
Energy Decomposition Analysis of Drug/Protein 
Interactions
Lorena Ruano de Domingo

Máster en Química Teórica y Modelización 

Computacional

MÁSTERES 
DE LA UAM
2021-2022

Facultad de Ciencias



 
 

 

 

 

 

 

 

 

 

 

 

  
 M

as
te

r 
T

h
es

is
. C

o
u

rs
e 

20
21

-2
02

2 

Energy Decomposition Analysis of 

Drug/Protein Interactions 

Lorena Ruano de Domingo 

Master Erasmus Mundus in 

Theoretical Chemistry and Computational Modelling  

Director: Juan José Nogueira Pérez 

Codirector: Marcos Mandado Alonso 

Places where the project was carried out:  

Autonomous University of Madrid / Department of Chemistry 

University of Vigo / Department of Physical Chemistry  

Master Erasmus Mundus in 

Theoretical Chemistry and Computational Modelling  



 
 

 

 



1 
 

 

ACKNOWLEDGMENT 

I would like to thank my director Juan José Nogueira Pérez for trusting, teaching and 

helping me since my Bachelor Thesis, and my codirector Marcos Mandado Alonso for 

teaching me and for his help during my stay in Vigo. Of course, thanks both for your 

patience. 

Thanks all the members of MoBioChem group for their support and specially Gustavo, 

who has been helping me since my Bachelor Thesis too. 

Thanks my friends and classmates of the EMTCCM for accompanying me in this stage, 

specially Javi, Nuria, Sergio, etc. and my non-theoretical chemist friends that although 

they do not understand anything, they listen to my troubles in programming and trust me 

more than me, Ana. 

My family, who has worked hard to give me the opportunity to get here. Thanks for all 

your support and for cheering me up. 

Finally, thanks CCC-UAM and Vigo’s cluster for the computational time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

 

ABSTRACT 

The presence of proteins in our organisms is essential for their correct functioning due to 

the large number of processes in which they are involved, in particular, as target to drugs. 

Therefore, the study of drug/protein interactions is very important to understand the mode 

of action of those drugs and develop improved ones. In this study, a Python code has been 

developed to automatically compute the interaction energy between 20 amino acids and 

300 drugs and to perform an energy decomposition analysis based on deformation 

electron densities. The results of these calculations reveal that, among the attractive 

energy contributions of the systems, namely electrostatic, dispersion and induction, the 

electrostatic energy contribution dominates for most of the drug/amino acid pairs. 

Moreover, the distributions of these attractive energy terms are relatively broad, which 

might indicate that there exist a structure/EDA relation. Thus, an analysis of the EDA 

based on the presence of eight of the most frequent polar functional groups in bioactive 

molecules and some non-polar groups was carried out, leading to the conclusion that the 

classification of the systems based only in the presence of one functional group is not 

possible. In the future, a more complex analysis, taking into account different groups 

simultaneously, will be performed to find out the relation between chemical structure and 

EDA.   
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RESUMEN 

La presencia de proteínas en nuestros organismos es esencial para su buen 

funcionamiento debido al gran número de procesos en los que están involucradas, en 

particular, actuando como moléculas diana de medicamentos. Por lo tanto, el estudio de 

las interacciones medicamento/proteína es muy importante para comprender el modo de 

acción de estos medicamentos y desarrollar otros con propiedades mejoradas. En este 

estudio, se ha desarrollado un código de Python que calcula de manera automática la 

energía de interacción entre 20 aminoácidos y 300 medicamentos, y realiza un análisis de 

la descomposición de la energía basado en la densidad de deformación electrónica. Los 

resultados de estos cálculos revelan que, de entre las diferentes contribuciones de la 

energía atractiva de los sistemas, electrostática, dispersión e inducción, la contribución 

de energía electrostática es la que domina para la mayoría de los complejos 

medicamento/aminoácido. Además, las distribuciones de estos términos de energía 

atractivos son anchas, indicando que podría existir alguna relación entre la estructura del 

medicamento y los resultados del análisis EDA. Por lo que se realiza un análisis de la 

presencia de ocho de los grupos funcionales polares más frecuentes en moléculas 

bioactivas y algunos grupos no polares, lo que lleva a la conclusión de que no es posible 

una clasificación de los sistemas basada únicamente en la presencia de un único grupo 

funcional. En el futuro, se realizará un análisis más complejo teniendo en cuenta varios 

grupos al mismo tiempo para encontrar la relación entre la estructura del fármaco y los 

resultados obtenidos del EDA. 
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1 INTRODUCTION 

Proteins are crucial components of every organism because almost all processes that cells 

carry out need their presence. There are thousands of different proteins in all cellular 

systems and they are the major constituents of our organisms.1-3 The importance of this 

group of molecules was pointed out by the German chemist Gerardus Mulder in 1838, 

who employed for the first time the word “protein” from the greek “proteios”, that means 

“fundamental” or “essential”.4 Proteins are macromolecules mainly formed by small 

building blocks called amino acids joined together by peptide bonds, although many 

proteins need other components called cofactors or prosthetic groups to function 

correctly. There are hundreds of amino acids in nature, but just 20 amino acids make up 

the proteins. They are composed by a central carbon (α carbon) surrounded by an amino 

(NH2) and a carboxyl (COOH) groups, a hydrogen atom and a side chain (R-chain) which 

depends on the amino acid. The first and last amino acids of the polypeptide chain have 

their amino and carboxyl groups free and are usually called amino- or N-terminus and 

carboxy- or C-terminus, respectively.5 (see Figure 1) 

 

Figure 1. Schematic representation of the formation of peptide bond and labels of the principal 

moieties of an amino acid. 

Every protein has a specific structure that is determined by the sequence of amino acids 

and, therefore, by the sequence of nucleotides in the DNA, whose proper folding in a 

unique three-dimensional structure allows the protein to be biologically active and 

functional.4 Due to the huge number of combinations of the monomeric units (amino 

acids), proteins execute myriad functions.1, 6 Likely, the most important functions are 

performed by enzymes, which act as catalysts speeding up many reactions, for example, 

the lactase enzyme, which catalyses the degradation of lactose into simpler sugar 

molecules. But there are many other types of proteins: (i) transport proteins embedded in 

cell membranes, e.g., ion channels, which allow the flow of substances through the lipid 
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bilayer; (ii) transport proteins present in the blood stream, e.g., the haemoglobin protein, 

in charge of the oxygen transport through the organism; (iii) defensive proteins acting as 

immune protection, e.g., antibodies; (iv) signalling proteins such as hormones, e.g., 

insulin, or other cell surface receptors, which transmit signals into or between cells or 

transmit nervous impulses; (v) structural proteins which are involved in the rigidity of the 

cell and in the contractile function in the muscle cells, e.g., collagen, actin and myosin; 

and (vi) regulatory proteins which control the activity of other proteins. These are some 

of the most relevant protein classes, but there are many more in charge of a range of 

relevant biological functions.2, 4-7 

As explained above, proteins are implied in many biological processes in our organisms 

by interacting with other molecules, including the interaction with drugs.8 Pharmacology 

aims to investigate the metabolic route of the drugs once they have entered our bodies. 

Specifically, the drug/protein interactions are intensively investigated in many research 

studies since the drug/protein binding process determines, in a great extent, the 

distribution, toxicity and activity of the drugs and, therefore, their therapeutic efficiency.9 

One example is the binding of drugs with blood proteins as albumin, that controls osmotic 

pressure, among other functions.10 Hence, the study of drug/protein interactions is crucial 

to understand the mode of action of those drugs once they are in our organism, and to 

develop novel therapeutic agents with enhanced efficacy.8 The application of 

experimental techniques often remains the most trustworthy approach, but the 

experimental characterization of a huge number of drug/protein pairs is very time-

consuming and costly due to sample volume and instrumentation.11, 12 Thus, 

computational methods have gained popularity since they can be applied in a systematic 

and efficient way and can provide molecular information which is not attainable by 

experimental measurements.11  

The complexity of biological systems, such as proteins, requires the use of 

approximations in the theoretical models to handle a large number of atoms and run 

longer simulation times. Most of the theoretical approximations simplify the calculation 

of the interatomic interactions, which is the most time-consuming step in computational 

modelling. This is the case of force fields, which are simple analytical functions that are 

parameterized based on quantum mechanical calculations or experimental measurements. 

Force fields are widely employed in classical molecular dynamics simulations of 
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biological systems.13-15 The aim of a force field is to capture the nature of the interatomic 

interactions by describing the dependency of the potential energy on the coordinates of 

the system in a simplistic way and, thus, at a low computational cost.16 There are many 

different force fields but a common expression employed is the one of Equation (2), which 

split the potential energy in bonding and non-bonding interactions: 

 

𝑉 = ∑ 𝑉𝑏

𝑁𝑏

𝑖=1

+ ∑ 𝑉𝑎

𝑁𝑎

𝑖=1

+ ∑ 𝑉𝑑

𝑁𝑑

𝑖=1

+ ∑ 𝑉𝑛𝑏

𝑁𝑛𝑏

𝑖>𝑗

 (1) 

The first three terms of this equation compose the bonding potential energy, where bond 

distances and angles are usually defined by harmonic potentials, while dihedral angles 

are defined by a Fourier transform. Non-bonding interactions have three components: 

Coulomb, van der Waals and repulsion interactions. The last two interactions are 

modelled by Lennard-Jones potentials, while the interactions between charges are defined 

by Coulomb potential. One of the most common potential shapes reads as:  

 

𝑉 = ∑
1

2
𝑘𝑏(𝑟 − 𝑟0)2

𝑁𝑏

𝑖=1

+ ∑
1

2
𝑘𝑎(𝜃 − 𝜃0)2

𝑁𝑎

𝑖=1

+ ∑ 𝑘𝑡[1 + 𝑐𝑜𝑠(𝑛𝜔 − 𝛾)]

𝑁𝑑

𝑖=1

 

+ ∑
𝑞𝑖𝑞𝑗

4𝜋𝜀𝑟𝑖𝑗
+ 4𝜀𝑖𝑗 [(

𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

]

𝑁𝑛𝑏

𝑖>𝑗

                                          

 

(2) 

This equation has four different terms. In the first one, which corresponds to the potential 

energy of the bond distances (bond stretching), 𝑘𝑏 is the force constant, 𝑟 is the distance 

between the two atoms with the interaction of interest, and 𝑟0 is the equilibrium distance 

between these two atoms. For the second term, which corresponds to the potential energy 

of the angles (angle bending), 𝑘𝑎 is the force constant, 𝜃 is the angle between the atoms 

for which the interaction is calculated, and 𝜃0 is the equilibrium angle between those 

atoms. For the third term, which defines the potential energy of the dihedral angles or 

torsions, 𝜔 is the dihedral angle, 𝑛 is the number of minima that are presented in the 

potential energy curve, 𝑘𝑡 is the energy barrier that has to be overcome to go from one 

minimum to the other, and 𝛾 is the angle which determines the position of the minimum. 

The fourth term represents the non-bonding potential energy, in which the first fraction 

corresponds to electrostatic or coulombic interaction, where 𝑟𝑖𝑗 is the distance between 
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atom 𝑖 and atom 𝑗, 𝑞𝑖 and 𝑞𝑗 are the charges of atoms 𝑖 and atom 𝑗, and 𝜀 is the permittivity 

of the medium. The second fraction corresponds to the repulsion interaction between 

electrons, and the third fraction corresponds to the van der Waals attraction interactions, 

which are dipole-dipole interactions. In both cases, 𝜎𝑖𝑗 is the distance between 𝑖 and 𝑗 

atoms when the potential energy is zero and 𝜀𝑖𝑗 is the maximum attraction energy between 

atoms.16, 17  

 

The accuracy of the simulations depends on the quality of the force field parameters and 

how they are obtained, i.e., the conditions used in the parametrization process. Moreover, 

many force fields are often developed for specific systems. Therefore, the accuracy and 

transferability of the force fields are limited.16 The conventional force fields that describe 

the interactions with Equation (2) (or a similar one) are usually called first generation or 

class I force fields. This class of force fields have some disadvantages: chemical reactions 

cannot be modelled because bonds cannot be formed or broken, and atomic charges are 

fixed (non-reactive and non-polarizable force fields).16, 18 This is the case, for example, 

of the AMBER19 and CHARMM20 force fields, among others.21 There is a second 

generation or class II of force fields that include cross terms as coupling between 

stretching, bending and torsion terms.16 For example, the CFF22 (consistent force field) 

and UFF23, among others, are class II force fields. More advance force fields also include 

the description of polarization interactions. Polarization is the redistribution of electron 

density between atoms chemically bonded due to an electric field created by another 

molecule.21, 24 This redistribution of charge is usually modelled by three different 

methods: fluctuating charges, Drude oscillators and induced point dipoles. In the three 

methods, the charge distribution of the molecules depends on their chemical environment. 

The use of polarizable force fields to model large systems is computationally demanding 

and, therefore, they are barely applied.21 In addition, this type of force fields are usually 

system specific.   

These conventional force fields, including the polarizable ones, have the advantage of 

having physical meaning, although they present a clear limitation: the low flexibility of 

their analytical functions, which precludes an accurate description of the systems and 

processes which were not employed in their parameterization. Machine learning force 

fields (ML-FFs) overcome the limitations of the common force fields by using more 

flexible architectures, but at the price of lacking physical meaning. ML-FFs are very 
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efficient algorithms which are trained with high-level electronic structure methods and, 

therefore, combine the accuracy of ab initio methods and the low computational cost of 

conventional force fields.25  

ML is based on the development and application of algorithms which improve their 

performance by learning from data, imitating, thus, the human learning process carried 

out by our brain. The algorithms receive training data and, then, create a model able to 

make predictions based on the behaviour of the test data. There are different models which 

can be trained, one of them being the artificial neural networks (NNs), which are 

composed by interconnected nodes or neurons that form the input layers with the input 

data, one or more hidden layers where the data is processed during the learning process, 

and the output layers, which provides the prediction made by the model.26 Despite the 

convenient feature of being very flexible, force fields based on ML methods also present 

disadvantages: they need a large number of data to be trained and they do not provide 

physical insight into the nature of the interactions.25 These drawbacks can be circumvent 

by introducing physically inspired data into the ML model. ML-FFs are usually trained 

with quantum mechanical energies and, something, with energy gradient. Here, it is 

suggested to train the ML-FF not only with interaction energies but also with their 

different contributions, namely electrostatic, repulsion, dispersion and induction 

interactions, which are obtained from energy decomposition analysis (EDA) calculations 

based on electron density.27, 28 This EDA approach is used to provide a novel insight in 

the nature of the interactions between the amino acids and a set of drugs taken from ZINC 

database.29 Finally, the employed drugs are classified taking into account their interaction 

energy constituents and structural features.  
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2 OBJECTIVES 

The general goal of this thesis is to characterize by means of computational methods the 

interaction between drugs and amino acids. In order to achieve this general goal, the 

following specific goals are envisaged: 

• Set up all possible complexes formed by 300 drugs from the ZINC database29 and 

the 20 amino acids that compose our proteins. 

• Find the most favourable relative orientations between monomers for each of the 

complexes. 

• Compute the interaction energy curve for all the complexes. 

• Perform an EDA analysis of the interaction energy. 

• Find a relation between the EDA components and the chemical structure of the 

complexes. 

All these steps will be achieved by developing a Python code able to perform each of the 

tasks in an automatic way. The long-term goal of this project is to develop a ML-FF based 

on the training of a NN with interaction energies and their EDA components to model 

drug/protein interactions. 
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3 METHODS 

In this master thesis the interaction energies of a set of systems have been calculated using 

semiempirical and Density Functional Theory (DFT) methods and then, those interactions 

have been decomposed into their different contributions by means of EDA calculations. 

Therefore, these three methods are going to be explain in this section.  

3.1 Interaction Energy and Basis Set Superposition Error (BSSE) 

As has been said previously, the goal of this research is to calculate the interaction energy 

between the amino acids and a set of drugs. The interaction energy between two fragments 

𝐴 and 𝐵 is defined as the difference between the energy of the 𝐴𝐵 complex and the 

energies of the isolated fragments.30  

 𝐸𝑖𝑛𝑡 = 𝐸𝐴𝐵
𝐴𝐵 − 𝐸𝐴

𝐴 − 𝐸𝐵
𝐵 (3) 

where the superscripts indicate the basis sets used to calculate the energies. If these basis 

sets were infinite, Equation (3) were correct but, this is never the case. 

The energy of the isolated fragments is overestimated with respect to the energy of the 

complex because the calculation of the fragments uses a smaller basis set. To be correct 

and have comparable energies of complex and fragments, the basis sets have to be of the 

same size. Furthermore, the interaction of the basis between the fragments within the 

complex leads to a decrease of their energies, i.e., the energies of the fragments are lower 

when they are forming the complex than when they are isolated. This is known as the 

Basis Set Superposition Error (BSSE).31 To solve this problem, it is necessary to introduce 

the counterpoise (CP) technique, in which the energies of the complex and the fragments 

are calculated in the same basis set: the one of the complex using Equation (4). These 

energies will be computed by semiempirical and DFT methods.  

 𝐸𝑖𝑛𝑡
𝐶𝑃 = 𝐸𝐴𝐵

𝐴𝐵 − 𝐸𝐴
𝐴𝐵 − 𝐸𝐵

𝐴𝐵 (4) 

3.2 Semiempirical Methods 

One of the principal issues in quantum chemistry is the resolution of the time-independent 

Schrödinger equation 

 𝐻(𝑟, 𝑅)𝜓(𝑟, 𝑅) = 𝐸(𝑅)𝜓(𝑟, 𝑅) (5) 
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where 𝐻 is the Hamiltonian operator, represented in atomic units in Equation (6), 𝜓 is the 

wavefunction which describes the state of the system, 𝐸 is the energy of the system, and 

𝑟 are the coordinates of the electrons and 𝑅 are the nuclear coordinates. 

 

𝐻(𝑟, 𝑅) = − ∑
1

2
∇𝑖

2

𝑁

𝑖=1

− ∑
1

2
∇𝐴

2

𝑀

𝐴=1

+ ∑ ∑
1

𝑟𝑖𝑗

𝑁

𝑗>𝑖

𝑁

𝑖=1

+ ∑ ∑
𝑍𝐴𝑍𝐵

𝑅𝐴𝐵

𝑀

𝐵>𝐴

𝑀

𝐴=1

+ ∑ ∑
𝑍𝐴

𝑟𝑖𝐴

𝑁

𝑖=1

𝑀

𝐴=1

 (6) 

where ∇𝑖
2 and ∇𝐴

2 are the Laplacian operators of the 𝑖 electron and 𝐴 nucleus, 𝑟𝑖𝑗 is the 

distance between 𝑖 and 𝑗 electrons, 𝑅𝐴𝐵 is the distance between 𝐴 and 𝐵 nuclei, 𝑟𝑖𝐴 is the 

distance between 𝑖 electron and 𝐴 nucleus, 𝑍𝐴 and 𝑍𝐵 are the atomic numbers of the 

nuclei, 𝑁 is the number of electrons and 𝑀 is the number of nuclei.  

The Schrödinger equation cannot be solved analytically even for simple molecules. To 

simplify this problem, it is necessary to apply Born-Oppenheimer approximation, which 

considers that the positions of the nuclei are fixed while electrons move because nuclei 

are heavier than electrons. Then, Equation (6) can be simplified as follows 

 

𝐻𝑒𝑙(𝑟, 𝑅) = − ∑
1

2
∇𝑖

2

𝑁

𝑖=1

+ ∑ ∑
1

𝑟𝑖𝑗

𝑁

𝑗>𝑖

𝑁

𝑖=1

+ ∑ ∑
𝑍𝐴

𝑟𝑖𝐴

𝑁

𝑖=1

𝑀

𝐴=1

 (7) 

Where the kinetic energy of the nuclei is considered to be zero and the interaction between 

nuclei is constant. One of the most important ab initio methods based on the Born-

Oppenheimer approximation is the Hartree-Fock self-consistent field (SCF) method, 

which starts with a trial set of spin orbitals used to solve the Fock operator 

 𝑓1 = ℎ1 + ∑(𝐽𝑢(1) − 𝐾𝑢(1))

𝑢

 (8) 

where ℎ1 is the core Hamiltonian of electron 1, 𝐽𝑢(1) and 𝐾𝑢(1) are the Coulomb and the 

exchange operators of electron 1, respectively, and 𝑢 = 𝑎, 𝑏, … is the sum over all spin 

orbitals. 

 

ℎ1 = −
1

2
∇1

2 − ∑
𝑍𝐴

𝑟𝑖𝐴

𝑀

𝐴=1

 (9) 
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𝐽𝑢(1)𝜙𝑎(1) = [∫ 𝜙𝑢

∗ (2)
1

𝑟12
𝜙𝑢(2)𝑑𝑥2] 𝜙𝑎(1) (10) 

 

 
𝐾𝑢(1)𝜙𝑎(1) = [∫ 𝜙𝑢

∗(2)
1

𝑟12
𝜙𝑎(2)𝑑𝑥2] 𝜙𝑢(1) (11) 

Then, Hartree-Fock (HF) equations are solved to get a new set of spin orbitals and so on 

until convergence. 

Semiempirical methods simplify the calculations of the electronic structure introducing 

approximations and parameters fitted to reproduce experimental measurements and from 

high level calculations. This limit its accuracy but instead, they can be applied to large 

systems like biomolecules.32 

These methods are based on three approximations: (i) Neglection of the core electrons, 

Equation (9), from the Hamiltonian calculations; (ii) Use of minimum number of basis 

set; (iii) Reduction of the number of two-electron integrals, Coulomb and exchange, 

Equation (10) and (11), respectively.33  

In this work, PM6 (parameterized model 6) has been applied because it is one of the most 

employed semiempirical method when describing interaction energies and provide 

accurate results, taking into account the intrinsic limitations of the semiempirical 

methods.34  

3.3 Density Functional Theory 

The Density Functional Theory is an alternative, based on electron density, to ab initio 

methods because it introduces electron correlation overcoming the poor treatment of this 

contribution in the HF method, but it is less time-consuming than post-HF methods. It is 

a compromise between accuracy and computational cost.35 Formally, while 

wavefunction-based methods in a system of 𝑁 electrons depend on 4𝑁 variables (3 spatial 

and 1 spin coordinates), the electron density depends only on the 3 spatial coordinates 

without taking into account the size of the system.30, 33 However, in the formulation used 

to deal with chemical problems, the Kohn-Sham formulation that will be explained later, 

the electron density is computed from the molecular orbitals, which depends on 4N 

coordinates. Therefore, the real reason of the speed of DFT calculations for molecular 
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systems is not because it depends on a lower number of coordinates but because the 

exchange-correlation energy is simplified by parameterized functions, instead of 

computing the exchange integrals, as HF does. Thus, DFT is widely used to compute 

large molecules as biomolecules. 

According to DFT, the energy of the electronic ground state is defined by a specific 

electron density. The problem is that the functional which relates the energy of the ground 

state and the electron density is unknown. The search of this functional is the goal of the 

DFT methods,30 whose development started in 1964 with the Hohenberg and Kohn 

theorems.36  

3.3.1 Hohenberg and Kohn Theorems  

First Theorem  

Any observable of a stationary non-degenerate ground state can be obtained, in principle 

exactly, from the ground state density, i.e., every observable can be written as a functional 

of the electron density of the ground state. To prove this statement, it will be shown that 

the electron density determines the external potential via reductio ad adsurdum, 

supposing that this statement is not correct and leading to a contradiction.33, 35  

Let's consider an exact density of a non-degenerate ground state and let’s assume that, for 

the same density 𝜌(𝑟), there are two external potentials (𝑉𝑒𝑥𝑡,1(𝑟) , 𝑉𝑒𝑥𝑡,2(𝑟)) that 

generate two Hamiltonians (𝐻1, 𝐻2) with two different wave functions (𝜓1 , 𝜓2) whose 

ground state energies are 

 𝐸1
0 = ⟨𝜓1|𝐻1|𝜓1⟩ 

𝐸2
0 = ⟨𝜓2|𝐻2|𝜓2⟩ 

(12) 

Now, the expectation value of the energy of 𝜓2 is calculated with 𝐻1 using the variational 

principle: 

 𝐸1
0 < ⟨𝜓2|𝐻1|𝜓2⟩ = ⟨𝜓2|𝐻2|𝜓2⟩ + ⟨𝜓2|𝐻1 − 𝐻2|𝜓2⟩ (13) 

and we know that 

 
⟨𝜓2|𝐻1 − 𝐻2|𝜓2⟩ = ∫ 𝜌(𝑟)[𝑉𝑒𝑥𝑡,1(𝑟) − 𝑉𝑒𝑥𝑡,2(𝑟)]𝑑𝑟 (14) 
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Therefore, 

 
𝐸1

0 < 𝐸2
0 + ∫ 𝜌(𝑟)[𝑉𝑒𝑥𝑡,1(𝑟) − 𝑉𝑒𝑥𝑡,2(𝑟)]𝑑𝑟 (15) 

Similarly, the expectation value of the energy of 𝜓1 with 𝐻2 can be calculated as 

 𝐸2
0 < ⟨𝜓1|𝐻2|𝜓1⟩ = ⟨𝜓1|𝐻1|𝜓1⟩ + ⟨𝜓1|𝐻2 − 𝐻1|𝜓1⟩ (16) 

and knowing that 

 
⟨𝜓1|𝐻2 − 𝐻1|𝜓1⟩ = ∫ 𝜌(𝑟)[𝑉𝑒𝑥𝑡,2(𝑟) − 𝑉𝑒𝑥𝑡,1(𝑟)]𝑑𝑟 (17) 

Hence, 

 
𝐸2

0 < 𝐸1
0 + ∫ 𝜌(𝑟)[𝑉𝑒𝑥𝑡,2(𝑟) − 𝑉𝑒𝑥𝑡,1(𝑟)]𝑑𝑟 (18) 

From Equations (15) and (18), we obtain the following inequality 

 𝐸1
0 + 𝐸2

0 < 𝐸2
0 + 𝐸1

0 (19) 

This leads to a contradiction proving that the initial assumption of having two different 

external potentials generated by the same electron density was not correct. Thus, each 

external potential is determined by a unique density. 

The total ground state energy can be expressed as a functional of the electron density as  

 
𝐸(𝜌) = 𝑉𝑛𝑒(𝜌) + 𝑇(𝜌) + 𝑉𝑒𝑒(𝜌) = ∫ 𝜌(𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟 + 𝑇(𝜌) + 𝑉𝑒𝑒(𝜌) (20) 

then, the kinetic and electron-electron interaction energies can be grouped in a 

Hohenberg-Kohn functional, 𝐹𝐻𝐹(𝜌) 33, 35 

 
𝐸(𝜌) = ∫ 𝜌(𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟 + 𝐹𝐻𝐹(𝜌) (21) 

Second Theorem 

The non-degenerate ground state electron density can be calculated, in principle exactly, 

by searching the electron density which minimizes the ground state energy using the 
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variational method.35 Any trial density �̃�(𝑟) defines a Hamiltonian �̃� from which we can 

obtain the wavefunction �̃� for the ground state, according to the variational method.33 

 ⟨�̃�|𝐻|�̃�⟩ = 𝐸(�̃�) ≥ 𝐸(𝜌) = ⟨𝜓|𝐻|𝜓⟩ (22) 

This means that the total energy calculated from the trial density has to be larger or equal 

than the exact energy of the ground state.  

If we apply the minimum condition to the energy, which is constrained by the 𝑁-

representability, i.e., ∫ 𝜌(𝑟)𝑑𝑟 = 𝑁 where 𝑁 is the number of electrons, we obtain 

 
𝛿𝐸(𝜌) − 𝜇𝛿 [∫ 𝜌(𝑟)𝑑𝑟 − 𝑁] = 0 (23) 

  
𝜇 =

𝛿𝐸(𝜌)

𝛿𝜌(𝑟)
= 𝑉𝑒𝑥𝑡(𝑟) +

𝛿𝐹𝐻𝐹(𝜌)

𝛿𝜌(𝑟)
 (24) 

where 𝜇 is the Lagrange multiplier at the minimum.  

3.3.2 The Kohn and Sham Method 

The previous Equations (12-(24) describe a method to minimize the energy by changing 

its density. The problem of Equation (24) is that the functional which relates the energy 

and the electron density is unknown, in particular, the relation between the kinetic energy 

and the electron density. Since the kinetic energy can be calculated from the wave 

function, Kohn and Sham proposed a method which consists of combining the electron 

density and wave function frameworks. It considers a reference system of 𝑁 non-

interacting electrons under a external potential 𝑉𝑟 which provides a wave function with 

the same density as the real system.33, 35  

The wave function of this ideal system can be exactly calculated by the Hartree-Fock 

method because there are no electron-electron interactions. The Hamiltonian of this 

system depends on single-electron terms: the kinetic energy of the electrons and the 

nuclear-electron interactions described by the external potential: 

 

𝐻𝑟 = ∑ ℎ(𝑖)

𝑁

𝑖=1

= ∑ −
1

2
∇2(𝑖)

𝑁

𝑖=1

+ ∑ 𝑉𝑟(𝑖)

𝑁

𝑖=1

 (25) 
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and the exact wave function is expressed by a Slater determinant 

 
𝜓 =

1

√𝑁
|𝜙1(1)𝜙2(2) … 𝜙𝑁(𝑁)| (26) 

where 𝜙𝑖 are the molecular orbitals expressed by a linear combination of basis functions 

𝜃𝑗, where 𝑐𝑗𝑖 are the coefficients of the linear combination:  

 

𝜙𝑖 = ∑ 𝑐𝑗𝑖

𝑁

𝑗=1

𝜃𝑗 (27) 

The orbital coefficients are obtained by solving the HF equations: 

 
(−

1

2
∇2 + 𝑉𝑟) 𝜙𝑖 = 𝐸𝑖𝜙𝑖 (28) 

Once we know the wave function, the exact density and kinetic energy can be calculated 

by Equation (29) and (30), respectively: 

 

𝜌(𝑟) = ∑|𝜙𝑖|2

𝑁

𝑖=1

 (29) 

 

𝑇𝑟(𝜌) = ∑ ⟨𝜙𝑖|−
1
2 ∇2|𝜙𝑖⟩

𝑁

𝑖=1

 (30) 

Then, the total energy is written as 

 
𝐸𝑟(𝜌) = 𝑇𝑟(𝜌) + ∫ 𝜌(𝑟)𝑉𝑟(𝑟)𝑑𝑟 (31) 

The fundamental equation of DFT is the equation that minimizes the energy with respect 

to the electron density 

 
𝜇 =

𝛿𝐸𝑟(𝜌)

𝛿𝜌(𝑟)
= 𝑉𝑟(𝑟) +

𝛿𝑇𝑟(𝜌)

𝛿𝜌(𝑟)
 (32) 

Now, for a real system with interacting electrons, Equation (31) is transformed in  

 
𝐸(𝜌) = 𝑇(𝜌) + 𝑉𝑒𝑒(𝜌) + ∫ 𝜌(𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟 (33) 
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If we add and subtract the kinetic energy 𝑇𝑟(𝜌) and the Coulomb repulsion 𝐽(𝜌) terms of 

the reference system of non-interacting electrons defined above, we obtain  

 𝐸(𝜌) = 𝑇𝑟(𝜌) + [𝑇(𝜌) − 𝑇𝑟(𝜌)] + 𝐽(𝜌) + [𝑉𝑒𝑒(𝜌) − 𝐽(𝜌)] 

+ ∫ 𝜌(𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟                                          
(34) 

where the Coulomb repulsion 𝐽(𝜌) term is defined as 

 
𝐽(𝜌) =

1

2
∬

𝜌(𝑟1)𝜌(𝑟2)

𝑟12
𝑑𝑟1𝑑𝑟2 (35) 

The difference between the kinetic energy of the real system 𝑇(𝜌) and that of the 

reference one 𝑇𝑟(𝜌) is the correlation kinetic energy 𝑇𝑐(𝜌), and the difference between 

electron-electron interaction 𝑉𝑒𝑒(𝜌) and the classical Coulomb repulsion 𝐽(𝜌) is called 

exchange-correlation electronic energy 𝑊𝑋𝐶(𝜌). These last two terms are usually grouped 

in a single term called exchange-correlation energy 𝐸𝑋𝐶(𝜌) 

 𝐸𝑋𝐶(𝜌) = 𝑇𝑐(𝜌) + 𝑊𝑋𝐶(𝜌) (36) 

and its derivative with respect to the density is the exchange-correlation potential 

 𝜕𝐸𝑋𝐶(𝜌)

𝜕𝜌
= 𝑉𝑋𝐶(𝑟) (37) 

If we introduce Equation (35) and (36) into Equation (34)  

 
𝐸(𝜌) = 𝑇𝑟(𝜌) + 𝐸𝑋𝐶(𝜌) +

1

2
∬

𝜌(𝑟1)𝜌(𝑟2)

𝑟12
𝑑𝑟1𝑑𝑟2 + ∫ 𝜌(𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟 (38) 

If we apply Equation (32)  

 𝜕𝐸(𝜌)

𝜕𝜌
=

𝜕𝑇𝑟(𝜌)

𝜕𝜌
+

𝜕𝐸𝑋𝐶(𝜌)

𝜕𝜌
+ 𝑉𝑒𝑥𝑡(𝑟) + ∫

𝜌(𝑟2)

𝑟12
𝑑𝑟2 (39) 

where the Coulomb potential 𝑉𝑐(𝑟) is  

 
𝑉𝑐(𝑟) = 𝑉𝑒𝑥𝑡(𝑟) + ∫

𝜌(𝑟2)

𝑟12
𝑑𝑟2 (40) 

If Equation (37) and (40) are introduced in Equation (39)  
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𝜇 =

𝜕𝐸(𝜌)

𝜕𝜌
=

𝜕𝑇𝑟(𝜌)

𝜕𝜌
+ 𝑉𝑐(𝑟) + 𝑉𝑋𝐶(𝑟) (41) 

And the sum of the Coulomb 𝑉𝑐(𝑟) and exchange-correlation potentials 𝑉𝑋𝐶(𝑟) is 

expressed as the effective potential 𝑉𝑒𝑓𝑓(𝑟) 

 
𝜇 =

𝜕𝑇𝑟(𝜌)

𝜕𝜌
+ 𝑉𝑒𝑓𝑓(𝑟) (42) 

and compare with Equation (32), we realise that both equations are the same but changing 

𝑉𝑟(𝑟) for 𝑉𝑒𝑓𝑓(𝑟). Therefore, we can write the monoelectronic Schrödinger equation as 

 
(−

1

2
∇2 + 𝑉𝑐(𝑟) + 𝑉𝑋𝐶(𝑟)) 𝜙𝑖 = 𝐸𝑖𝜙𝑖 (43) 

where the orbitals 𝜙𝑖 are called Kohn-Sham orbitals, which allow the calculation of the 

electron density by Equation (29). Therefore, as in the HF method, the equations have to 

be solved iteratively. First, from a set of orbitals the electron density can be calculated 

using Equation (29). Then, the density is used to compute the coulomb and exchange-

correlation potentials needed for solving the Kohn-Sham equations, Equation (43). This 

process is repeated until convergence. The problem is that the exchange-correlation 

energy and, therefore, the exchange-correlation potential are not known. 

3.3.3 Exchange-Correlation Functionals 

The difference in the results between different DFT methods is the choice of the 

exchange-correlational energy functional.30 There is a classification in different types, the 

Jacob's ladder, depending on the dependency of the exchange correlation energy with the 

electron density: (i) in the local density approximation (LDA) the exchange correlation 

energy depends on the electron density 𝜌(𝑟) of a uniform electron gas; (ii) the generalized 

gradient approximation (GGA) considers a non-uniform electron gas and the exchange 

correlation energy depends on the electron density 𝜌(𝑟) and its gradient ∇𝜌(𝑟); (iii) the 

meta-GGA exchange-correlation functionals depend also on higher-order derivatives of 

the electron density, like the Laplacian ∇2𝜌(𝑟); (iv) in the hybrid or hyper-GGA the 

exchange-correlation energy depends on 𝜌(𝑟), ∇𝜌(𝑟), ∇2𝜌(𝑟) and part of the exact HF 

exchange energy is used to compute the exchange energy; (v) double hybrid functionals 

combines HF, DFT and Møller-Plesset perturbation theory (MP2).30  
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In this work, the M06-2X exchange-correlation energy functional has been used because 

it has been shown to be correct for small systems, like the ones studied here,28 and it has 

the good feature of including implicitly most of the dispersion energy leaving the other 

energy terms untouched and, therefore, there is no need to use Grimme's empirical 

correction. 

This functional is classified as hybrid meta-generalized gradient approximation (hybrid 

meta-GGAs) whose hybrid exchange correlation energy is define as  

 
𝐸𝑋𝐶

ℎ𝑦𝑏 =
𝑋

100
𝐸𝑋

𝐻𝐹 + (1 −
𝑋

100
) 𝐸𝑋

𝐷𝐹𝑇 + 𝐸𝐶
𝐷𝐹𝑇 (44) 

where 𝐸𝑋
𝐻𝐹 is the non-local HF exchange energy, 𝐸𝑋

𝐷𝐹𝑇 is the local DFT exchange energy, 

𝐸𝐶
𝐷𝐹𝑇 is the local DFT correlation energy, and 𝑋 is the percentage of HF exchange in the 

hybrid functional,37 which corresponds to 54%.38 

3.4 Energy Decomposition Analysis Based on the Electron Density 

The energy of the 𝐴𝐵 complex, 𝐸𝐴𝐵
𝐴𝐵 in Equation (4), can be expressed in terms of the 

one- and two-electron densities, 𝜌(𝑟1) and 𝜌(𝑟1, 𝑟2), respectively, and the exchange-

correlation density, 𝜌𝑋𝐶(𝑟1, 𝑟2),27 as follows: 

 
𝐸𝐴𝐵 = −

1

2
∫ ∇2𝜌(𝑟1, 𝑟1

′)𝑟1
′=𝑟1

𝑑𝑟1 + ∫ 𝜈𝑀 𝜌(𝑟1)𝑑𝑟1                              

+
1

2
∬

𝜌(𝑟1)𝜌(𝑟2)

|𝑟2 − 𝑟1|
𝑑𝑟1𝑑𝑟2 +

1

2
∬

𝜌𝑋𝐶(𝑟1, 𝑟2)

|𝑟2 − 𝑟1|
𝑑𝑟1𝑑𝑟2 

+ ∑ ∑
𝑍𝐼𝑍𝐽

|𝑅𝐼 − 𝑅𝐽|

𝑀

𝐽>𝐼

𝑀

𝐼=1

                                                              

(45) 

where ∇2 is the Laplacian operator, 𝜈𝑁 =
𝑍

𝑅
 represents the electrostatic potential created 

by the nuclei, 𝑀 is the number of nuclei and 𝑍 the nuclear charge. 27 

In Equation (45), the five terms correspond to the kinetic energy of electrons, electron-

nucleus attraction, electron-electron classical repulsion, exchange-correlation and nuclear 

repulsion energies, respectively. Note that the electron kinetic energy term is calculated 

from the density matrix of first order, 𝜌(𝑟1, 𝑟1
′), instead of the one-electron density. 
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There are some terms that can be rewritten in terms of their contributions for the non-

interacting systems. They are the nuclear electrostatic potential and energy, the one-

electron density and the exchange-correlation density, Equation (46)-(49)  

 

∑ ∑
𝑍𝐼𝑍𝐽

|𝑅𝐼 − 𝑅𝐽|

𝑀

𝐽>𝐼

𝑀

𝐼=1

= ∑ ∑
𝑍𝐼𝑍𝐽

|𝑅𝐼 − 𝑅𝐽|

𝑀𝐴

𝐽>𝐼

𝑀𝐴

𝐼=1

+ ∑ ∑
𝑍𝐼𝑍𝐽

|𝑅𝐼 − 𝑅𝐽|

𝑀𝐵

𝐽>𝐼

𝑀𝐵

𝐼=1

 

    + ∑ ∑
𝑍𝐼𝑍𝐽

|𝑅𝐼 − 𝑅𝐽|

𝑀𝐵

𝐽=1

𝑀𝐴

𝐼=1

 

(46) 

 

 𝜈𝑀 = 𝜈𝑀𝐴
+ 𝜈𝑀𝐵

 (47) 

 

 𝜌(𝑟1) = 𝜌𝐴(𝑟1) + 𝜌𝐵(𝑟1) + ∆𝜌(𝑟1) (48) 

 

 𝜌𝑋𝐶(𝑟1, 𝑟2) = 𝜌𝑋𝐶,𝐴(𝑟1, 𝑟2) + 𝜌𝑋𝐶,𝐵(𝑟1, 𝑟2) + 𝜌𝑋𝐶,𝐴𝐵(𝑟1, 𝑟2) + ∆𝜌𝑋𝐶(𝑟1, 𝑟2) (49) 

where ∆𝜌 is the one-electron deformation density, that is formed by the contributions 

from Pauli repulsion, ∆𝜌𝑃𝑎𝑢𝑙𝑖, and polarization energy, ∆𝜌𝑃𝑜𝑙, so Equation (48) is 

transformed in Equation (50) 

 𝜌(𝑟1) = 𝜌𝐴(𝑟1) + 𝜌𝐵(𝑟1) + ∆𝜌𝑃𝑎𝑢𝑙𝑖(𝑟1) + ∆𝜌𝑃𝑜𝑙(𝑟1) (50) 

and 𝜌𝑋𝐶,𝐴𝐵(𝑟1, 𝑟2), ∆𝜌𝑋𝐶(𝑟1, 𝑟2) are exchange and polarization terms. 

Also, we can define the electrostatic potentials of fragments 𝐴 and 𝐵 by Equation (51) 

and (52) 

 
𝜈𝐴(𝑟1) = 𝜈𝑀𝐴

(𝑟1) + ∫
𝜌𝐴(𝑟2)

|𝑟2 − 𝑟1|
𝑑𝑟2 (51) 

 

 
𝜈𝐵(𝑟1) = 𝜈𝑀𝐵

(𝑟1) + ∫
𝜌𝐵(𝑟2)

|𝑟2 − 𝑟1|
𝑑𝑟2 (52) 

By substituting Equations (46)-(52) into Equation (45) and removing the energies of the 

isolated (unperturbed) fragments, a new expression for the interaction energy, 

decomposed in electrostatic, 𝐸𝑒𝑙𝑒𝑐, exchange, 𝐸𝑒𝑥𝑐ℎ, repulsion, 𝐸𝑟𝑒𝑝, and polarization 

terms, 𝐸𝑝𝑜𝑙, is obtained, Equation (53) 
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 𝐸𝑖𝑛𝑡 = 𝐸𝑒𝑙𝑒𝑐 + 𝐸𝑒𝑥𝑐ℎ + 𝐸𝑟𝑒𝑝 + 𝐸𝑝𝑜𝑙  (53) 

where each of these terms are represented by Equations (54)-(57) 

 
𝐸𝑒𝑙𝑒𝑐 = ∫ 𝜈𝑀𝐴

𝜌𝐵(𝑟1)𝑑𝑟1 + ∫ 𝜈𝑀𝐵
𝜌𝐴(𝑟1)𝑑𝑟1                                

+ ∬
𝜌𝐴(𝑟1)𝜌𝐵(𝑟2)

|𝑟2 − 𝑟1|
𝑑𝑟1𝑑𝑟2 + ∑ ∑

𝑍𝐼𝑍𝐽

|𝑅𝐼 − 𝑅𝐽|

𝑀𝐵

𝐽=1

𝑀𝐴

𝐼=1

 

(54) 

 

 
𝐸𝑒𝑥𝑐ℎ =

1

2
∬

𝜌𝑋𝐶,𝐴𝐵(𝑟1, 𝑟2)

|𝑟2 − 𝑟1|
𝑑𝑟1𝑑𝑟2 (55) 

 

 
𝐸𝑟𝑒𝑝 = ∫ 𝜈𝐴 ∆𝜌𝑃𝑎𝑢𝑙𝑖(𝑟1)𝑑𝑟1 + ∫ 𝜈𝐵 ∆𝜌𝑃𝑎𝑢𝑙𝑖(𝑟1)𝑑𝑟1    

+
1

2
∬

∆𝜌𝑃𝑎𝑢𝑙𝑖(𝑟1)∆𝜌𝑃𝑎𝑢𝑙𝑖(𝑟2)

|𝑟2 − 𝑟1|
𝑑𝑟1𝑑𝑟2 

−
1

2
∫ ∇2∆𝜌𝑃𝑎𝑢𝑙𝑖(𝑟1, 𝑟1

′)𝑟1
′=𝑟1

𝑑𝑟1            

(56) 

 

 
𝐸𝑝𝑜𝑙 = ∫ 𝜈𝐴 ∆𝜌𝑃𝑜𝑙(𝑟1)𝑑𝑟1 + ∫ 𝜈𝐵 ∆𝜌𝑃𝑜𝑙(𝑟1)𝑑𝑟1   

+
1

2
∬

∆𝜌𝑃𝑜𝑙(𝑟1)∆𝜌𝑃𝑜𝑙(𝑟2)

|𝑟2 − 𝑟1|
𝑑𝑟1𝑑𝑟2 + ∬

∆𝜌𝑃𝑎𝑢𝑙𝑖(𝑟1)∆𝜌𝑃𝑜𝑙(𝑟2)

|𝑟2 − 𝑟1|
𝑑𝑟1𝑑𝑟2 

−
1

2
∫ ∇2∆𝜌𝑃𝑜𝑙(𝑟1, 𝑟1

′)𝑟1
′=𝑟1

𝑑𝑟1 +
1

2
∬

∆𝜌𝑋𝐶(𝑟1, 𝑟2)

|𝑟2 − 𝑟1|
𝑑𝑟1𝑑𝑟2                      

(57) 

Exchange and repulsion terms arise from Pauli exclusion principle, so they are usually 

grouped in one term called Pauli energy, 𝐸𝑃𝑎𝑢𝑙𝑖. On the other hand, the polarization term 

can be split exactly in two contributions, induction and dispersion, by means of 2nd-order 

perturbation theory (PT).28, 39 The induction term is given by Equation (58) 

 
𝐸𝑖𝑛𝑑 = ∑

[∫ 𝜈𝐴𝜌𝐵
𝑚0(𝑟1)𝑑𝑟1]2

𝐸𝐵
𝑚 − 𝐸𝐵

0

𝑚≠0

+ ∑
[∫ 𝜈𝐵𝜌𝐴

𝑛0(𝑟1)𝑑𝑟1]2

𝐸𝐴
𝑛 − 𝐸𝐴

0

𝑛≠0

 (58) 

where 𝜌𝐴
𝑛0 and 𝜌𝐵

𝑚0 are the induced transition one-electron densities of fragments 𝐴 and 

𝐵 from the ground state configuration 0 to the 𝑛 and 𝑚 excited states, respectively. 

The 1st-order correction to the electron density required for the calculation of the 2nd-order 

energy is 
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 ∆𝜌(𝑟) = ∆𝜌𝐴(𝑟) + ∆𝜌𝐵(𝑟) 

∆𝜌(𝑟) = 2 ∑
∫ 𝜈𝐵𝜌𝐴

𝑛0(𝑟1)𝑑𝑟1

𝐸𝐴
𝑛 − 𝐸𝐴

0

𝑛≠0

𝜌𝐴
𝑛0 + 2 ∑

∫ 𝜈𝐴𝜌𝐵
𝑚0(𝑟1)𝑑𝑟1

𝐸𝐵
𝑚 − 𝐸𝐵

0

𝑚≠0

𝜌𝐵
𝑚0 

(59) 

The first and second terms of Equation (57) composed the charge-induction energy.  

 
𝐸𝑐ℎ𝑎𝑟𝑔𝑒−𝑖𝑛𝑑 = ∫ 𝜈𝐴 ∆𝜌𝑃𝑜𝑙(𝑟1)𝑑𝑟1 + ∫ 𝜈𝐵 ∆𝜌𝑃𝑜𝑙(𝑟1)𝑑𝑟1 (60) 

If we introduce Equation (59) into Equation (60), 

 
𝐸𝑐ℎ𝑎𝑟𝑔𝑒−𝑖𝑛𝑑 = 2 ∑

[∫ 𝜈𝐴𝜌𝐵
𝑚0(𝑟1)𝑑𝑟1]2

𝐸𝐵
𝑚 − 𝐸𝐵

0

𝑚≠0

+ 2 ∑
[∫ 𝜈𝐵𝜌𝐴

𝑛0(𝑟1)𝑑𝑟1]2

𝐸𝐴
𝑛 − 𝐸𝐴

0

𝑛≠0

+ 2 ∑
∫ 𝜈𝐴𝜌𝐵

𝑚0(𝑟1)𝑑𝑟1 ∫ 𝜈𝐵𝜌𝐵
𝑚0(𝑟1)𝑑𝑟1

𝐸𝐵
𝑚 − 𝐸𝐵

0

𝑚≠0

+ 2 ∑
∫ 𝜈𝐵𝜌𝐴

𝑛0(𝑟1)𝑑𝑟1 ∫ 𝜈𝐴𝜌𝐴
𝑛0(𝑟1)𝑑𝑟1

𝐸𝐴
𝑛 − 𝐸𝐴

0

𝑛≠0

 

(61) 

Comparing Equation (58) with Equation (61) we realise that the induction energy is half 

of the first two terms 

 
 𝐸𝑖𝑛𝑑 =

1

2
[𝐸𝑐ℎ𝑎𝑟𝑔𝑒−𝑖𝑛𝑑 − ∑

∫ 𝜈𝐴𝜌𝐵
𝑚0(𝑟1)𝑑𝑟1 ∫ 𝜈𝐵𝜌𝐵

𝑚0(𝑟1)𝑑𝑟1

𝐸𝐵
𝑚 − 𝐸𝐵

0

𝑚≠0

   

− ∑
∫ 𝜈𝐵𝜌𝐴

𝑛0(𝑟1)𝑑𝑟1 ∫ 𝜈𝐴𝜌𝐴
𝑛0(𝑟1)𝑑𝑟1

𝐸𝐴
𝑛 − 𝐸𝐴

0

𝑛≠0

]   

 𝐸𝑖𝑛𝑑 =
1

2
[𝐸𝑐ℎ𝑎𝑟𝑔𝑒−𝑖𝑛𝑑 − ∫ 𝜈𝐴 ∆𝜌𝐴(𝑟1)𝑑𝑟1 − ∫ 𝜈𝐵 ∆𝜌𝐵(𝑟1)𝑑𝑟1] 

(62) 

This can be rewritten as 

 
𝐸𝑖𝑛𝑑 =

1

2
[∫ 𝜈𝐴 ∆𝜌𝐵(𝑟1)𝑑𝑟1 + ∫ 𝜈𝐵 ∆𝜌𝐴(𝑟1)𝑑𝑟1] (63) 

which matches with the classical expression of the induction energy. 
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4 RESULTS AND DISCUSION 

4.1 Computational Details 

In this study, the setup for 6000 complexes formed by one of the amino acids and one of 

the 300 drugs from ZINC database29 has been performed. The goal is to compute the 

interaction energy between the molecules of the complex and perform an EDA. To this 

aim, a Python script code, explained in detail in the next section, has been developed. 

The script determines the orientation between the molecules of the complexes for which 

the interaction energy is the most favourable one. Then, for this orientation the potential 

energy curve is computed at PM6 level of theory. Five geometries around the PM6 

minimum are selected and the interaction energy is recalculated at DFT level, using the 

M06-2X functional and the 6-31G* basis set as implemented in the Gaussian0940  

software. The DFT input files have been generated by MoBioTools,41 a toolkit which was 

developed to automatically set up the input files of massive quantum mechanical 

calculations. Then, the DFT interaction energies are decomposed by an EDA in their 

different contributions. 

4.2 Procedure and Code Development 

The general workflow of this project, represented in Figure 2, consists of different steps. 

First, 6000 systems composed by one of the 20 amino acids and one of the 300 drugs 

randomly chosen from the ZINC database29 are built. In the second step, for each of the 

systems, the individual molecules are located at a calculated distance and randomly 

rotated until having 15 different orientations. Then, a single point energy at PM6 level in 

all the orientations have been computed, and the lowest energy orientation is chosen. In 

the third step, the PM6 interaction energy between the two molecules of each complex is 

computed for different intermolecular distances. Then, 5 geometries around the PM6 

minimum are chosen and, in the fourth step, the DFT interaction energy and EDA 

calculations are carried out. Each of these four steps will be explained in more detail in 

the following. 

 

Figure 2. General workflow of the procedure performed. 
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For this study, the geometries of the amino acids have been taken from Ropo et al.42 and 

the ones of the drugs from the ZINC database.29 For the amino acids, there are neutral, 

acid and basic amino acids but, for simplicity, to avoid the use of large basis sets, the 

protonated or deprotonated species, respectively, are used to have all the amino acids in 

their neutral form. They are represented in Figure 3. Initially, 300 drugs were randomly 

selected. Thus, by combining the 20 amino acids with the 300 drugs, 6000 systems are 

obtained. However, at the time being, the calculation of 291 systems finished and are the 

ones presented in this thesis. In this section, a step-by-step explanation of the setup of the 

systems with a specific example will be given showing relevant fragments of the codes 

developed in Python. 

 

Figure 3. Molecular formulas of the amino acids. 
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The selected system is formed by the glycine amino acid and 3-(2-

methoxyphenoxy)propane-1,2-diol molecule (Figure 4). From now on, they will also be 

called monomer1 and monomer2, respectively.  

 

Figure 4. Chemical formula of glycine amino acid (A) and 3-(2-methoxyphenoxy)propane-1,2-

diol molecule (B). 

The goal is to obtain orientations at a distance where the interactions are likely to be 

attractive. The idea is to be close to the interaction energy minimum. To do so, the first 

step is to calculate the geometric centre of monomer1 and centre it in the origin of 

coordinates. In the code there is a list, called “atoms1”, in which each element is a sub-

list with the x-, y-, and z-coordinates of an atom. Figure 5 shows the fragment of the code 

that makes one list containing the x-coordinates of all atoms in the list “atoms1” and 

another two lists for y- and z- coordinates. Then, to centre monomer1, it is necessary to 

calculate its geometric centre. This is also represented in Figure 5, where “x_mean1” is 

the mean value of the x- coordinates of all the atoms in monomer1 and “round(…,6)” 

means that the result is approximated to a number with 6 decimal figures. The same for 

y- and z-coordinates. 

 

Figure 5. Fragment of the code to calculate the geometric centre of monomer1. 

In the next step, the geometric centre of monomer1 is set to be the origin of coordinates. 

In Figure 6, it is observed that first, a new list for each coordinate is created, called “x_, 

y_ or z_coord1_centred” by subtracting to each coordinate the mean value of the 

corresponding coordinate, i.e. each value of coordinate x minus the mean value of 
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coordinate x, and then, a list with the new coordinates of each atom called 

“atoms1_centred” is created. These lists are created using a for loop from 0 to “n1” that 

is the number of atoms in “atoms1” list. Afterwards, this monomer is rotated with a 

rotational matrix that have random angles.  

 

Figure 6. Fragment of the code to centre monomer1 in the centre of coordinates. 

Following the same procedure as with monomer1, the geometric centre of monomer2 is 

calculated, centred in the origin of coordinates and rotated with another rotation matrix 

different from the one used to rotate monomer1. The next step is to translate monomer2 

to a desired distance. This distance is defined between the geometric centres of the two 

molecules and it is calculated in the following manner. First, the interatomic distances 

between all the atoms within the monomers is calculated, as shown in Figure 7. First, the 

pairs between the atoms coordinates from which the distance is calculated “pairs1x, 

pairs1y, pairs1z” are formed. Then, the Euclidean distance between each pair of atoms is 

computed and stored in a list called “differences1”. Later, the largest distances 

“max_value1” for each monomer are searched, and called diameters d1 and d2 (see Figure 

8). Then, imaginary spheres are created around each monomer to avoid the overlap 

between the atoms of the molecules. The radius of these spheres will be half of the 

“max_value1”, called radius r1 and r2 (see Figure 8), plus twice the van der Waals radius 

of the biggest atom of each monomer. In the case of the system of study, for monomer1, 

the largest distance (d1) corresponds to the distance between the oxygen atom forming 

the C=O double bond of the carboxyl group and the hydrogen atom of the amino group, 

4.33 Å. Half of this distance will be the radius r1, to which twice the van der Waals radius 

of carbon atom, 1.70 Å, which is the biggest one in this molecule, will be added. The 

same for monomer2, where the maximum distance is 10.45 Å, and the atom with the 

largest van der Waals radius is carbon, as in the case of monomer1. This is represented in 
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Figure 8. This procedure is repeated until obtaining 15 different orientations at the same 

distance. Also, a geometry in which both monomers are at very large distance is prepared 

to be able to calculate the relative energy of each geometry with respect to the geometry 

at large distance, i.e., the interaction energy. This interaction energy is computed at PM6 

level of theory using Gaussian0940 software. 

 

Figure 7. Fragment of the code to calculate the distances between atoms. 

 

Figure 8. Schematic representation of the calculation of the distance between monomers. 
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The next goal is to find a few distances around the potential energy minimum for which 

to run the DFT calculations. For doing that, another code is used, whose first step searches 

the previously computed interaction energies for the 15 orientations and selects the 

geometry with the lowest PM6 interaction energy. At a second step, it changes the 

distance between the geometric centres of the monomers of the most favourable 

orientation in order to compute the potential energy curve at PM6 level for this 

orientation. For doing that, it calculates the geometric centres of the monomers and then, 

it changes the distance between these geometric centres. First decreasing the distance 0.1 

Å until the interaction energy reaches a value of 20 kcal/mol and then, increasing 0.1 Å 

until the relative energy is 10 % of the interaction energy at the minimum (see Figure 9). 

The potential energy curve of the system is thus obtained, see Figure 10. It shows a 

minimum of -5.47 kcal/mol at 3.49 Å. The shorter distance is 3.06 Å with an energy of 

22.82 kcal/mol and the largest distance is at 6.24 Å with an energy of -0.53 kcal/mol. 

 

Figure 9. Schematic representation of the process followed to select the distances for which the 

interaction energy is computed. 
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Figure 10. Potential energy surface for glycine - 3-(2-methoxyphenoxy)propane-1,2-diol system 

at PM6 level. 

In the next step, a code was developed to select five geometries from the PM6 potential 

energy curve: the one corresponding to the energy minimum, two consecutive geometries 

at shorter distances and two geometries every two geometries at larger distances. Then, it 

changes the format of the coordinate files from xyz to mol2 and join the five geometries 

in a single mol2 file.  

The mol2 files are employed as input by the MoBioTools kit41 to create the input files for 

the energy calculation with the M06-2X functional and 6-31G* basis function using the 

Gaussian0940 software. In order to use MoBioTools kit,41 we need to create two files 

(“main.inp” and “tpl.inp”). The first file, “main.inp” (Figure 11A), has one section 

(&main) in which one provides the QM software (tpl), the trajectory file where the 

geometries are located (traj), the QM region (qmmask), and the indices of the geometries 

for which the input files want to be generated. The second file, “tpl.inp” file (Figure 11B), 

is divided in five sections: (i) &header corresponds to the general instructions in 

Gaussian; (ii) &route is specific for Gaussian and defines the methodology, the basis set 

and the type of calculation; (iii) &chgspin includes the charge and spin multiplicity of the 
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monomers and the complex; and (iv) &bsse provides the atom indices to divide the system 

into two fragment, which are needed to calculate the interaction energy and to correct for 

the basis set superposition error (BSSE).31 After running MoBioTools,41 the input files 

for the energy calculation for Gaussian for each monomer and for the complex are 

generated. 

 

 

Figure 11. (A) “main.inp” and (B) “tpl.inp” input files for MoBioTools41 and (C) EDA input 

files. 

Once the three files for the system (monomer1, monomer2 and complex) are created, the 

energy calculation with the M06-2X functional and 6-31G* basis set is performed using 

the Gaussian0940 software, from which the EDA program will take the electron densities 

to carry out the interaction energy decomposition. However, before running the EDA 

calculation, it is necessary to change the chk files from Gaussian to fchk format (human 

readable), create an input file which contains the names of the monomers and complex of 

the Gaussian formatted checkpoint files (fchk), the density code, that is the method used 

to calculate the density, in this case DFT although HF is written, because this “HF” 

keyword is valid for both methods, and the threshold employed for the two-electron 

integrals (9 is an optimal value often used), see Figure 11C. 
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Then, the EDA program developed by Mandado et al.27 is run to obtain the decomposition 

of the energy in its different contributions, namely, electrostatic, Pauli, dispersion and 

induction, represented in Figure 12, along the intermolecular distance. As can be seen, 

for this particular complex, the electrostatic, polarization, dispersion and induction 

contributions go to more negative energies when the monomers get closer. On the other 

hand, the Pauli repulsion term, becomes more positive when the monomers approach each 

other. Thus, the DFT total energy presents a minimum of -7.36 kcal/mol at 3.49 Å, which 

coincides with the minimum obtained from the PES at PM6 level of theory. Also from 

this EDA calculation, the change of polarization involved in the interaction of the 

monomers can be obtained such that the chemical groups which modify its electron 

density can be identified. Figure 13 displays the polarization deformation density of the 

system of study at the minimum of energy obtained from EDA method, where it is seen 

that there is electron density transfer from the amino acid to the alcohol group of the drug. 

All the steps described here were performed for the 291 created systems and the results 

are represented in the Annexes.  

 

Figure 12. Energy decomposition analysis of glycine amino acid and 3-(2-

methoxyphenoxy)propane-1,2-diol molecule. 
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Figure 13. Polarization deformation density change in the geometry of minimum energy. 

4.3 Interaction Energy 

In this section the total interaction energy between the monomers for all the systems 

investigated will be discussed. Figure 14 and Figure 15 represent the distribution of the 

total interaction energy for all the systems, whose total average energy is -4.89 kcal/mol, 

and the distribution of the total interaction energy per atom, whose average is 0.10 

kcal/mol. In addition, the system with highest (negative) total interaction energy and the 

system with the highest total interaction energy per atom are represented in Figure 14 and 

Figure 15. The first one provides the drug that interact in the strongest way with the amino 

acids, while the second one tells us which drug presents the strongest interaction types 

independently on the size of the molecule. It can be observed that the complex 

corresponding to the highest total interaction energy is very large size, a fact which is not 

surprising since a large number of atoms leads to a large number of attractive interactions. 

It is more interesting to see that the drug with the strongest interaction per atom is a very 

small molecule consisting of only 12 atoms. However, the molecule contains 6 fluorine 

atoms, which are very electronegative and induce large permanent charge separation in 

the molecule, leading to strong electrostatic interactions. As we will discuss later, 

electrostatic interactions are dominant for many of the drugs investigated here.  
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Figure 14. Total interaction energy distribution of all the systems and representation of the 

system with highest energy. Colour code: carbon atoms in grey, hydrogens in white, oxygens in 

red, nitrogens in blue and sulphurs in yellow. 

 

 

Figure 15. Total interaction energy per atom distribution of all the systems and representation of 

the system with highest energy. Colour code: carbon atoms in grey, hydrogens in white, 

oxygens in red, nitrogens in blue and fluorines in light blue. 
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4.4 Pauli Repulsion 

The Pauli repulsion energy contribution is now analysed. Figure 16 and Figure 17 shows 

the Pauli repulsion distribution and the Pauli repulsion per atom distribution for all the 

systems, whose mean values are 9.15 and 0.19 kcal/mol, respectively. Moreover, the 

insets of both figures display the molecule with the largest Pauli repulsion and the 

molecule with the largest Pauli repulsion per atom. In this case, both molecules are the 

same. This can be understood by realizing that the Pauli repulsion energy is a short-range 

energy contribution, and, therefore depends only on the atoms which are in close contact 

and is independent on the size of the molecule. 

 

Figure 16. Pauli repulsion energy distribution of all the systems and representation of the system 

with highest repulsion energy. Carbon atoms in grey, hydrogens in white, oxygens in red and 

nitrogens in blue. 
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Figure 17. Pauli repulsion energy per atom distribution of all the systems and representation of 

the system with highest repulsion energy. Carbon atoms in grey, hydrogens in white, oxygens in 

red and nitrogens in blue. 

4.5 Attraction Energy 

In this section, only the attractive energy terms, namely electrostatic, dispersion and 

induction, will be taken into account. The first analysis performed consists of determining 

the percentage of each of the three attractive terms with respect to the total attractive 

energy for each system and calculate the distribution of percentages of each of these three 

terms. In Figure 18, it can be observed that most of the systems have a percentage of 

electrostatic contribution between 55-70% with a maximum value at 60% and an average 

value of 58%. In Figure 19, it is shown that dispersion represent between 20-40% of the 

attractive energy with a maximum and a mean value around 30%. Finally, Figure 20 

shows that most of the systems present an induction energy contributing between 5-20% 

to the total attraction, with a maximum value of 8-9% and an average value of 12%.  
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Figure 18. Distribution of electrostatic percentages to the total attraction energy. 

 

Figure 19. Distribution of dispersion percentages to the total attraction energy. 
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Figure 20. Distribution of induction percentages to the total attraction energy. 

Then, in order to analyse whether there exists a relation between the chemical structure 

of the drugs and the EDA contributions, different analysis have been carried out. First, 

the complexes with percentage values of electrostatic, dispersion and induction 

contributions higher than a selected threshold have been selected and represented to see 

if there exist any evident feature common to most of them, which can be identified by 

simple visualization. It was found that 31 systems have an electrostatic contribution 

higher than 70%, 44 systems have the dispersion percentage higher than 40% and 65 

systems have the induction percentage higher than 15%. When those systems were 

plotted, no similar structural characteristic was identified. Therefore, the percentage 

thresholds were increased until only 10 systems satisfy the new chosen tighter criterion, 

resulting in percentages of 78%, 49% and 22% for electrostatic, dispersion and induction, 

respectively. However, once again no common features among the molecules were 

evident by visualization.  

Therefore, it was clear that another strategy was needed to find a relation between EDA 

and the chemical structure. A new analysis was performed where it is analyse the presence 

of eight of the most common functional polar groups presented in bioactive molecules43 
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and four aromatic rings common in the studied drugs. These functional groups are shown 

in Figure 21, where 𝑅 means any aliphatic or aromatic carbon. For doing that, it is 

necessary to change the mol2 format to SMILES, which is a file format with a linear text 

that describes the connectivity and chirality of the molecules. This is performed using 

OpenBabel44 software. In addition, “rdkit”45 Python module has been used to check if the 

functional group is presented and how many times it is present. 

 

Figure 21. Most frequent functional groups in bioactive molecules. 

From this analysis, the percentage of systems that present each of the functional groups 

is obtained. In Figure 22, it can be observed that the most frequent functional group in 

our systems is the functional group 7 (an alcohol), which is present in around 74% of the 

investigated drugs, followed by a secondary amine (group 5) with 72% of population. In 

the next level, the tertiary amine (group 3) and the ether (group 2) with 46% and 42% 

population, respectively, are found. The carboxyl group 8 is found in 29% of the drugs, 

then the groups 4 and 6, which contain halogen atoms, are found in 11% of the drugs. 

Finally, group 1 and the four aromatic rings, with 10% and 5% population, respectively, 

are the least common chemical groups.  
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Figure 22. Percentage of systems that contain each of the 12 functional groups. 

Afterwards, the average of each attractive energy contribution (electrostatic, dispersion 

and induction) is computed for the sets of systems that present each of the functional 

groups mentioned above. This is represented in Figure 23, where it is observed that the 

predominant term for all the groups is the electrostatic contribution. This can be explained 

by the fact that all the functional groups are polar with electronegative atoms able to form 

strong interactions between the permanent charge distributions of the molecules. 

Although the percentages are similar along all the sets of molecules, the group with 

highest electrostatic percentage is the one that contains the group 11. As can be seen in 

Figure 21, this group is a small ring with a high electron density due to the presence of a 

nitrogen and a sulphur atom which can likely participate in strong electrostatic 

interactions. In the case of dispersion and induction, the drugs with the largest 

contributions are the ones that possess the group 6, the one with the chlorine atom. Since 

this atom is easily polarizable due to its size, its electron cloud is more deformable and 

can participate in polarization interactions. 
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Figure 23. Electrostatic, dispersion and induction percentages of the systems which present each 

of the 12 functional groups. 

Now, the two systems with the highest electrostatic, dispersion and induction percentages 

will be analysed in detail to check if there are some common features. In Figure 24, the 

two systems with the highest electrostatic percentages are represented. System 97 is 

composed by glycine amino acid and 4-(3-chloro-4-(3-cyclopropylureido)phenoxy)-7-

methoxyquinoline-6-carboxamide molecule, and it presents 93% of electrostatic 

contribution. On the other hand, the system 152 is formed by glycine amino acid and 2-

(((4-(3-methoxypropoxy)pyridin-2-yl)methyl)thio)-1H-benzo[d]imidazole molecule, 

presenting 92% of electrostatic contribution. In both systems, the presence of 

electronegative atoms in the organic molecule near the amino acid could lead to the 

formation of hydrogen bonds contributing to the high electrostatic percentages, although 

an analysis of hydrogen bond population performed with cpptraj46 software did not reveal 

the presence of hydrogen bonding. This means that the large electrostatic energy is caused 

by long-range interactions. 
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Figure 24. Systems with highest electrostatic percentage. (A) System 97 and (B) system 152. 

Colour code: carbon atoms in grey, hydrogens in white, oxygens in red, nitrogens in blue, 

chlorine in green and sulphur in yellow. 

The two systems with the highest dispersion percentages to the total attractive energy are 

represented in Figure 25. System 84, with a 79% of dispersion, is composed by the glycine 

amino acid and the (Z)-(2-(4-(4-chloro-1,2-diphenylbut-1-en-1-

yl)phenoxy)ethyl)dimethyl-l4-azane molecule, and system 5, which is formed by the 

glycine amino acid and the 1-(2-((4-chlorobenzyl)thio)-2-(2,4-dichlorophenyl)ethyl)-1H-

imidazole drug, has a dispersion percentage of 60%. It is shown that system 84, which 

has only one chlorine atom, has higher dispersion than system 5, which present three 

chlorine atoms and a sulphur atom. The initial hypothesis that systems with a higher 

number of big atoms, whose electron cloud is more polarizable, could have higher 

dispersion percentage, is not satisfied or, at least, not exclusively. This could be due to 

the presence of other functional groups, for example, aromatic rings, which are also easily 

polarizable. However, Figure 23 shows that the drugs that contain aromatic rings have 

higher electrostatic contributions than dispersion and induction ones. This suggests that a 

more exhaustive analysis, including more functional groups at the same time during the 

analysis and classification of drugs, has to be performed. 
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Figure 25. Systems with the highest dispersion percentage. (A) System 84 and (B) system 5. 

Colour code: carbon atoms in grey, hydrogens in white, oxygens in red, nitrogens in blue, 

chlorines in green and sulphurs in yellow. 

The systems with largest induction percentages are represented in Figure 26. They are the 

complex 91, composed by glycine amino acid and 2,6-dichloro-N1-(imidazolidin-2-

yl)benzene-1,4-diamine molecule, with a 67% of induction and the complex 277 with an 

induction percentage of 28%, which is formed by alanine amino acid and the same organic 

molecule of system 5, which also presents the largest dispersion. The analysis of these 

two systems is similar to the one of the systems with the highest dispersion percentages 

because dispersion and induction are encompassed in the polarization energy term of the 

EDA. 

 

Figure 26. Systems with the highest induction percentage. (A) System 91 and (B) system 277. 

Colour code: carbons atom in grey, hydrogens in white, oxygens in red, nitrogens in blue, 

chlorines in green and sulphurs in yellow. 

  

  



44 
 

5 CONCLUSIONS 

Proteins are involved in many processes in our organisms and their presence is essential 

for their appropriate functioning. Because one of most important functions carried out by 

proteins is the reception of drugs, the study of drug/protein interactions is crucial to 

understand the mode of action and side effects of those drugs and, thus, develop new ones 

with improved properties. 

In this study, 20 amino acids and 300 drugs has been used to create 6000 systems, 

although 291 has finished at the time being and are the ones presented in this thesis. Then, 

different steps are performed in order to characterize the interaction energy: (i) find the 

most favourable orientation between the molecules of the complexes at PM6 level; (ii) 

compute the PM6 potential energy curve for this favourable orientation; (iii) compute the 

interaction energy at DFT level for 5 geometries around the minimum; (iv) perform an 

EDA to obtain the different energy components; (v) find a relation between the structure 

and the EDA. To accomplish all these steps, a Python code to carry out different tasks in 

an automatic manner has been developed.  

From these calculations, the distribution of the total and Pauli repulsion energies and total 

and Pauli repulsion energies per atom have been obtained and the system with highest 

energy on each of these distributions has been compared. The system with the largest total 

interaction energy is much bigger than the one with the largest total interaction energy 

per atom because the long-range electrostatic contribution is the major component of the 

total interaction energy and, therefore, all atoms of the molecule are involved in the 

interaction. Contrary, the systems with the highest Pauli repulsion energy and highest 

Pauli repulsion energy per atom are the same because this energy contribution is a short-

range term and, therefore, nearly independent on the system size. 

In the case of attractive energy terms, namely electrostatic, dispersion and induction 

energies, all the distributions are relatively broad showing that the set of selected drugs is 

very diverse. The energy contribution that dominates the attractive energy for most of the 

systems is the electrostatic contribution. 

A classification analysis of the drugs has been performed in order to try to classify the 

systems based on any structure/EDA relation. Specifically, the occurrence of eight of the 

most frequent polar functional groups in bioactive molecules and four non-polar groups 

was computed for the set of 291 drug/amino acid pairs. The most frequent functional 

group in the set of drugs employed was an alcohol and the least frequent ones were the 
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non-polar aromatic rings. However, the presence or absence of these functionals groups 

were not related with the EDA contributions. Therefore, more sophisticated analyses are 

needed in order to reveal any possible structure/energy relation.  
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7 ANNEXES 

The potential energy curve of the 291 systems are represented on the left-hand side with 

the insets displaying the molecules. On the right-hand side, the decomposition of the 

energy in its different contributions along the intermolecular distance is represented. 

 
Figure 1: System 1 

 
Figure 2: System 2 

 
Figure 3: System 3 



Figure 4: System 4

Figure 5: System 5

Figure 6: System 6

II



Figure 7: System 7

Figure 8: System 8

Figure 9: System 9

III



Figure 10: System 10

Figure 11: System 11

Figure 12: System 12

IV



Figure 13: System 13

Figure 14: System 14

Figure 15: System 15

V



Figure 16: System 16

Figure 17: System 17

Figure 18: System 18

VI



Figure 19: System 19

Figure 20: System 20

Figure 21: System 21

VII



Figure 22: System 22

Figure 23: System 23

Figure 24: System 24

VIII



Figure 25: System 25

Figure 26: System 26

Figure 27: System 27

IX



Figure 28: System 28

Figure 29: System 29

Figure 30: System 30

X



Figure 31: System 31

Figure 32: System 32

Figure 33: System 33

XI



Figure 34: System 34

Figure 35: System 35

Figure 36: System 36

XII



Figure 37: System 37

Figure 38: System 38

Figure 39: System 39

XIII



Figure 40: System 40

Figure 41: System 41

Figure 42: System 42

XIV



Figure 43: System 43

Figure 44: System 44

Figure 45: System 45

XV



Figure 46: System 46

Figure 47: System 47

Figure 48: System 48

XVI



Figure 49: System 49

Figure 50: System 50

Figure 51: System 51

XVII



Figure 52: System 52

Figure 53: System 53

Figure 54: System 54

XVIII



Figure 55: System 55

Figure 56: System 56

Figure 57: System 57

XIX



Figure 58: System 58

Figure 59: System 59

Figure 60: System 60

XX



Figure 61: System 61

Figure 62: System 62

Figure 63: System 63

XXI



Figure 64: System 64

Figure 65: System 65

Figure 66: System 66

XXII



Figure 67: System 67

Figure 68: System 68

Figure 69: System 69

XXIII



Figure 70: System 70

Figure 71: System 71

Figure 72: System 72

XXIV



Figure 73: System 73

Figure 74: System 74

Figure 75: System 75

XXV



Figure 76: System 76

Figure 77: System 77

Figure 78: System 78

XXVI



Figure 79: System 79

Figure 80: System 80

Figure 81: System 81

XXVII



Figure 82: System 82

Figure 83: System 83

Figure 84: System 84

XXVIII



Figure 85: System 85

Figure 86: System 86

Figure 87: System 87

XXIX



Figure 88: System 88

Figure 89: System 89

Figure 90: System 90

XXX



Figure 91: System 91

Figure 92: System 92

Figure 93: System 93

XXXI



Figure 94: System 94

Figure 95: System 95

Figure 96: System 96

XXXII



Figure 97: System 97

Figure 98: System 98

Figure 99: System 99

XXXIII



Figure 100: System 100

Figure 101: System 101

Figure 102: System 102

XXXIV



Figure 103: System 103

Figure 104: System 104

Figure 105: System 105

XXXV



Figure 106: System 106

Figure 107: System 107

Figure 108: System 108

XXXVI



Figure 109: System 109

Figure 110: System 110

Figure 111: System 111

XXXVII



Figure 112: System 112

Figure 113: System 113

Figure 114: System 114

XXXVIII



Figure 115: System 115

Figure 116: System 116

Figure 117: System 117

XXXIX



Figure 118: System 118

Figure 119: System 119

Figure 120: System 120

XL



Figure 121: System 121

Figure 122: System 122

Figure 123: System 123

XLI



Figure 124: System 124

Figure 125: System 125

Figure 126: System 126

XLII



Figure 127: System 127

Figure 128: System 128

Figure 129: System 129

XLIII



Figure 130: System 130

Figure 131: System 131

Figure 132: System 132

XLIV



Figure 133: System 133

Figure 134: System 134

Figure 135: System 135

XLV



Figure 136: System 136

Figure 137: System 137

Figure 138: System 138

XLVI



Figure 139: System 139

Figure 140: System 140

Figure 141: System 141

XLVII



Figure 142: System 142

Figure 143: System 143

Figure 144: System 144

XLVIII



Figure 145: System 145

Figure 146: System 146

Figure 147: System 147

XLIX



Figure 148: System 148

Figure 149: System 149

Figure 150: System 150

L



Figure 151: System 151

Figure 152: System 152

Figure 153: System 153

LI



Figure 154: System 154

Figure 155: System 155

Figure 156: System 156

LII



Figure 157: System 157

Figure 158: System 158

Figure 159: System 159

LIII



Figure 160: System 160

Figure 161: System 161

Figure 162: System 162

LIV



Figure 163: System 163

Figure 164: System 164

Figure 165: System 165

LV



Figure 166: System 166

Figure 167: System 167

Figure 168: System 168

LVI



Figure 169: System 169

Figure 170: System 170

Figure 171: System 171

LVII



Figure 172: System 172

Figure 173: System 173

Figure 174: System 174

LVIII



Figure 175: System 175

Figure 176: System 176

Figure 177: System 177

LIX



Figure 178: System 178

Figure 179: System 179

Figure 180: System 180

LX



Figure 181: System 181

Figure 182: System 182

Figure 183: System 183

LXI



Figure 184: System 184

Figure 185: System 185

Figure 186: System 186

LXII



Figure 187: System 187

Figure 188: System 188

Figure 189: System 189

LXIII



Figure 190: System 190

Figure 191: System 191

Figure 192: System 192

LXIV



Figure 193: System 193

Figure 194: System 194

Figure 195: System 195

LXV



Figure 196: System 196

Figure 197: System 197

Figure 198: System 198

LXVI



Figure 199: System 199

Figure 200: System 200

Figure 201: System 201

LXVII



Figure 202: System 202

Figure 203: System 203

Figure 204: System 204

LXVIII



Figure 205: System 205

Figure 206: System 206

Figure 207: System 207

LXIX



Figure 208: System 208

Figure 209: System 209

Figure 210: System 210

LXX



Figure 211: System 211

Figure 212: System 212

Figure 213: System 213

LXXI



Figure 214: System 214

Figure 215: System 215

Figure 216: System 216

LXXII



Figure 217: System 217

Figure 218: System 218

Figure 219: System 219

LXXIII



Figure 220: System 220

Figure 221: System 221

Figure 222: System 222

LXXIV



Figure 223: System 223

Figure 224: System 224

Figure 225: System 225

LXXV



Figure 226: System 226

Figure 227: System 227

Figure 228: System 228

LXXVI



Figure 229: System 229

Figure 230: System 230

Figure 231: System 231

LXXVII



Figure 232: System 232

Figure 233: System 233

Figure 234: System 234

LXXVIII



Figure 235: System 235

Figure 236: System 236

Figure 237: System 237

LXXIX



Figure 238: System 238

Figure 239: System 239

Figure 240: System 240

LXXX



Figure 241: System 241

Figure 242: System 242

Figure 243: System 243

LXXXI



Figure 244: System 244

Figure 245: System 245

Figure 246: System 246

LXXXII



Figure 247: System 247

Figure 248: System 248

Figure 249: System 249

LXXXIII



Figure 250: System 250

Figure 251: System 251

Figure 252: System 252

LXXXIV



Figure 253: System 253

Figure 254: System 254

Figure 255: System 255

LXXXV



Figure 256: System 256

Figure 257: System 257

Figure 258: System 258

LXXXVI



Figure 259: System 259

Figure 260: System 260

Figure 261: System 261

LXXXVII



Figure 262: System 262

Figure 263: System 263

Figure 264: System 264

LXXXVIII



Figure 265: System 265

Figure 266: System 266

Figure 267: System 267

LXXXIX



Figure 268: System 268

Figure 269: System 269

Figure 270: System 270

XC



Figure 271: System 271

Figure 272: System 272

Figure 273: System 273

XCI



Figure 274: System 274

Figure 275: System 275

Figure 276: System 276

XCII



Figure 277: System 277

Figure 278: System 278

Figure 279: System 279

XCIII



Figure 280: System 280

Figure 281: System 281

Figure 282: System 282

XCIV



Figure 283: System 283

Figure 284: System 284

Figure 285: System 285

XCV



Figure 286: System 286

Figure 287: System 287

Figure 288: System 288

XCVI



Figure 289: System 289

Figure 290: System 290

Figure 291: System 291

XCVII



Figure 292: System 292

Figure 293: System 293

XCVIII


	4ruano
	RUANO_DE_DOMINGO_Lorena_2021_2022

