same

behavior occurs for lone pairs, the lone pair that is

in the HB has a smaller volume than the other lone

pairs that are not in a HB.

When a water molecule is acting only as acceptor

of HB the ELF in H atoms are basically equal for both H, the difference lies in lone electron

pairs, where the lone pair is more localized (compressed volume) for lone pairs those are

in a HB than the lone pairs that are not in a HB.

There are homodromic cases for clusters of three, four and five water molecules, plotted

with its respective ELF isosurface in Figure 4.28. Where it is easy to see the differences

between the ELF for lone pairs that are involved in HBs and those that are not. This

behavior is also observed for H atoms involved in HBs, particularly because the H that

are not in a HB are pointing outside the ring.

As shown in Figure 4.28 for the three homodromic n-mers, all hydrogen atoms pointing

outside the ring present larger basin volumes than those involved in hydrogen bonds. For

electron pairs is more complicated see all the cases, but since the homodromic systems

are symmetric, seeing some of them is enough to get the idea that the electron pairs that

are in HB are more localized (smaller volume).

For homodromic clusters every molecule is acting as acceptor and as donor. All the

density lost by the system as a donor is retrieved back as an acceptor. Also the distances

in the cluster (see Figure 4.28) have a trend, every time we add a new water molecule in

the system the distance between oxygen atoms is reduced, i. e., the HB is stronger, thus

we can see how the cooperativity is acting in the clusters.
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4.3. ELECTRONIC LOCALIZATION FUNCTION ANALYSIS

(a) Water trimer. (b) Water tetramer. (c) Water cyclic pentamer.

Figure 4.11: Homodromic water clusters along with their corresponding hydrogen bond distances.

Figure 4.12: Polyhedric non-cyclic water pentamer (pentamer p).

Pentamer p is nonetheless an exception. Indeed, the system not only has bi-coordinated

molecules, but also tri-coordinated ones. This happens in two cases: i) double donor, ii)

double acceptor. These two sub-cases of tricoordinated water molecules make the ELF

look more similar in H atoms when the water molecule is a double donor and similar for

lone pairs when the water molecule is a double acceptor.
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4.4. NON-COVALENT INTERACTIONS

4.4 Non-Covalent Interactions

The usual colour values for NCI are shown in the Figure 4.13 where the attractive strongest

interactions are shifted to blue and red, blue for attractive interactions and red for repul-

sive. For all our cases we have only strongly attractive interactions as expected since the

HB is a strongly attractive non-covalent interaction.

Looking at the NCI in water clusters, the dimer presents a prominent feature, the only

non-covalent interaction is the HB between the two water molecules, the well-known HB

in water clusters. The same pattern appears in the trimer and tetramer with the addition

of a small NCI region in the middle of the ring.

As we increase the number of water molecules in the cyclic clusters the NCI volume

is smaller for HB, as well as the NCI that lies in the middle of the rings, this last type

of NCI is enough small in the pentamer c (Figure 4.14d), that we changed the isosurface

value to the plot, and therefore, see the NCI region, while the other plots has a isosurface

value equals to 0.3, for the pentamer c is 0.5.

Pentamer p has the particularity that has different types of non-covalent interactions,

as we can see in Figure 4.14e the system has four NCI within the rings and one NCI inside

the cage. Moreover, we can see how even if the HBs are all blue coloured, they do not

have the same volume, giving the idea that are not all same.

Figure 4.13: Usual colour scale for NCI.
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4.4. NON-COVALENT INTERACTIONS

(a) Water dimer. (b) Water trimer. (c) Water tetramer.

(d) Water cyclic pentamer (pentamer c).
(e) Water non-cyclic polyhedric pentamer (pen-
tamer p).

Figure 4.14: NCI method applied to Set 1 of water clusters. In Subfigures b, c and d the central
isosurface is a RCP, while in Subfigure e the green highlight means a RCP, the red one is a CCP and the
non highlighted interactions are HB.
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4.5. PROMELF

4.5 Promelf

The next ELF analysis was done about its topology, particularly how the HB interactions

have their energy contributions as a function of their topology, the topology analysis was

given by Promelf.
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Figure 4.15: Linear Regression between energy by
Gaussian16 and Promelf (atomic units).

After fixing the computational prob-

lems discussed in Section 4.2, we carried

out a security check of how different is the

energy given by Promelf and the energy

that Gaussian16 [94] gives in the *wfn

files. To compare the values we did a linear

regression (see Figure 4.15). The slope is

also near to one and the origin ordinate is

close to zero, the slope and the origin or-

dinate have an uncertainties near to zero.

Also the r2 is really close to one. Hence,

we can conclude that the basin integrals

are recovering the full system.

The most interesting thing that we can see with the data is how far or close are the

energy Promelf values, and check their system-size dependency. Most of the time we

are 0.487 % above the energy given by Gaussian16 with a standard deviation of 0.014

%.

To know more about these fluctuations and the differences between Promelf and

Gaussian16 we have also plotted the values of the energy divided per the number of

water molecules that the system has.

As we can see in the Figure 4.16, Gaussian16 energy always predicts a negative ∆E,

while Promelf predicts a positive one. Hence, the ∆E by Promelf (and ∆G with

Gaussian16) cannot be used to predict if a system is energetically favorable for water

clusters since the anharmonic contributions cannot be neglected and these contributions

are not taken into account in the two software [102].

65



4.5. PROMELF

1 2 3 4 5 6

Water molecules per cluster

-76.5

-76.4

-76.3

-76.2

-76.1

-76.0

E
ne

rg
y

pe
r

w
at

er
m

ol
ec

ul
e

(E
h
)

Energy in different clusters

PROMELF

GAUSSIAN16

Figure 4.16: Energy of clusters divided by the
number of water molecules [Sets 1, 2 and 3]. The
two horizontal lines are the energy of one water
molecule.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Dimer Cluster

40

30

20

10

0

E
−

M
ax

(E
) (

k
ca

l/
m

ol
)

Energy fluctuations in dimer clusters
PROMELF

GAUSSIAN16

Figure 4.17: Promelf and Gaussian16 energy
fluctuation of water dimers.

Figure 4.17 compares the energy fluctuation in dimers (Set 2) provided by Promelf

and Gaussian16. This set allows a systematic assessment of the energy for a same

system with different aggregate configurations. As evidence by the picture, the Promelf

line presents strong oscillations of several kcal mol−1, in clear contrast with the results

provided by Gaussian16. Moreover, the minimum and the maximum do not correspond

to the same systems.

One property that has the same behavior as the energy computed by Gaussian16 is

the exchange-correlation contribution in the HB interactions as we can see in the Figures

4.18 and 4.19, where particularly the minimum and maximum are the same systems in

the two cases.

However, their relation is not 100 % correlated as we can see through a linear regression

(Figure 4.20), having r2 = 0.84 for the equation y = 1.3335x+ 203.8.

As we said, the maximum and the minimum for the two cases are the same system.

These two extreme cases correspond to the weakest and the strongest HB for any water

dimer cluster computed. Therefore, the minimization/maximization of the energy are

completely related with the exchange-correlation energy of HB. The two cases are shown

in Figure 4.21, the difference of the two systems is 3.32 kcal mol−1 of the total electronic

energy, and 5.05 kcal mol−1 for the exchange-correlation contribution.
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Figure 4.20: Linear regression between exchange-
correlation contribution in interaction and electronic
energy for whole system.

Figure 4.21: Strongest and weakest HB
in water dimer clusters and their relative
electronic energy.

To compute the exchange-correlation contribution, the various interactions between

H and electron pairs were taken into account and not just the values coming from the

classical HB (even if that was the largest contribution).

Looking for the population we did two analyses, one with the delocalization index

(DI) and another one with the charge. The DI gives a quantitative idea of the number of

electrons delocalized or shared between atoms and the charge is a measurement of how

much the electrons are localized in the basins.
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Figure 4.23: Linear regression between
exchange-correlation energy and DI in lone pair
electron basin.

With the delocalization index, we looked how the exchange-correlation energy is cor-

related with the the delocalized electrons. Having two different behavior cases. The first

one, where the DI and the exchange-correlation energy are really well correlated with the

ELF maximum basin associated to the lone electron pair in HB’s, with a r2 = 0.9923.

However, there is not any correlation for the same phenomenon if we use the ELF maxi-

mum basin associated with the H atom (r2 = 0.204598). These two correlations are shown

in Figures 4.22 and 4.23.
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We also checked how the properties of the basins correlate within the same basin. For

that in Figures 4.24 and 4.25 we plotted linear regressions of the charge versus: i) kinetic

energy,ii) net energy Enet, as exposed by IQA partition in Section 3.6 (Equation 3.82), iii)

effective energy EA
eff = EA

net +
∑

A 6=B E
AB
int , iv) additive energy EA

eff = EA
net + 1

2

∑
A 6=B E

AB
int ,

and v) DI. The above for both the H basin and the electron pair basin. We can see once

again, how the basins associated to lone pairs correlates with the charge and the other

properties, while for H basins there is from little to no correlation (e. g. DI).
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Figure 4.26: Trend of the sum of Exchange-
Correlation Energy contribution for dimer sys-
tems.

Looking at the dimer systems (Set 2) we

did not find any correlation among the en-

ergy contributions of HB. However, we found

the same trend over the addition of all HB

contributions. For example, the exchange-

correlation contributions sum for lone pairs

has the same trend as the same contributions

sum for H basin. The above for all dimers, as

we can see in Figure 4.26. Even if the total en-

ergy does not follow any trend in the dimers,

the exchange-correlation contribution follows

a trend over the electron pair and H basins.

Based on these results, we decided to check for all sets the sum over the kinetic,

potential and exchange-correlation contributions to the total energy. A linear regression

between the sum of each of these three energy contributions and the two ELF maxima

(See Figure 4.27).
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Figure 4.27: Linear Regressions between electron pair and H basins.
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As was mentioned before, the homod-

romic clusters has a particular trend. The

size does not really affect the ratio between

the different energy contributions to the

HB interaction (see Figure 4.28), i. e.,

what does not change is the proportion be-

tween the different contributions to the in-

teraction energy.

In Castor-Villegas et al. [3] work is

shown that the strength of the HBs is re-

lated to the coordination between water

molecules, paying attention to their roles

as acceptors or donors. In our work, we

have tried to reproduce these trends.

For the water clusters analyzed in this

work, we have 6 types of the 10 that are

reported in 3. The 6 types are plotted in

the Figure 4.29.

Comparing the data obtained in this work and the reported in 3 we cannot claim that

we predict exactly the same trend, since the dispersion data is too big to say whether it

is the same trend or not. This dispersion could be due to three things, i) we do not have

enough interactions to have a good statistic analysis, ii) the 3 work takes into account

how the water molecules are affected since are not in theirs equilibrium geometry when

their are not interacting with another chemical entity, that by the deformation energy,

and iii) the topology for the ELF is more elaborated that the ρ topology (used in the 3

work) giving troubles for the computational integrals.

In particular, this last reason will be a future perspective, as computational problems

around water clusters with Promelf program arise once again while doing the topology

calculations with ρ.

70



4.5. PROMELF

Figure 4.29: Types of HB in the analyzed water
clusters.
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Figure 4.30: Comparison between the scale shown
in 3 and this work.

The different types of HB as function of connectivity are shown in the Figure 4.29,

and in the Figure 4.30 are the values obtained in this work and the computed in 3 are

compared. We can see how the types 8, 9, 10 have the same trend in both works. However,

the type 4 in the work 3 has basically the same value compared with the type 5, where in

this work we have a significant difference and with the opposite trend that in 3, whereas

the error bars are enough big to aim that the two topology perspectives predict different

conclusions.
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CHAPTER 5

CONCLUSIONS

We have used the IQA partition applied to the ELF topology to study the connectivity

of small water cluster.

1. The use of M06-2X/aug-cc-pVTZ was a good way to predict the electronic energy

and the wavefunction to compute a topology ELF analysis.

2. We have the best set up known to compute small water cluster ELF analysis with

Promelf code.

3. The results are in general consistent with topological studies on the electronic den-

sity in similar systems, as we compared with the result published [103, 2, 3].

4. The code written to compute the systems would be useful for future researchers

having just one input file to do a NCI plot or TopMod work. As well to have a new

*.wfn file with the ELF maxima.

5. As for now, the integration seem to be complicated, difficulting the analysis of

general trends from IQA-ELF partition in water clusters.
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APPENDIX A

SUPPORTING INFORMATION

A.1 Supporting tables

Energy for systems at different outputs hartree units

Cluster MP2 DFT (M06-2X) Promelf (M06-2X)

dimer -152.539151959111 -152.868036441310 -152.13643137

trimer -228.827663306177 -229.316617892800 -225.51627000

tetramer -305.359223571261 -305.763780855504 -304.27701150

pentamer c -381.398610398789 -382.208963954852 -374.26565610

pentamer p -381.400573846193 -382.210068626837 -380.34641670

Energy for the system at wB97XD DSD and M06D3 functionals Hartree unit

Cluster wB97XD DSD M06D3 average σ

pentamer p -382.256096 -381.796990 -382.171231 -382.07477 0.24428056

monomer -76.439928 -76.348356 -76.422501 -76.403595 0.04862536

dimer -152.887534 -152.704601 -152.852667 -152.81493 0.09712828

trimer -229.344559 -229.069851 -229.293213 -229.23587 0.14605474

tetramer -305.802591 -305.436006 -305.732757 -305.65712 0.19464603

pentamer c -382.257905 -381.799987 -382.169303 -382.07573 0.24287605
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Distance average between O atoms in optimized systems Å unit

Bond Average σ

Dimer 2.9032 0.0052

Trimer (HB 1) 2.7875 0.0023

Trimer (HB 2) 2.7965 0.0056

Trimer (HB 3) 2.7889 0.0024

Tetramer (HB 1) 2.7450 0.0101

Tetramer (HB 2) 2.7423 0.0102

Tetramer (HB 3) 2.7423 0.0055

Tetramer (HB 4) 2.7424 0.0101
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A.2 Scripts

All scripts written while we was working on this thesis are upload in a private GitHub

repository (github.com/vcastor/TFMscripts). The code that not has an execution of

Promelf or use the LCT queue system is written down below.

Script to write a new wavefunction with the ELF maxima as atoms with charge zero

for the nuclei:

1 #!/opt/homebrew/bin/python3

2 # write a new wfn file with the coordiantes from a xyz in Atomic Units

3 import sys

4

5 xyz = sys.argv [1]

6 oldwfn = sys.argv [2]

7 newwfn = sys.argv [3]

8

9 a = []

10 x = []

11 y = []

12 z = []

13

14 archivo = open(xyz , 'r')

15 datacoor = archivo.readlines ()

16 n = datacoor [0]

17 n = int(n)

18

19 for i in range(n):

20 linen = datacoor[i+2]

21 linen = linen.split()

22 a.append(str(linen [0]))

23 x.append(float(linen [1]))

24 y.append(float(linen [2]))

25 z.append(float(linen [3]))

26 archivo.close()

27

28 archivo = open(oldwfn , 'r')

29 dataold = archivo.readlines ()

30 header = dataold [1]

31 header = header.split()

32 m = header [6]

33 m = int(m)

34

35 with open(newwfn , 'w') as f:

36 sys.stdout = f

37 print(dataold [0], end='')

https://github.com/vcastor/TFMscripts


A.2. SCRIPTS

38 print(header [0], '{:>14}'.format(header [1]), *header [2:4] , '{:>6}'.format(

header [4]), header [5], '{:>8}'.format(m+n), header [7])

39 for i in range(m):

40 print(dataold[i+2], end='')

41 for i in range(n):

42 print(' ', a[i], ' ', '{:2d}'.format(m+i+1),' (CENTRE', '{:2d}{}'.format(

m+i+1,') '), f'{x[i]:+.8f}', f'{y[i]:+.8f}', f'{z[i]:+.8f}', ' CHARGE =

0.0')

43 for i in range(len(dataold)-m-2):

44 print(dataold[i+m+2], end='')

Where the first argument of the last script is the output of:
1 #!/opt/homebrew/bin/python3

2 import sys

3

4 coor = sys.argv [1]

5 xyz = sys.argv [2]

6

7 a = []

8 x = []

9 y = []

10 z = []

11

12 archivo = open(coor , 'r')

13 data = archivo.readlines ()

14 n = data [0]

15 n = int(n)

16

17 for i in range(n):

18 linen = data[i+1]

19 linen = linen.split()

20 a.append(str(linen [2]))

21 if (a[i] == "(3,-3)"):

22 x.append(float(linen [3]))

23 y.append(float(linen [4]))

24 z.append(float(linen [5]))

25 archivo.close()

26

27 with open(xyz , 'w') as f:

28 sys.stdout = f

29 print(len(y),'bohr\n')

30 maxELF = True

31 i = 0

32 while (maxELF):

33 if (a[i] == "(3,-3)"):#the xyz file WILL BE IN bohr not angstrom

34 print('X', x[i], y[i], z[i])

35 i+=1

78



A.2. SCRIPTS

36 else:

37 maxELF = False

The value integrals given by Promelf were summarized in a smaller file with the

following script:

1 #!/usr/bin/perl5 .18 -w

2 #use strict;

3 #use warnings;

4

5 $outpromelf = $ARGV [0];

6 $integralsv = $ARGV [1];

7

8 my $line=`grep -ne "RELEVANT RESULTS FOR ALL THE ATOMS WITH LMAX = 10" $outpromelf

| cut -f1 -d:`;

9 my $lineInicio=$line + 3;

10 my @line2=`grep -ne "------------------------------- TES PARTITION

---------------------------------" $outpromelf | cut -f1 -d:`;

11 my $lineEnd=$line2 [1] - 3;

12 my $d='$d';

13 system(`sed '1,${lineInicio}d;${lineEnd},$d' $outpromelf > tmp.1`);

14

15 my $nmax=`wc -l < tmp.1`;

16 $nmax=$nmax + 0;

17 system(`echo $nmax > $integralsv`);

18 system(`cat tmp.1 >> $integralsv`);

19 system(`rm tmp.1`)

And the interactions also given by Promelf with the next one:

1 #!/opt/homebrew/bin/python3

2 #run as:

3 #./ interactions.py *.put *.txt

4

5 import sys

6 import os

7 import numpy as np

8

9 pout = sys.argv [1]

10 atoms = sys.argv [2]

11

12 couint = []

13 xcint = []

14 kinetic1 = []

15 kinetic2 = []

16 potential1 = []

17 potential2 = []

18 cou1 = []
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19 cou2 = []

20 xc1 = []

21 xc2 = []

22 max1 = []

23 max2 = []

24 DI1 = []

25 DI2 = []

26

27 #################################

28 # How many interactions between ELF max's or nuclei

29 cmdcat = "cat " + str(atoms) + " | sed '/^\\s*\$/d' | wc -l"

30 n = os.popen(cmdcat).read()

31 n = int(n)

32

33 archivo2 = open(atoms , 'r')

34 dataAtoms = archivo2.readlines ()

35 for i in range(n):

36 linen = dataAtoms[i]

37 linen = linen.split()

38 max1.append(int(linen [0]))

39 max2.append(int(linen [1]))

40 archivo2.close ()

41

42 #################################

43 # Contributions of Max1 et Max2

44 cmdgrep = "grep -ne 'Atomic Contributions for neq: ' "+ str(pout) +" | cut -f1 -d:"

45 outgrep = os.popen(cmdgrep).read()

46 outgrep = outgrep.split ()

47

48 archivo1 = open(pout , 'r')

49 data = archivo1.readlines ()

50 for i in range(n): #for max1

51 dataT = data[int(outgrep[max1[i]-1])+2] #kinetic

52 dataV = data[int(outgrep[max1[i]-1])+3] #potential

53 dataC = data[int(outgrep[max1[i]-1])+5] #Cou

54 dataXC = data[int(outgrep[max1[i]-1])+6] #XC

55 dataT = dataT.split ()

56 dataV = dataV.split ()

57 dataC = dataC.split ()

58 dataXC = dataXC.split()

59 kinetic1.append(float(dataT [3]))

60 potential1.append(float(dataV [3]))

61 cou1.append(float(dataC [2]))

62 xc1.append(float(dataXC [2]))

63 # #for max2

64 dataT = data[int(outgrep[max2[i]-1])+2] #kinetic

65 dataV = data[int(outgrep[max2[i]-1])+3] #potential
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66 dataC = data[int(outgrep[max2[i]-1])+5] #Cou

67 dataXC = data[int(outgrep[max2[i]-1])+6] #XC

68 dataT = dataT.split ()

69 dataV = dataV.split ()

70 dataC = dataC.split ()

71 dataXC = dataXC.split()

72 kinetic2.append(float(dataT [3]))

73 potential2.append(float(dataV [3]))

74 cou2.append(float(dataC [2]))

75 xc2.append(float(dataXC [2]))

76 archivo1.close ()

77

78 #################################

79 #Interaction between Max1 et Max2

80

81 cmdgrep = "grep -ne '=================== Interaction with atom:' "+ str(pout) +" |

cut -f1 -d:"

82 outgrep = os.popen(cmdgrep).read()

83 outgrep = outgrep.split ()

84

85 #x^2 -x -len(outgrep) = 0; 1+sqrt (1+4* len)/2

86 natoms = (1+np.sqrt (1+ 4*len(outgrep)))/2

87 natoms = int(natoms)

88

89 for i in range(n):

90 if (max1[i] > max2[i]):

91 a = outgrep [(max1[i]-1)*(natoms -1) + max2[i] - 1]

92 else:

93 a = outgrep [(max1[i]-1)*(natoms -1) + max2[i] - 2]

94 a = int(a) + 1

95 line = data[a]

96 line = line.split()

97 couint.append(line [4])

98 xcint.append(line [5])

99

100 cmdcat = "cat " + pout + " | sed '/^\\s*\$/d' | wc -l"

101 m = os.popen(cmdcat).read()

102 m = int(m)

103 m = m - natoms - 34

104

105 for i in range(n):

106 dataDI1 = data[int(m+max1[i]) -1]

107 dataDI2 = data[int(m+max2[i]) -1]

108 dataDI1 = dataDI1.split ()

109 dataDI2 = dataDI2.split ()

110 DI1.append(float(dataDI1 [6]))

111 DI2.append(float(dataDI2 [6]))
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112

113 for i in range(n):

114 print(couint[i], xcint[i], cou1[i], xc1[i], kinetic1[i], potential1[i], DI1[i],

cou2[i], xc2[i], kinetic2[i], potential2[i], DI2[i])

A wrapper was also written to run TopMod or NCI with the same input file.
1 #!/opt/homebrew/bin/python3

2 #This wrapper launch TopMod and/or NCI with the same input

3 #I was written with a bash script lol

4

5 import sys

6 import os

7 from tqdm import tqdm

8

9 filein = sys.argv [1]

10 archivo = open(filein , 'r')

11 datalines = archivo.readlines ()

12 cmdtop = "/Users/vcastor/Documents/Master_UAM/TFM/scripts/wrapper/topmod.exe "

13 cmdnci = "/Users/vcastor/Documents/Master_UAM/TFM/nci/nciplot -master/src_nciplot_4

.0/ nciplot "

14 cmdstc = "sbf_to_cube "

15 gridoption = ["fine\n", "ultrafine\n"]

16

17 # definimos los definible

18 def moving(cube):

19 cubein = cube.replace (". wfn\n", "_elf.cube")

20 cubeout = cube.replace (".wfn\n", "-elf.cube")

21 cmd = "mv " + cubein + " " + cubeout

22 os.system(cmd)

23 cubein = cube.replace (". wfn\n", "_esyn.cube")

24 cubeout = cube.replace (".wfn\n", "-esyn.cube")

25 cmd = "mv " + cubein + " " + cubeout

26 os.system(cmd)

27

28 def writetmp(inpf , wfn , inp):

29 with open (inpf , 'w') as f:

30 f.write(wfn)

31 f.write(inp+"\n")

32 f.write ("1 1 1")

33

34 def stc(wfn):

35 sbf = wfn.replace (".wfn\n", "_elf.sbf")

36 esyn = wfn.replace (".wfn\n", "_esyn.sbf")

37 inpsbf = wfn.replace (". wfn\n", ".tmp1")

38 inpsyn = wfn.replace (". wfn\n", ".tmp2")

39 outf = wfn.replace (".wfn\n", "-stc.out")

40 writetmp(inpsbf , wfn , sbf)
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41 cmd = cmdstc + "< " + inpsbf + " >> " + outf

42 os.system(cmd)

43 writetmp(inpsyn , wfn , esyn)

44 cmd = cmdstc + "< " + inpsyn + " >> " + outf

45 os.system(cmd)

46 moving(wfn)

47

48 def elf(wfn , gridtop):

49 outf = wfn.replace (".wfn\n", "_topmodelf.out")

50 wfntop = wfn.replace (". wfn\n", ".wfn ")

51 cmd = cmdtop + wfntop + str(gridtop) + " &> " + outf

52 os.system(cmd)

53 stc(wfn)

54

55 def nci(wfnorxyz , gridnci):

56 inpnci = wfnorxyz.replace (". wfn\n", ".nci")

57 outf = wfnorxyz.replace (".wfn\n", "-nciplot.out")

58 with open (inpnci , 'w') as f:

59 f.write ("1\n")

60 f.write(wfnorxyz)

61 f.write(gridnci)

62 cmd = cmdnci + inpnci + " >> " + outf

63 os.system(cmd)

64

65 def both(wfnorxyz , gridtop , gridnci):

66 elf(wfnorxyz , gridtop)

67 nci(wfnorxyz , gridnci)

68

69 def coffee(array):

70 if len(array) > 5:

71 c = "I'll take time , you can go for beer"

72 c = '{:*^72}'.format(c)

73 print(c)

74 elif len(array) > 2:

75 c = "I'll take time , you can go for coffee"

76 c = '{:*^72}'.format(c)

77 print(c)

78

79 # Cute header

80 b = "holi , I hope I'll be useful"

81 b = '{:*^72}'.format(b)

82 a = '{:=^72}'.format('=')

83 print(a)

84 print(b)

85 #print(b) ABBA

86 print(a)

87
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88 # Grid option , optional

89 gridtop = '7' #defoult value

90 gridnci = '' #defoult value

91 if (datalines [-1]. lower () in gridoption):

92 if datalines [-1]. lower () == gridoption [0] : gridtop = '8'

93 if datalines [-1]. lower () == gridoption [1] : gridtop = '9'

94 if datalines [-1]. lower () == gridoption [0] : gridnci = datalines [-1]. upper ()

95 if datalines [-1]. lower () == gridoption [1] : gridnci = datalines [-1]. upper ()

96 datalines = datalines [:-1]

97

98 #-----------------

99 # What will we do?

100 if (datalines [-2]. lower () in {'elf\n', 'nci\n'}): #launch both

101 datalines = datalines [:-2]

102 coffee(datalines)

103 with tqdm(total =100) as pbar:

104 for i in range(len(datalines)):

105 both(datalines[i], gridtop , gridnci)

106 pbar.update (100/ len(datalines))

107 elif datalines [-1]. lower() == 'elf\n': #launch ELF

108 datalines = datalines [:-1]

109 coffee(datalines)

110 with tqdm(total =100) as pbar:

111 for i in range(len(datalines)):

112 elf(datalines[i], gridtop)

113 pbar.update (100/ len(datalines))

114 elif datalines [-1]. lower() == 'nci\n': #launch NCI

115 datalines = datalines [:-1]

116 with tqdm(total =100) as pbar:

117 for i in range(len(datalines)):

118 nci(datalines[i], gridnci)

119 pbar.update (100/ len(datalines))

120

121 # A cerrar el chiringuito

122 d = 'Bueno , ADIOS'

123 d = '{:*^72}'.format(d)

124 print(a)

125 print(d)

126 print(a)

127

128

129 # Ahhhhh ... delate temporal files

130 cmd = "rm -f *-stc.out *nci *res *tmp1 *tmp2"

131 os.system(cmd)
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The wapper code can be written with a bash writer that install TopMod, NCI and

even python3 if the computer does not have some of the software required.

1 #!/bin/bash

2 ########################################################################

3 # Bash wrapper writer. This code look around to know if your computer

4 # has everything ok to the correct wapper use.

5 #

6 # Victoria Castor

7 # Grupo de Investigación Julia Contreras -García

8 # Paris , Ile de France , Republique Francaise

9 ########################################################################

10 # Paperback Writer

11

12 OS=`uname` # macOS or Linux flavour

13

14 # the wrapper was written for python3

15 # do we have it?

16 if ! ( command -v python3 &> /dev/null || command -v python &> /dev/null ); then

17 if [ "$OS" = 'Darwin' ]; then

18 if ! command -v brew &> /dev/null; then

19 curl -fsSL https :// raw.githubusercontent.com/Homebrew/install/HEAD/install.sh

20 fi

21 brew install python

22 else

23 sudo apt -get install python3 .8

24 fi

25 fi

26 # Ok, we have it, but where?

27 if command -v python3 &> /dev/null; then

28 interpreter =( $(type python3) )

29 firstline="#!${interpreter [2]}"

30 pip3 install tqdm &> /dev/null

31 elif command -v python &> /dev/null; then

32 interpreter =( $(type python) )

33 firstline="#!${interpreter [2]}"

34 pip install tqdm &> /dev/null

35 echo "Be carfule with the python version that you're using"

36 fi

37

38 # One: don't pick up the phone

39 touch wrapper.py

40 echo $firstline > wrapper.py

41 sed -n 2,11p raw_code.txt >> wrapper.py

42

43 ########################################################################

44 # Is everything installed for proper wrapper operation?
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45

46 # TopMod

47 if [[ ! -f "./ topmod.exe" ]]; then

48 if ! command -v gfortran &> /dev/null; then

49 if [ "$OS" = 'Darwin' ]; then

50 if ! command -v brew &> /dev/null; then

51 curl -fsSL https :// raw.githubusercontent.com/Homebrew/install/HEAD/install.

sh

52 fi

53 brew install gcc

54 else

55 sudo apt -get install gfortran

56 fi

57 fi

58 gfortran topmod.f90 -o topmod.exe

59 else

60 if [ ! -x "./ topmod.exe" ]; then chmod +x ./ topmod; fi

61 fi

62 echo 'cmdtop = "'`pwd`'/topmod.exe "' >> wrapper.py

63

64 # NCI plot

65 if [[ ! -f "./ nciplot" ]]; then

66 if ! command -v git &> /dev/null; then

67 if [ "$OS" = 'Darwin' ]; then

68 if ! command -v brew &> /dev/null; then

69 curl -fsSL https :// raw.githubusercontent.com/Homebrew/install/HEAD/install.

sh

70 fi

71 brew install git

72 else

73 sudo apt -get install git

74 fi

75 else

76 git clone https :// github.com/juliacontrerasgarcia/nciplot.git

77 ( cd ./ nciplot/src_nciplot_4 .0 ; make mrproper; make )

78 echo 'export NCIPLOT_HOME='`pwd`'/nciplot/' >> ~/. bash_profile

79 echo 'cmdnci = "'`pwd`'/nciplot/src_nciplot_4 .0/ nciplot "' >> wrapper.py

80 fi

81 else

82 if [ ! -x "./ nciplot" ]; then chmod +x ./ nciplot; fi

83 echo 'cmdnci = "'`pwd`'/nciplot "' >> wrapper.py

84 fi

85

86 # sbf_to_cube

87 if ! command -v sbf_to_cube &> /dev/null; then

88 curl -O https ://www.lct.jussieu.fr/pagesperso/silvi/topmod09.tar

89 tar -xvf topmod09.tar
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90 if [ "$OS" = 'Darwin' ]; then

91 ( cd ALL ; sed -i '' 's/ifort/gfortran/' 'Makefile' ; make all ; make install )

92 else

93 ( cd ALL ; sed -i 's/ifort/gfortran/' 'Makefile' ; make all ; make install )

94 fi

95 fi

96 echo 'cmdstc = "sbf_to_cube "' >> wrapper.py

97

98 ########################################################################

99 # c'est fini (about prerequisites)

100 sed -n '15,$p' raw_code.txt >> wrapper.py

101

102 # don't forget give executable permissions

103 chmod +x wrapper.py

104

105 # et voila; danke schon!

106 echo ""

107 echo "Everthing done , examples given in the directory: examples"

108 echo ""

109 echo " Grupo de investigación Julia Contreras -García"

110 echo ""

111 echo "Read the README.md file to know the wapper limits"

112 echo ""

113 echo "Run as:"

114 echo "./ wraper.py input1.inp"
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A.3 Geometries of water clusters

Water clusters coordinates in Å, xyz format:
Set 1:

(H2O)2 dimer

6
O -1.50717734 -0.01619638 0.11951854
H -0.55462931 -0.00590939 -0.02463337
H -1.85013806 0.10494076 -0.76562865
O 1.38293589 0.01487256 -0.11662184
H 1.71184985 -0.79058159 0.28742259
H 1.68684912 0.70214076 0.47966586

(H2O)3 trimer

9
O -1.36001 -0.85106 -0.10182
O 1.42013 -0.73548 -0.08494
O -0.06465 1.59564 0.11259
H 0.51728 -1.08942 -0.13293
H -1.19423 0.10545 -0.06990
H 0.68178 0.97430 0.10814
H -1.88445 -1.01261 0.68352
H 1.81248 -1.20503 0.65213
H 0.10337 2.15447 -0.64751

(H2O)4 tetramer

12
O 1.31666042 1.40884898 -0.10114327
H 1.47328619 0.44417348 -0.08491592
H 1.79749876 1.72180026 0.66627582
O -1.41340625 1.30240188 -0.09052136
O -1.31671813 -1.40889027 0.10125318
H -0.45453416 1.48581031 -0.13146100
H -1.72328997 1.84965743 0.63201522
H -1.47310906 -0.44417044 0.08503586
H -1.79738828 -1.72162437 -0.66636287
O 1.41342833 -1.30238915 0.09042744
H 1.72324141 -1.84954643 -0.63221482
H 0.45458012 -1.48587176 0.13149983

(H2O)5 pentamer c

15
O -2.18682590 0.70240485 -0.11509339
O 0.00193252 2.28084187 -0.03021546
O 2.18219860 0.70806706 0.14906488
O 1.34929802 -1.83518722 -0.16063803
O -1.33691158 -1.86386018 0.08983282
H -2.75012938 1.09343667 0.55370746
H 0.20569627 2.79518292 -0.81257865
H 2.69347386 0.65837274 0.95760056
H 1.48372603 -2.28154279 -0.99761654
H -1.70854960 -2.17468813 0.91603044
H -1.40584413 1.29338678 -0.12471993
H 0.80956259 1.74235059 0.10033626
H 1.92106123 -0.22175430 -0.01423718
H 0.37965165 -1.87990920 -0.03152929
H -1.70618177 -0.96296625 -0.01059971

(H2O)5 pentamer p

15
O -1.51022296 0.13289323 -1.32180293
O -1.31497666 -0.21222089 1.59611094
O 0.26111778 -1.78346738 -0.19132577
O 2.29342630 -0.00663568 -0.14127916
O 0.25609218 1.68441833 0.13141449
H 1.09927586 1.18101387 0.06492892
H 2.88255467 -0.25821138 0.57161957
H 1.67703015 -0.76748891 -0.21617951
H -0.33022741 -1.41182666 -0.86016435
H -0.20778080 -1.51593848 0.61453001
H -1.98677753 -0.19744049 0.90761343
H -1.80178626 0.42697033 -2.18516435
H -0.92302221 0.83777012 -1.00349463
H -0.80590129 0.57828396 1.37237998
H 0.51314155 2.60696678 0.14899027
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A.3. GEOMETRIES OF WATER CLUSTERS

Set 2:
(H2O)2 1071

6
8 .1233790528 -.0083889420 .0070230942
1 -1.0603384215 .0689036426 1.3720856473
1 -.8981023766 .0642570990 -1.4835657889
8 4.5988798786 -.3047691677 -3.2937698911
1 3.9654964083 -1.6973561457 -2.3293613342
1 4.1591659475 1.1563325053 -2.3230018774

(H2O)2 2608

6
8 .0960403007 .0462912807 .0630513033
1 -.9032609707 .8737269126 -1.1968313184
1 -.6212218236 -1.6085253290 .1959949374
8 5.1211401465 -.6893768837 -2.2655877418
1 6.4155699672 .0372942654 -1.2326514142
1 3.5862541454 -.3599668341 -1.3677175065

(H2O)2 2894

6
8 -.0307428715 -.1191588926 .0140756184
1 -1.0552864605 1.3345475280 .3421077103
1 1.5432792960 .5569051250 -.5655351448
8 2.4677215526 -4.8224649724 -1.4698566665
1 1.7429721920 -5.4196569023 -3.0153847767
1 1.1265821987 -3.9198735278 -.6591588844

(H2O)2 3427

6
8 .0236190360 .1152220795 -.0388342942
1 -.7787344622 -1.2199165880 -.9576327371
1 .4038208718 -.6090455917 1.5740636818
8 -.5415832182 3.5224573326 -4.4589440266
1 -.0287341444 5.2483463570 -4.6287965491
1 -.0465633375 3.0654193722 -2.7806625851

(H2O)2 3451

6
8 .0969483060 .0427843661 -.0641296567
1 -.1172864297 .0149298264 1.7313882572
1 -1.4216094638 -.6940617061 -.7134347792
8 3.9511342861 3.1420071002 -3.0191190915
1 2.8815801145 1.9967248856 -2.1163790960
1 3.0550001719 4.7126724806 -2.9965162416

(H2O)2 469

5
8 .1090805717 -.0558536666 -.0179968243
1 -1.5022829047 -.8331820034 .2462481005
1 -.2291928762 1.7197676673 .0394220683
8 -.8482815197 -5.2472278379 .1342524220
1 -.5100076705 -7.0228490927 .0768334454
1 .7630817791 -4.4698991243 -.1299924774

(H2O)2 5218

6
1 .5121172060 -1.3918360158 .9012284817
1 -1.3288848525 .7940597088 .7843586751
8 -1.8867339535 -1.3107376492 5.2053244542
1 -2.4993812397 .0958088815 6.1628458046
1 -.6583791793 -2.0900868415 6.2797156128

(H2O)2 5624

6
8 .0906718517 .0829379657 .0155562862
1 -1.1648789156 -.4225365146 1.2149914853
1 -.2743885250 -.8939681264 -1.4619221012
8 4.2122951076 3.8530059670 .7226903349
1 2.5353719068 4.1475287294 .1129839322
1 4.2686071652 2.0761026346 1.0543535317

(H2O)2 6003

6
8 -.0744156896 .0989936649 .0021559987
1 1.2604112587 -.3076544216 1.1525608528
1 -.0791838209 -1.2637082017 -1.1867838080
8 -4.2330266362 -2.2376028826 -2.2389367138
1 -4.2241469143 -1.0498575712 -.8752141605
1 -5.5305246607 -3.4193728251 -1.8025015458
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A.3. GEOMETRIES OF WATER CLUSTERS

(H2O)2 6280

6
8 .0885935293 -.0865536004 -.0013227583
1 -1.6924004590 -.3285073071 .1988666369
1 .2861229889 1.7024042404 -.1778700113
8 -4.1106552457 4.0160044923 .0613747216
1 -5.8916492339 3.7740507850 .2615641168
1 -3.9131257867 5.8049623333 -.1151725313

(H2O)2 7218

6
8 -.0364056832 -.1179669287 .0100259082
1 -.5239947153 1.0879811635 -1.2463590293
1 1.1018754305 .7845510105 1.0872141239
8 2.3782834454 -4.6960848962 -2.2676442611
1 3.7553576153 -3.8942944477 -3.1228376798
1 1.4875960964 -3.3388971559 -1.4706031955

(H2O)2 7975

6
8 .0744905069 .0989462039 -.0017035254
1 .5477750638 -1.6444796414 -.0855189567
1 -1.7301901045 .0738703847 .1125596377
8 4.2351854084 4.1508181672 -.1422359253
1 3.3878467786 5.7451677294 -.0391646082
1 2.9049909561 2.9265144010 -.0951192236

(H2O)2 8332

6
8 .0236612951 -.1172133814 -.0322994613
1 -1.3829412185 .5067569279 .9177991642
1 1.0073568337 1.3538139147 -.4050980097
8 -4.4997302660 -1.6552649138 2.4810723139
1 -5.9986140613 -2.2479451939 3.3012152468
1 -3.7406091429 -3.1450611139 1.7920154374

(H2O)2 8824

6
8 .0104519406 -.1220836016 .0181229144
1 -1.5063358121 .8396122268 -.1941340608
1 1.3404283394 1.0982654010 -.0935375832
8 4.2461948311 .4511089490 3.1653641179
1 5.7629825519 -.5105869297 3.3776210922
1 2.9162183940 -.7692400160 3.2770245721

Set 3:
(H2O)2 4170

6
O -1.62893 -0.04138 0.37137
H -0.69803 -0.09168 0.09337
H -2.06663 -0.73498 -0.13663
O 1.21457 0.03172 -0.27623
H 1.44927 0.91672 -0.58573
H 1.72977 -0.08038 0.53387

(H2O)3 4180

9
O -1.38183 -0.79188 -0.17297
H -0.45433 -1.10048 -0.23187
H -1.81183 -1.39808 0.44213
O 1.41257 -0.77648 -0.31737
H 1.22807 0.17372 -0.17317
H 1.93037 -1.04028 0.45363
O 0.01887 1.60382 0.21583
H -0.73003 0.98002 0.13523
H -0.21183 2.34962 -0.35147

(H2O)3 4181

9
O -1.13187 -1.11979 -0.35833
H -1.76867 -1.58319 0.19837
H -1.23847 -0.17309 -0.13963
O 1.56013 -0.35109 -0.32593
H 0.77843 -0.93769 -0.31313
H 2.23183 -0.81009 0.19197
O -0.44827 1.56921 0.01767
H -0.42977 2.22941 0.72047
H 0.44663 1.17631 0.00857
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A.3. GEOMETRIES OF WATER CLUSTERS

(H2O)4 4182

12
O -1.32019 -1.38034 -0.35874
H -1.73839 -1.59494 -1.20154
H -1.48339 -0.41684 -0.23524
O 1.40521 -1.34194 -0.00334
H 0.44761 -1.48074 -0.18804
H 1.61711 -1.97904 0.68986
O 1.30901 1.37056 0.43066
H 1.46721 0.40266 0.33856
H 1.95091 1.78236 -0.16074
O -1.39399 1.35196 -0.06864
H -0.43159 1.49496 0.08506
H -1.82949 1.79136 0.67216

(H2O)4 4183

12
O 1.39868 -1.34774 -0.12067
H 1.65578 -2.01444 0.52783
H 0.43717 -1.49494 -0.27167
O 1.31918 1.31006 0.57663
H 1.47618 0.36556 0.34493
H 1.99548 1.80066 0.09423
O -1.39872 1.34796 0.12003
H -0.43722 1.49516 0.27143
H -1.65532 2.01416 -0.52907
O -1.31942 -1.31014 -0.57607
H -1.47632 -0.36564 -0.34467
H -1.99542 -1.80064 -0.09297

(H2O)4 4184

12
O 1.64293 -0.31429 0.72092
H 1.35033 0.42881 0.15752
H 2.59073 -0.18659 0.84522
O -1.75747 0.21311 0.84372
H -1.45837 0.23551 1.76222
H -1.40477 -0.63249 0.49152
O 0.03963 1.28881 -0.91638
H -0.70197 1.14211 -0.28528
H -0.08137 2.17951 -1.26548
O -0.36937 -1.72189 -0.70638
H -0.33487 -1.03929 -1.39408
H 0.48453 -1.59329 -0.25348

(H2O)5 4185

15
O -1.25876 -1.92002 -0.34906
H -1.63856 -1.06322 -0.04126
H -1.79946 -2.17022 -1.10806
O -2.21496 0.50378 0.45924
H -1.49466 1.17408 0.52224
H -2.69616 0.57528 1.29204
O -0.10936 2.26268 0.56254
H 0.13574 2.70198 1.38584
H 0.71374 1.79938 0.27624
O 2.12914 0.90148 -0.20406
H 1.92084 -0.04832 -0.37116
H 2.57754 1.19728 -1.00576
O 1.43694 -1.69192 -0.67766
H 0.46344 -1.81652 -0.57636
H 1.83454 -2.40572 -0.16476

(H2O)5 4186

15
O 0.05779 -1.97966 -0.32416
H -0.05881 -1.77056 0.62374
H 0.01139 -2.94156 -0.38686
O -0.15931 -0.34226 1.89564
H 0.60239 0.09544 1.43704
H 0.01219 -0.25346 2.84064
O 1.76089 0.46694 0.17584
H 1.64909 -0.35556 -0.32646
H 1.33679 1.14134 -0.39836
O 0.11909 2.12534 -1.35296
H -0.66761 1.58174 -1.12326
H 0.11909 2.17434 -2.31656
O -1.78931 0.29414 -0.48306
H -1.64291 0.29974 0.47804
H -1.35071 -0.53596 -0.73926

(H2O)5 4187

15
O 1.84379 -0.11504 -0.12363
H 1.34249 -0.78144 -0.64713
H 2.76169 -0.20414 -0.40763
O 0.05569 -1.81254 -1.35843
H -0.73261 -1.32314 -1.03713
H -0.03131 -2.69024 -0.96553
O -1.80581 -0.17524 -0.11693
H -2.72801 -0.32044 0.12677
H -1.31491 -0.06624 0.73537
O -0.14231 0.44826 1.95117
H -0.08431 1.33706 1.55037
H 0.69319 0.05536 1.64437
O 0.05559 2.25186 -0.28463
H -0.70911 1.75366 -0.61393
H 0.79589 1.64226 -0.45313
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(H2O)5 4188

15
O -0.10070 0.03763 2.15322
H 0.70500 -0.10157 1.62652
H -0.31380 0.96103 1.94502
O 1.64720 0.06823 -0.22778
H 1.22860 -0.67177 -0.73528
H 2.56420 0.09893 -0.52618
O -1.85160 -0.56057 -0.05818
H -1.41190 -0.57577 0.81552
H -1.74680 0.37533 -0.30138
O -0.40190 1.98003 -0.09018
H -0.31750 2.83123 -0.53658
H 0.41950 1.49033 -0.30038
O 0.12720 -1.78967 -1.48298
H -0.69420 -1.42657 -1.06728
H 0.14670 -2.71677 -1.21408

(H2O)5 4189

15
O 1.56145 -1.74294 -0.59077
H 0.59395 -1.91244 -0.57957
H 1.76525 -1.58834 -1.52187
O -1.21465 -1.96274 -0.39767
H -1.43345 -1.10404 0.01993
H -1.52545 -2.62574 0.23163
O -1.32745 0.56796 0.84243
H -1.80735 0.79696 1.64793
H -0.36505 0.53266 1.09613
O 1.34295 0.58056 0.97163
H 1.32735 1.26686 0.28053
H 1.58425 -0.23524 0.48163
O 0.12675 2.29596 -1.02307
H 0.01225 3.24316 -0.87467
H -0.64075 1.88736 -0.58427

(H2O)5 4190

15
O -1.32243 0.59037 0.90663
H -1.45523 -0.20793 0.33723
H -2.04913 0.57577 1.54073
O -1.39863 -1.63223 -0.64977
H -0.44823 -1.89543 -0.67967
H -1.64863 -1.52953 -1.57657
O 1.30577 -2.00243 -0.72337
H 1.80877 -2.69053 -0.27147
H 1.55767 -1.16063 -0.27377
O 1.60977 0.35717 0.62673
H 1.46147 1.16127 0.09423
H 0.78327 0.32217 1.13713
O 0.16347 2.58237 -0.45147
H 0.16867 3.44907 -0.02697
H -0.53653 2.08057 0.01033

(H2O)5 4191

15
O 1.43791 -1.95305 -0.15367
H 0.48771 -2.04965 -0.37587
H 1.64141 -2.72235 0.39203
O -1.36189 -1.89445 -0.54687
H -1.51469 -0.95345 -0.32147
H -1.93019 -2.38015 0.06343
O -1.35999 0.78675 0.35063
H -1.92069 1.14825 1.04813
H -0.45689 0.67515 0.75753
O 1.22651 0.59525 0.97853
H 1.41951 1.22695 0.26193
H 1.47001 -0.28235 0.61313
O 0.59981 2.41115 -1.17637
H 0.53181 3.34765 -0.95067
H -0.27039 2.04425 -0.94037

(H2O)6 4192

18
O -0.74347 1.69528 0.24763
H 0.13813 1.65928 -0.21687
H -1.01187 2.62118 0.19903
O -0.11487 -2.03692 0.31843
H -0.03377 -1.51552 1.13993
H -0.92247 -1.66862 -0.08997
O 1.61483 1.44548 -0.98307
H 2.39553 1.68068 -0.46577
H 1.73543 0.48028 -1.17757
O 1.87853 -1.21202 -1.31017
H 1.78343 -1.65672 -2.16087
H 1.16953 -1.59782 -0.73297
O 0.01793 -0.02932 2.35453
H -0.48047 0.02188 3.17893
H -0.33587 0.68908 1.79423
O -2.16277 -0.48102 -0.87327
H -1.81777 0.36818 -0.53077
H -3.10997 -0.46332 -0.69137
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A.3. GEOMETRIES OF WATER CLUSTERS

(H2O)6 4193

18
O -2.46557 -1.25995 0.27464
H -3.10787 -1.76475 -0.23856
H -1.59027 -1.44595 -0.15216
O -0.06527 -1.42365 -0.94636
H 0.71813 -1.68105 -0.41606
H 0.09053 -0.48185 -1.13586
O 2.23433 -1.74905 0.62684
H 3.04253 -2.13085 0.26334
H 2.42133 -0.78865 0.70254
O 2.42443 1.02535 0.62684
H 1.62093 1.30875 0.14194
H 2.43163 1.55465 1.43334
O -2.29767 1.43655 0.27944
H -2.48167 0.46425 0.30834
H -2.46007 1.74795 1.17814
O 0.13263 1.49825 -0.88316
H 0.10223 2.11595 -1.62406
H -0.75027 1.57405 -0.43916

(H2O)6 4194

18
O 2.17293 1.43957 -0.25833
H 3.06403 1.70497 -0.00013
H 2.26613 0.50357 -0.56873
O 2.20403 -1.18883 -0.87953
H 2.02413 -1.51613 -1.76923
H 1.42813 -1.48173 -0.33603
O 0.08583 -1.67893 0.73777
H 0.01783 -0.81293 1.17657
H -0.75757 -1.74633 0.24217
O -2.27177 -1.49033 -0.76793
H -3.11417 -1.86223 -0.47933
H -2.37237 -0.51963 -0.65483
O -2.23077 1.23177 -0.24643
H -2.11167 1.86957 -0.96103
H -1.43427 1.33357 0.31637
O 0.04013 1.18147 1.37107
H 0.11733 1.65587 2.20767
H 0.87203 1.37677 0.86997

(H2O)6 4195

18
O 0.74406 -1.20529 -1.33714
H 1.59616 -0.84469 -0.99614
H 0.98376 -1.81999 -2.04104
O -0.86664 1.20781 -1.17484
H -0.41784 0.41231 -1.51434
H -1.71984 0.86171 -0.83984
O 0.62886 1.41881 1.03566
H 0.04506 1.48771 0.23006
H 0.56306 2.27261 1.48026
O -0.62844 -1.24019 1.24126
H -0.18474 -1.46479 0.40306
H -0.19434 -0.40579 1.49326
O 2.78016 0.11211 -0.08904
H 2.16106 0.68411 0.41646
H 3.33216 -0.31169 0.57996
O -2.91244 -0.00629 0.28756
H -2.23494 -0.58619 0.70336
H -3.67514 -0.57229 0.12156

(H2O)6 4196

18
O 0.05762 -2.41498 1.07129
H 0.30222 -3.34768 1.08379
H 0.90642 -1.92818 0.94519
O 2.38772 -1.05478 0.69229
H 2.30672 -0.26788 0.10289
H 2.84922 -0.72518 1.47289
O 2.16842 1.11852 -0.93921
H 1.35912 1.66762 -0.81631
H 2.22172 0.95842 -1.88881
O -2.17768 -1.44608 -0.15131
H -2.22568 -1.83118 -1.03431
H -1.36668 -1.83348 0.25319
O -0.05838 2.60992 -0.44361
H -0.31258 3.38922 -0.95161
H -0.90338 2.13292 -0.26561
O -2.38058 1.26722 0.03149
H -2.30898 0.28582 -0.03631
H -2.82518 1.41972 0.87409
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A.3. GEOMETRIES OF WATER CLUSTERS

(H2O)6 4197

18
O -2.23515 1.40378 0.82251
H -2.34935 1.54538 1.77021
H -2.25655 0.42508 0.71121
O -2.18785 -1.30242 0.50051
H -1.47275 -1.68642 -0.05879
H -2.95655 -1.86462 0.35091
O -0.15595 -2.36052 -0.98359
H 0.74085 -2.05742 -0.70449
H -0.14335 -2.30032 -1.94619
O -0.00845 2.54928 -0.25239
H -0.26005 2.78758 -1.15259
H -0.81925 2.14018 0.13421
O 2.31915 -1.49432 -0.23289
H 2.67645 -1.90722 0.56271
H 2.34295 -0.52742 -0.04459
O 2.28495 1.17828 0.30441
H 1.46825 1.68238 0.07941
H 3.01265 1.78878 0.13951

(H2O)6 4197

18
O -2.23515 1.40378 0.82251
H -2.34935 1.54538 1.77021
H -2.25655 0.42508 0.71121
O -2.18785 -1.30242 0.50051
H -1.47275 -1.68642 -0.05879
H -2.95655 -1.86462 0.35091
O -0.15595 -2.36052 -0.98359
H 0.74085 -2.05742 -0.70449
H -0.14335 -2.30032 -1.94619
O -0.00845 2.54928 -0.25239
H -0.26005 2.78758 -1.15259
H -0.81925 2.14018 0.13421
O 2.31915 -1.49432 -0.23289
H 2.67645 -1.90722 0.56271
H 2.34295 -0.52742 -0.04459
O 2.28495 1.17828 0.30441
H 1.46825 1.68238 0.07941
H 3.01265 1.78878 0.13951

(H2O)6 4198

18
O 0.16151 2.68014 0.33887
H 0.15441 3.14764 1.18267
H -0.71439 2.22824 0.29707
O -2.37769 -1.25616 0.34227
H -1.57149 -1.76056 0.08037
H -2.68199 -1.68416 1.15147
O 2.37581 1.25514 -0.34393
H 2.68001 1.68134 -1.15413
H 1.57121 1.76164 -0.08123
O -0.16139 -2.67826 -0.34043
H 0.71521 -2.22786 -0.29773
H -0.15519 -3.14416 -1.18513
O 2.27191 -1.46176 -0.28273
H 2.88361 -1.70536 0.42227
H 2.30001 -0.47596 -0.30983
O -2.27099 1.46124 0.28617
H -2.88119 1.70334 -0.42063
H -2.29929 0.47554 0.31467

(H2O)6 4199

18
O -1.79811 -1.11803 0.29643
H -1.60791 -1.24303 -0.64937
H -1.90481 -0.14133 0.33103
O -1.49921 1.63167 -0.11147
H -1.23721 1.33877 -1.00197
H -0.64911 1.77147 0.34383
O -0.60861 -0.21643 -2.21377
H -0.54641 -0.30363 -3.17257
H 0.31869 -0.28453 -1.88357
O 1.81129 -0.36793 -0.93297
H 1.92129 0.49077 -0.49267
H 1.58999 -0.94653 -0.17997
O 0.57579 -1.27763 1.49293
H -0.34651 -1.31923 1.11233
H 0.61399 -1.96433 2.16943
O 1.06539 1.44067 1.26373
H 1.37399 1.97167 2.00813
H 0.92749 0.53757 1.62053
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