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Resumen

Resumen En los últimos años, las redes de comunicaciones han empezado a jugar
un papel fundamental en muchos ámbitos. Las empresas han evolucionado también
en torno a Internet, aprovechando esta capacidad de difusión. No obstante, esta
dependencia en las redes y en las infraestructuras supone también un problema para las
empresas. Los sistemas de comunicaciones se han vuelto un elemento crítico del negocio,
suponiendo perdidas económicas graves en caso de interrupción del servicio.

En este contexto, se requiere proveer de modelos que permitan dimensionar
y caracterizar las redes de comunicaciones. Centrándose en el modelado, uno
tiene distintas opciones: desde aproximaciones clásicas basadas en estadística hasta
alternativas más recientes basadas en aprendizaje profundo y aprendizaje automático. En
este trabajo, se quiere realizar un estudio de los diferentes modelos en contextos distintos,
prestando atención a las ventajas y desventajas para proporcionar la mejor solución en
cada caso.

Para cubrir el mayor espectro, se han estudiado tres casos: fenómenos no sensibles
al tiempo, donde prestaremos atención al sesgo y la varianza de los modelos, fenómenos
dependientes del tiempo, donde será importante extraer las tendencias de las series, y
procesamiento de texto, empleando modelos para procesar atributos obtenidos mediante
DPI. Para cada uno de estos casos, se han estudiado alternativas y propuesto soluciones
que además de probarse con datos sintéticos, se ha probado con datos reales, mostrando
el éxito de las propuestas.

Palabras clave redes de comunicaciones, modelado de datos, análisis de datos
funcionales, redes neuronales.
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Abstract

Abstract In the last few years, computer networks have been playing a key role in many
different fields. Companies have also evolved around the internet, getting advantage of
the huge capacity of diffusion. Nevertheless, this also means that computer networks
and IT systems have become a critical element for the business. In case of interruption or
malfunction of the systems, this could result in devastating economic impact.

In this light, it is necessary to provide models to properly evaluate and characterize
the computer networks. Focusing on modeling, one has many different alternatives: from
classical options based on statistic to recent alternatives based on machine learning and
deep learning. In this work, we want to study the different models available for each
context, paying attention to the advantage and disadvantages to provide the best solution
for each case.

To cover the majority of the spectrum, three cases have been studied: time-unaware
phenomena, where we look at the bias-variance trade-off, time-dependent phenomena,
where we pay attention the trends of the time series, and text processing to process
attributes obtained by DPI. For each case, several alternatives have been studied and
solutions have been tested both with synthetic data and real-world data, showing the
successfulness of the proposal.

Keywords computer networks, data modeling, functional data analysis, neural
networks.
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1Introduction

1.1 Motivation
Network environments and modeling techniques are continuously evolving.

Nowadays, network infrastructures developed from highly static elements to dynamic,
reconfigurable and even virtualized devices. Besides, companies and countries invest
more and more resources in Information Technologies (IT) and, thus, the infrastructure
is becoming a more critical element of the whole business.

On the side of modeling techniques, there are several modern approaches that are
gaining momentum. In statistics, functional data analysis is one the most important
recent trending topics. In machine learning, deep learning is one the most important
advancement in the decade and it has changed the way of seeing other areas as image,
video and text processing.

In this context, network monitoring emerges as a necessity, where it is responsible of
dealing with the precise performance assessment to optimize cost and efficiency. In this
light, it is also clear that it is an open area to brand new modeling procedures. Models
need to provide characterization of central behaviors or uncertainty to handle the daily
operations of any network. In previous work [Perdices et al., 2018], we have already
concluded that, even in a simple case, one single model cannot be the only choice, no
matter how generic it is due to the bias-variance trade-off.

Consequently, we consider in this work a journey through different modeling
techniques to cope with different Key Performance Indicators (KPIs), paying attention to
both complexity and performance, exposing the advantages and disadvantages of each
one. We have divided this task into three different stages depending the situation:

1. Time-unaware models: as a continuation of [Perdices et al., 2018], we evaluate
parametric models in terms of complexity and goodness of fit as well as we extend
it with projections to avoid overfitting and to evaluate metrics more closely related
to real-life environment. As an example, we will evaluate the delay introduced in a
network segment by a network device inside an enterprise datacenter network.

2. Time-aware models: for metrics with a strong trend, it is necessary to provide
models that take into account the time. This means that instead of considering
random variables, we should look at stochastic processes. Autoregressive models

1



1. Introduction

and recurrent neural networks are already a common approach to time-series
modeling, but, in this case, we want to characterize global behaviors. So, instead
of using these options that rely only in local behaviors, we use Functional Data
Analysis (FDA), so samples will be functions or curves and our model will be, as it
was early mentioned, a stochastic process.

3. Models for text-based registers: up to this point, we have just considered coarse-
grained monitoring, this means that many events are inherently undetectable due
to the data recollection or the aggregation procedure. To complete this journey, we
approach also the fine-grained monitoring and the modeling of unstructured data.
In particular, we want to employ Domain Name System (DNS), Transport Layer
Security (TLS) or HTTP registers obtained in passive monitoring network probes to
characterize the webpages the user is navigating through. Clearly, this has a price:
we need to perform Deep Packet Inspection (DPI) to extract the data. Nevertheless,
we can get a deep insight into user’s behavior.

1.2 Objectives
The main of objective of this document is to design, develop and validate a

methodology to build models for different metrics and KPIs that are interesting during
network operation. Therefore, we propose different techniques that will be covered
thoroughly in the document.

Real-life environments 

      Text processing techniques

Classical models for text
Context modeling
Recurrent Neural Networks

Network monitoring models

Objective:
Study the advantages and disadvantages of all models to determine when to use each model 

Time-unaware models

Probability distributions
Bias-variance trade-off

             Time-aware models

Time series modeling
Functional Data Analysis 
Dimensionality reduction 

Major contributions

Analysis of model
selection techniques for
probabilistic models
Projections for bias
reduction
Effect of window size 

Analysis of techniques
for unsupervised time
series classification
Metrics for clustering
problems
Functional inputs for
neural networks

Text preprocessing
methods for high-
dimensional data
Sequence models for text
modeling
Effect of DNS caching

Modeling RTT introduced by a
network device

Time series classification in multiple
functional modes environments

Web browsing characterization
based on DNS records

Figure 1.1: Diagram of the objectives and contributions of this project.
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1.3. Project scheduling

The partial objectives correspond to the previous parts and they are:

1. Study of time-unaware models.

2. Study of time-aware models.

3. Study of text-based models.

A diagram that illustrates this can be found in Figure 1.1. The central topic in this
thesis, instead of being building a model for everything, is to determine when to use
each model through its advantages and disadvantages. The figure also gives an early
overview of the contributions, which will be detailed through the whole document.

1.3 Project scheduling
Per normative restriction, this project has a limit of 300 hours. Table 1.1 shows the

tasks with their time dedication.

Table 1.1: Time plan for the project

ID Task Hours
T1 Time-unaware models 70

T1.1 Analysis of the state of the art 20
T1.2 Trade-off bias-variance and projection methods 30
T1.3 Use case: characterization of latency introduced by a network device 20

T2 Time-aware models 90
T2.1 Analysis of the state of the art 20
T2.2 Characterization of time series using FDA 20
T2.3 Characterization of time series using neural networks 20
T2.4 Use case: network time series modeling inside a datacenter 35

T3 Text processing models 90
T3.1 Analysis of the state of the art 20
T3.2 TF-IDF, Doc2Vec and embedding for sequence modeling 35
T3.3 Use case: identification of web browsing trends for ISP clients 35

T4 Dissemination of the results 50
T4.1 Thesis writing 40
T4.2 Preparation of the defense 10

Total hours 300

For the first part of the project, we center the objective on the bias-variance trade-off.
We want to select models not only in terms of goodness of fit but also taking into account
complexity so that the model generalizes. As a practical use case, the latency introduced
by several network devices is measured and modeled.

In the second part, time plays a key role. In this case, we expose a generic model that
we want to use and different ways of estimating its parameters. For the estimation, the
procedures range from FDA approaches to neural networks. As an application, we model
the time series of aggregated flow counts per network segment to identify the different
trends that exist.

In the last part, we approach a totally different problem. Now, data is formed of
text sequences. Usually, text sequences are projected to an embedding space where we
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study the solution using classical methods. Depending the topology of the embedding,
different results will be obtained and, thus, it opens the question of which one to use.
This use case is to identify the web browsing domain from the sequence of subdomains
observed when monitoring DNS traffic.

1.4 Organization of the document
The document is structured in five more chapters. Chapter 2 contains a light

introduction to Neural networks and FDA so that later in the document main concepts
are already explained. Next three chapters are focused on the previous topics, i.e.
Chapter 3 is about time-unaware models, Chapter 4 introduces the time as a relevant
variable and exposes methodologies with FDA and Chapter 5 shows how can we use
text-processing techniques and DPI to comprehend the users’ behavior. Last, Chapter 6
summarizes the main conclusions of the whole project and next steps to be taken in the
future.
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2.1 Introduction
This chapter provides a short introduction to FDA and neural network concepts that

are used along the document. The first part of the chapter is a summary of concepts
related to FPCA theory necessary for chapter 4. The last part consists on a high-level
description of the theory of artificial neural networks (hereinafter, neural networks) and
recurrent neural networks, which are necessary to understand models and techniques of
chapters 4 and 5. With respect to chapter 3, basic probability concepts are required but
they are covered in section 2.3 of [Perdices, 2018].

2.2 Functional Data Analysis
First of all, we must define what we call functional data. We will said that some data

is functional if it is a random variable that takes values in a functional space such as
L2([0, T ]). In this kind of spaces, several techniques that work for multivariate data can
also be extended to the functional case.

The next two results allow in fact to define a concept akin to the eigenvalue-
eigenvector decomposition of a symmetric linear operator. What we want here is to
provide the theory that allow Principal Component Analysis (PCA) to work in more
general spaces.

Theorem 2.2.1 (Mercer’s theorem). Let K be a continuous symmetric non-negative
definite kernel. Then there is an orthonormal basis {en}n≥1 of L2[a, b] consisting
of eigenfunctions with nonnegative eigenvalues {λ}i≥1 such that K has the following
representation:

K(s, t) =
∞∑
j=1

λjej(s)ej(t),

where the convergence of the series is both absolute and uniform.

Mercer’s theorem provides a way of decomposing the covariance operator of a
process so that the process in terms of these basis elements, in the same way that
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a symmetric, positive definite matrix can be diagonalized. This result is known as
Karhunen-Loève Theorem and it is fundamental for Functional Principal Component
Analysis (FPCA).

Theorem 2.2.2 (Karhunen-Loève Expansion). Let {X(t); a ≤ t ≥ b} be an L2 process
with continuous covariance function K and mean m = 0. Let {en}n≥1 be an orthonormal
basis for the space of eigenfunctions with nonzero eigenvalues of the kernel K and {λn}n≥1
the corresponding eigenvalues. Then X(t) can be expressed as

X(t) =
∞∑
n=1

Znen(t), a ≤ t ≤ b

whereZn = 〈X(t), en(t)〉 are orthogonal random variables withE(Zn) = 0 andE(|Zn|2) =
λn and this series converges in L2 uniformly in t.

Chapter 4 will provide more details of when to use these results to understand FPCA.

2.3 Neural Networks and Deep Learning
2.3.1 Description

Most of the deep learning courses introduce the topic from a historical point of view.
Nowadays, deep learning and neural networks are part of the state of the art of many
fields, so they need no motivation. The main question then is: why are they so popular?
The answer is that these models are usually able to resemble human thinking, adjust the
data as much as you decide and overfitting strategies.

Despite the benefits, neural networks are yet being explored in the state of the art of
machine learning and there are yet many breakthroughs to come that will stir up other
areas as it happened with Convolutional Neural Network (CNN) and image processing,
and with Recurrent Neural Network (CNN) and text processing.

Neural networks are composed on layers and neurons. First, we define both

Definition 2.3.1 (Neuron and linear layer). A standard neuron or neuron with input size
k is just an affine operator

y : Rk → R
x→ y(x) = wx+ b

where w is a vector in Rk and b0 is a constant called the bias. W and b are called weights of
the neuron.

A linear layer, also called dense layer, with input size k and output size d is a set of d
independent neurons. It can be seen also as another affine operator

Y : Rk → Rd

x→ Y (x) = Wx+ b

where W is a d× k matrix and b is a vector of size d.

Linear layers are the essential building block for neural networks. Nevertheless,
the composition of linear operators is just another linear operator; so, we need extra
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elements. These elements are the activation layers. They allow neural networks to adapt
to some particular data such as discrete probability distributions or to build non-linear
operators when composed with linear layers.

Definition 2.3.2 (Activation layer). An activation layer with input dimension k is just a
function f from Rk to Rk.

Examples of activation layers are:

1. Sigmoid function: classical function whose range goes from 0 to 1 and that near 0,
its values is 0.5, so it can model a probability.

σ(x) =
1

1 + e−x
(2.1)

2. Hiperbolic tangent: classical function also which main difference is just that it has
0 mean and the range is [−1, 1]

3. Softmax function: a useful activation layer that normalize the outputs so that the
outputs are all positive and add to 1.

σ(x) =
ex∑
i e
x

(2.2)

4. Rectified Linear Unit (Relu): just a function that eliminates negative outputs.

σ(x) = max(0, x) (2.3)

Some of them (e.g. the first one and the second one) were deduced from the biological
conditions of a neuron. Others, as the second one and third one, were just proposed to
deal with processing the data so data is under some restrictions, in this case being a
probability distribution. Besides them, researchers proposed other ones, as the fourth
one, to cope with the disadvantages of other ones, in this case the decay of the gradient
for deep networks.

Figure 2.1 shows the shape of some of these functions. As we see, sigmoid and tanh
are smooth functions whereas ReLU is non differentiable at 0. As we will cover next,
derivatives play a important role in the training process.

2.3.2 Training procedure: feed-forward and back-propagation
Once models are defined, we need to specify how the models are trained, this is,

how we obtain the parameters and weights of the different layers. This procedure is
performed in two steps: the feed-forward step and the back-propagation step.

Both steps are repeated per batch, a subset of the sample that implies the update of the
parameters. Batch size is usually a hyperparameter that suppose a trade-off between time
and convergence. Smaller batch sizes will likely converge faster, especially in the first
steps, whereas bigger batches sizes will require more steps to achieve the same accuracy.
On the other hand, smaller batch sizes do not take advantage of vectorization and, thus,
the parallelization will be fine-grained instead of coarse-grained. So, it results in larger
training times.

For a batch, the feed-forward step consists in computing the output of each layer
based on the input or the output of other layers and storing the result in the layer
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Figure 2.1: Activation layers and their derivatives for x ∈ [−2, 2]

structure as it will be used in the next step. While this task is trivial, it is necessary to
the next step.

The back-propagation step is far more complicated. First, all the parameters are
trained through modifications or adaptions of gradient descent, i.e. if the weights are
w, we have an iterative formula

wk+1 = wk + γ∇ε(wk), (2.4)

where γ is the learning rate (a hyper-parameter) and ε(wk) is the cost function.

Learning rate is usually between 0.0001 and 0.01 but it depends on the magnitude
of the gradient. Here is where normalization and pre-processing can help to bound the
magnitude of the gradient. Also, modified methods are employed where this learning
rate is modified along the iterations implementing concepts as momentum [Kingma and
Ba, 2015] or regularizations.

On the other hand, cost functions are usually a fixed parameter of our model. In
this case, training process aims at minimizing ε, which is usually the mean of the loss
function, i.e.

ε(w) =
1

N

N∑
i=1

loss(fw(xi), yi), (2.5)

where xi are the inputs of our model, fw is the neural network as a function of the inputs
and yi the targets, which can be either categorical (classification problems) or numerical
(regression problems).

Although loss functions are pretty open, one must keep in mind that we are doing
gradient descent, so we need that the cost function, and thereby the loss function, is
differentiable. This makes unfeasible to use accuracy or precision, so instead one must
use the cross-entropy

loss(ŷ, y) = −
∑

l∈Supp(y)

p(l) log(q(l)) = −
∑

l∈Supp(y)

1{y=l} log(P̂ (Y = l)), (2.6)

where p and q are the original distribution (p(l) = P (Y = l)) and the estimated
distributions (q(l) = P̂ (Y = l)) respectively.
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For regression problems, Mean Square Error (MSE) is usually the favorite one

loss(ŷ, y) =
1

d

d∑
j=1

(yj − ŷj)2, (2.7)

but many other possibilities as Mean Absolute Error (MAE)

loss(ŷ, y) =
1

d

d∑
j=1

|yj − ŷj | (2.8)

are possible even if they are not differentiable everywhere.

The last ingredient to completely understand the back-propagation is the chain rule
and the automatic differentiation systems. We talked about the gradient but computing
the gradient by hand could be extremely hard for some kind of fancy networks when they
get deep and deep. Nevertheless, back-propagation is as easy as the chain rule. Recall
that the chain rule is

dε

dw
(ε(y, ŷw)) =

dε(y, ŷ)

dŷ
(ŷw)︸ ︷︷ ︸

(A)

dŷw
dw︸︷︷︸
(B∗)

=
dε(y, ŷ)

dŷ
(ŷw)︸ ︷︷ ︸

(A)

dŷ(f)

df
(f (h)w )︸ ︷︷ ︸

(B)

df
(h)
w

dw︸ ︷︷ ︸
(C∗)

. (2.9)

As we see, the gradient can be calculated per layer basis. In this case, always the left-
hand side terms are the same derivatives (so they are always the same) and since they
are computed from back to front of the network, we called it back-propagation. As we
highlighted in the feed-forward step, values as ŷw and f (h)w were computed before so they
can be just saved in the feed-forward step as we explained.

2.3.3 Validation: hyperparameters tuning
Although neural networks are one of the most powerful models nowadays, they are

very sensible to the so-called hyperparameters. These hyperparameters configure the
network and the training procedure.

For the configuration of the network, the possibilities are limitless in terms of number
of neurons per layer, number of layers, types of layer, etc. This means that, without
a methodology, fitting a neural network can be impossible. As a consequence, neural
network models are usually built using a iterative approach where different parameters
are tested.

Cross-validation procedures do also apply for neural networks, but they require so
many computational resource that they are not so common. Normally, random search or
grid search are the most frequent options.

2.3.4 Extensions of the classical layers: recurrent neural networks
The boom of the neural networks was initiated with just Multilayer Perceptron

(MLP) architectures (sequentially connected linear layers and activation functions).
Applications for image processing or text processing caused the invention of new type
of layers as convolutional layers and recurrent layers. Since for text processing, the most
common ones are recurrent layers, we will study deeply the architecture of most used
recurrent neuron: the Long Short-Term Memory (LSTM) cell.

Recurrent neural networks usually implement a feedback loopback where
information hn obtained when processing element of the sequence sn is propagated to
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process element sn+1. Left-hand part of Figure 2.2 presents the feedback loopback that is
modeling whereas right-hand part of the figure shows the real implementation.

Bear in mind that, although this kind of neurons are implemented as a sequence of
cells, they all share the same parameters. Also, since neural networks usually have fixed
sizes due to optimizations, we have to fix a length of the sequence or window size k.

sn

hn

xn

hn-k

sn-k

xn-k

sn-k+1

xn-k+1

hn-1

sn-1

xn-1

sn

xn

Figure 2.2: Fundamental concept of RNN and its implementation

Once this concept of RNN is clear, the next step is to study particular implementations
of this. The most popular one is the LSTM cell. The equations that described the LSTM
cell can be found in (2.10)-(2.16)

xn = on · tanh(cn) (2.10)
hn = xn (2.11)
cn = fn · cn−1 + in · gn (2.12)
on = σ(W t

sosn +W t
sohn−1 + bo) (2.13)

fn = σ(W t
sfsn +W t

sfhn−1 + bf ) (2.14)

in = σ(W t
sisn +W t

sihn−1 + bi) (2.15)
gn = tanh(W t

sgsn +W t
sghn−1 + bg) (2.16)

As it can be inferred from the equations, state is propagated to the next element of the
sequence through hn and cn. While cn represents the long-term state of the sequence, hn
models the short-term memory, consequently they are called LSTM neurons. Besides, f ,
i, o look like classical neurons and each of them is for different purposes: forget, input
and output respectively. As we see, when f is close to zero, it forgets the long-term state.
Also, on is the output itself weighted and in is a hidden layer from the input that it also
impacts on the output.

2.4 Conclusion
In the first part of the chapter, we have explored basic concepts of FDA and neural

networks so that it serves as a short introduction for readers who are not familiar
with them and it also makes the document more self-contained so this chapter can be
referenced in the rest of the document without requiring readers to look for the results.
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3Time-unaware modeling: probabilistic
models and trade-off bias-variance

3.1 Introduction
Statistical modeling is a key step in many management tasks. The choice of

one model over another one can lead to radically different criteria and conclusions.
Consequently, this section presents a collection of models that are suitable for situation
where there is no seasonality in the data or the model is only employed in short time
intervals. Furthermore, this section explains different principles to select a model taking
into account both bias and variance. To close this chapter, we present an idea of using
projections and the previous models to deal with situations with high variance.

A key example of this kind of metrics that we expect to be time-invariant is hardware
capabilities of devices, for instance, the latency or Round Trip Time (RTT) that introduces
a firewall in the connections. Using probabilistic models, we fit a distribution to our
data so that we have a fair model of our phenomena that will help us to provide a more
reliable description of the extreme behaviors that we may observed.

In this chapter, we explain dPRISMA (Distributed Passive Retrieval of Information,
and Statistical Multi-point Analysis), a passive monitoring system we designed to study
the RTT in multi-hop environments. It employs probabilistic models and projections to
provide the most suitable model. Multi-hop analysis allows to locate where performance
issues are likely to appear and projections helps to reduce the variance we will observed
in single-flow estimates for large periods of time.

3.2 State of the art
We start with a review of statistical models for RTT measurements, to justify the

selection of the models in our system. Then, we consider previous results that ground
the assumption of validity of this representation, and methods to collapse individual
flow estimates and obtain indicators of vantage points’ performance. Finally, we focus
on other monitoring frameworks that share design principles with our proposal.

The content of this chapter is based on [Perdices et al., 2018, Perdices et al., 2019]

11



3. Time-unaware modeling: probabilistic models and trade-off bias-variance

Statistical modeling of network KPIs has deserved much attention, given its
importance for network operation. This interest has resulted in a vast amount
of literature reporting how different probability distributions represent network
measurements, which extends to delay and RTT modeling.

Given their central position in inference, probability theory and empirical
research [Mandel, 1984], normal and lognormal models are a common approach when
coping with data analysis. However, the research of KPIs in operational networks has
exposed that many times they exhibit heavy-tailed behaviors in existing deployments,
which grounded the exploration of more complex models able to capture large
deviations [Liebeherr et al., 2012, Simmross-Wattenberg et al., 2011, Carisimo et al., 2017].
As we will detail in the following sections, we consider several parametric models (some
of them with heavy tails) and compare their performance, taking into account different
metrics to optimize the trade-off between goodness of fit and complexity.

In [Papagiannaki et al., 2003], the authors explored which distribution adjusted
single-hop delays in computer networks. Their conclusions pointed to a good
representation of this KPI with Weibull distributions, as delays presented fair unimodal
behaviors. Similar results were reported in [Hernández and Phillips, 2006], while in
this latter case multi-modal behaviors were observed (somehow expectable, as that work
analyzed end-to-end delays) so mixtures of Weibull distributions provided good fitting
to the measurements. Inspired by these results, we explored two additional parametric
families, which for some values in the space of parameters lay near Weibull distributions.

On the one hand, we have considered the Generalized Extreme Value (GEV)
distribution [Coles et al., 2001], given their suitability to represent variables with large
and rare values. Remarkably, GEV distributions generalize Weibull, Gumbel and Fréchet
distributions, which motivates the selection of this model. On the other hand, we also
introduced Burr Type XII distributions to model RTT, motivated by the relation of this
parametric family with Weibull distributions [Tadikamalla, 1980]. The complexity of
both models is comparable to Weibull distributions, but their broader flexibility can
potentially reduce deviant cases.

Additionally, in recent times α-stable distributions have been applied to model
RTT [Carisimo et al., 2017]. This family is very flexible and general, but much more
complex that those previously commented. In fact, the fitting of the parameters of α-
stable distributions is computationally expensive [Royuela-del-Val et al., 2017, Julián-
Moreno et al., 2017] and there is no closed expression for their density function.
Remarkably, α-stable distributions appear in the generalized central limit theorem and
converge to normal distributions for some values in the space of parameters.

As stated above, the properties of several parametric distributions offer a promising
framework to describe RTT and delay components in operational networks. While
this is a primary step along data modeling, model fitting requires a time-dependent
consideration to guarantee that such representation can exist. In other words, we wonder
to what extent measurements are stable—i.e., they follow a given distributional law
during observations periods.

RTT can be decomposed, as we develop below, in delay components that affect
network traffic along a path. Therefore, a reasonable condition for RTT stability
is the stability of those components. Given the importance of such components in
overall network performance, several previous works have addressed its modeling and
understanding. For instance, a formal model for stochastic components of delay in
common network equipment is presented in [Hohn et al., 2004]. In that work, the authors
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pointed to relevant factors—remarkably, network load and node capacity—that provided
a suitable estimator for delay components.

In that same line, we consider that under stationary network load and in the absence
of changes in node capacity, delay components can be considered short-term invariants:
this seems a reasonable condition, as a result of empirical and grounded analysis of
network load [Mata et al., 2012]. In this latter work, authors analyzed a method for
the detection of abrupt short-time changes in network load, showing that under very
general assumptions this indicator can be considered invariant. Then, they applied
cluster aggregation to test the model compliance—specifically, multivariate Gaussian
model—and detected excursions from the typical behavior.

Following a somehow similar approach, we put together these previous results to
define a projection method to pre-filter individual flow estimations in time windows,
selecting representatives for central and extreme values. Then, we characterize
the typical behavior of projections using the aforementioned models. Additionally,
we also introduce a control measurement to assure stability of the estimates using
Dictyogram [Muelas et al., 2015]. This method describes the evolution of flow
characteristics by accounting the frequency of their values within a set of order statistics.
Hence, it provides a flexible evaluation of changes in the distribution with the analysis of
its corresponding variation rates.

Beyond improving techniques to retrieve information from measurements, network
monitoring and analysis solutions need to suit novel operational architectures. This
entails that data capture and deployment processes should evolve towards more scalable
and flexible approaches. As an illustrative situation, current trends regarding network
slicing and virtual networks on top of shared hardware require this type of approaches
to gather data without incurring in high costs—e.g., movement of big data volumes. This
matter is not a particularly new concern for network monitoring, and many previous
results explored principles that can help to improve current systems.

For instance, the design of cooperative monitoring systems [Xu and Wang, 2008] arose
as a promising approach to alleviate the shortcomings of monitoring scalability. These
classical ideas can pave the way for improved solutions in the network monitoring scope,
as stated in [Bari et al., 2013].

Even more important is that many current network monitoring efforts are focused
on how to take advantage of the ever-increasing capabilities of network equipment.
This opens the gate to disaggregate network monitoring, moving specific tasks to
the most suitable equipment in the network. Turboflow [Sonchack et al., 2018] is a
recent proposal that relies on the embedding of flow generation into programmable
switches. However, the authors of that work highlight that stateful information may
limit the complete implementation of some processes in the network hardware. In the
same line, Sonata [Gupta et al., 2016] distributes monitoring tasks to different network
elements, providing a query-based API that can be exploited by other modules. Parallel
to these proposals, our approach provides high-level analytics after aggregation and
correlation of traffic packets or flow records that may be produced by different sources
and methodologies.

Finally, and regarding the trends in virtualization and software-definition of
networks, we point to other recent works that exploit containers to define flexible
monitoring services that can be instantiated on demand and linked to specific
applications [Moradi et al., 2017]. The modular design of our system in chapter 3 is totally
aligned with these trends, providing a higher decoupling of data gathering and analytics.
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Figure 3.1: Functional modules of dPRISMA.

Such approaches can push network monitoring proposals toward microservice-oriented
architectures [Holger et al., 2016].

3.3 Fine-grained modeling
Since we are focusing on the example of the RTT of a network device, we introduce

dPRISMA [Perdices et al., 2018] (Distributed Passive Retrieval of Information, and
Statistical Multi-point Analysis), a passive monitoring system that measures the RTT
increment introduced by a device or a network segment using just the SYN packets
in the TCP handshake or, alternatively, Netflow [Claise, 2004] or IPFIX [Aitken et al.,
2013] records when there is no sampling in the exporters. It is designed to satisfy these
principles:

1. Distributed and passive data gathering: the retrieval of information should be
distributed among different network elements. Monitoring systems should exploit
capabilities of the equipment to improve scalability with a horizontal division
of tasks. This can be implemented using several functionalities of common
network equipment. For instance, we point to opportunistic retrieval from built-
in capabilities (e.g., exploitation of OpenFlow records); existing passive monitoring
elements (e.g., NetFlow or IPFIX exporters); and traffic forwarding based on SPAN
ports or selective OpenFlow rules.

2. Correlation of multi-point measurements: measurements should be exploited to
provide contextual data and link observations from different elements. As network
issues usually affect complete segments, measurements that encompass only single
points can hide the location, extension and nature of the problems. Therefore,
correlation of measurements can provide deeper insights into performance issues
and network state.

3. Application of statistical models: stochastic nature of network measurements requires
a suitable statistical modeling. Otherwise, results may not reflect actual network
conditions and spurious values can lead to biased decisions. Models should
consider a compromise between goodness of fit and complexity, to optimize
analytics and prevent unnecessary computational costs.
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Figure 3.2: Operation of dPRISMA. Red arrows represent a sample connection traversing
the three monitored points of the network, distinguishing the different RTT components
that are estimated to detect possible bottlenecks.

Next, we describe the main functional components of dPRISMA, which are
summarized in Figure 3.1. In the current proof of concept implementation,
dPRISMA relies on flow records to conduct the analysis and modeling of RTT. To prevent
ambiguities, we clarify that hereafter we refer to TCP flow as a set of TCP packets with
a common 4-tuple, which traverse a particular vantage point in the network during a
specific time interval, as stated in RFC 7011 [Aitken et al., 2013].

Additionally, we synthesize the operation of dPRISMA in Figure 3.2. First of
all, passive measurements are gathered from the available vantage points. These
measurements are aggregated in dPRISMA and correlated to obtain estimations of
RTT and its components—that is, the increments along the network segments defined
by vantage points. After that, the system fits and selects the parametric model
for measurements, and provides estimations of significant central values—e.g., mean,
median and mode— and other order statistics such as extreme values. This leads to
flexible and adaptable profiles for alerts, thus providing indicators of performance issues.

In the following, we detail these operations and how they are implemented within
the different functional blocks. For our description, we follow a constructive approach
that first considers how data are gathered and preprocessed, and then details how they
are exploited to build the models.

3.3.1 Data gathering and preprocessing
Flows are collected in several ways. Some examples are Netflow or IPFIX [Claise

et al., 2013], and other custom tools that send at least information about when every
flow starts. Except for special cases, these timestamps are taken from SYN and SYN-
ACK segments, which let us have an estimation of RTT that only requires that both
flows of the same connection are sampled. Regarding performance issues in this process,
we may distinguish two different situations: flow aggregation in a computing element
different to network equipment, and aggregation inside the networking elements. In the
first case, it is possible to capture traffic up to 40 Gb/s in commodity hardware—e.g.,
see [Trevisan et al., 2017, Leira et al., 2019]. In the case of monitoring functions within
network equipment, performance issues may appear depending on traffic characteristics
and capabilities of specific hardware, while commercial equipment includes support for
these operations.
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Algorithm 3.1 Flow aggregation.

1: function getSuperflows(flows. . . )
2: table← InitializeSuperFlowsTable()
3: for flow in flows do
4: if flow is ip and tcp then
5: if flow.srcPort < flow.dstPort or
6: (flow.srcPort = flow.dstPort and
7: (flow.srcIp < flow.dstIp)) then
8: quintuple ← (flow.srcIp, flow.srcPort, flow.dstIp, flow.dstPort,

flow.ipProto)
9: else

10: quintuple ← (flow.dstIP, flow.dstPort, flow.srcIp, flow.srcPort,
flow.ipProto)

11: end if
12: table[quintuple].addFlow(flow)
13: end if
14: end for
15: return(table)

dPRISMA estimates RTT by subtracting the start times of two TCP flows that
share temporal and spatial localities, and the 4-tuple swapping source and destination
addresses and ports. Then, it correlates equivalent flows: TCP flows sharing the 4-tuple
and time interval but observed in different points of presence. This process is described
in Algorithm 3.1.

Once RTT is estimated and correlated, the equivalent flow contains information of the
flow in several locations. By looking at Figure 3.2, we observe that RTT in hop j is given
in (3.1):

RTTj =

N∑
i=j

∆RTTi (3.1)

By inverting this linear operator, we obtain an estimation of the component in the
network segment between vantage point j and j + 1 as in (3.2):

∆RTTj = RTTj − RTTj+1 (3.2)

Note that, in contrast to one-way delay measurements, these estimations do not require
clock synchronization, since the RTTj are absolute values, each one computed with the
flow estimates performed in the same vantage point j with its local clock as a single
reference time. As this process involves a single clock source, synchronization among
different vantage points is not required.

3.3.2 Model selection
Due to the stochastic nature of network measurements, statistical models are needed.

In our case, these models are intended to characterize ∆RTTj behavior, so that frequent
events can be distinguished from anomalies or deviant events.

Apart from how challenging model fitting can result, the selection of an optimal
model to be used emerges as key matter for systems as ours. For this aim, we have
equipped dPRISMA with several criteria, summarized in Table 3.1, to adapt its behavior
to a wide range of situations:
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3.3. Fine-grained modeling

Table 3.1: Summary of metrics for model selection.

Metric Description Expression
R2 Only considers fitting. 1− SSres

SStot

AIC
Considers both fitting and number
of parameters. 2(k − log(L̂))

BIC
Considers fitting, number of pa-
rameters and sample size. log(N)k − 2 log(L̂))

1. Coefficient of Determination (R2): A well-known metric of goodness of fit is the
coefficient of determination, R2. This metric is based on a linear fitting of (xk, yk),
where xk are the order statistics of the sample and yk are the corresponding
quantiles of the model. If the samples follow the model, there must be a strong
linear relation, which entails that R2 must be close to 1. This is a necessary but
no sufficient condition [Kilpi and Norros, 2002], so although this method cannot
provide a formal proof of goodness of fit, it can be applied to rule out the parametric
models with the lowest values—i.e., to select that with the strongest linear relation
between the order statistics of the sample and estimated distribution.

2. Akaike Information Criterion (AIC): This a statistical method to compare different
models based on two factors: complexity and goodness of fit. It has the expression
in (3.3):

AIC = 2(k − log(L̂)) (3.3)

where k is the number of parameters of the model and L̂ is the maximum of the
likelihood function [Akaike, 1974]. It is remarkable that complexity is just evaluated
with the number of parameters, and this makes it an optimistic approach.

3. Bayesian Information Criterion (BIC): Related to the aforementioned AIC, it
introduces an additional component, which is the number of samples. This is
intended to reduce overfitting in parametric models, so that the complexity and
goodness of fit are balanced [Schwarz, 1978]. It is defined as in (3.4):

BIC = log(N)k − 2 log(L̂) (3.4)

where N stands for the sample size and the rest of variables were described in AIC.

These three criteria allow choosing the most appropriate model based on complexity
and goodness of fit, and on the situation and requirements of the other top-level system
that use this information. For instance, for real-time applications, simpler models are
preferred so the model computation is not a bottleneck in the monitoring system.

3.3.3 Mode estimation
The mode of a sample is a prominent centrality measure that returns the most

probable value of a distribution. Given that finding a good parametric model is not
always feasible, we also evaluated alternative methods to estimate the mode. We
have considered methods for the univariate case —see the analysis in the introduction
of [Kirschstein et al., 2016]— and studied both indirect (that is, relying on a non-
parametric density function estimation) and direct (essentially, search methods around
intervals where the mode is likely to appear) proposals:
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3.3.3.1 Estimation through the Kernel Density Estimator (KDE)

This approach arises from the definition of mode. First, the KDE, a PDF estimator,
is calculated. The mode is estimated as the maximum of the KDE, M̂ode(X) =
argmaxx∈Rf̂(x). While this method can reveal important details about the density
function (e.g., shape or number of modes), it depends on the convergence of KDE to
the actual PDF.

3.3.3.2 Half-Sample Mode (HSM) algorithm

The HSM algorithm is a robust and fast method to approximate the mode [Bickel and
Frühwirth, 2006]. This algorithm is based on the principle that “the mode is in the
smaller interval that contains half of the sample”. By applying this idea, we reduce
both computations and assumptions, making this approach a good one to use in many
situations.

3.4 Projections to reduce the variance
In this section, we introduce a modification of the aforementioned system called

adPRISMA (Advanced Distributed Passive Retrieval of Information, and Statistical Multi-
point Analysis) [Perdices et al., 2019]. This system adds a fourth capability:

4. Robust data processing: model fitting needs to include methods to extract relevant
information from time-varying measurements. That fact entails a compromise
between the granularity of detectable events and resiliency against noisy or isolated
excursions.

In order to fulfill this requirement, we performed aggregations of single-flow
estimates, described in next subsection. Bear in mind that bias-variance trade-off will
be presented since, the more we aggregate, the more we reduce the variance but also, the
higher the bias is.

3.4.1 Aggregation of single-flow estimates
Given the high variance of single-flow-based estimates, we envisaged an aggregating

procedure to better characterize vantage point modeling. In other words, as adPRISMA is
intended to provide indicators for issues at network elements or segments, spurious
variance in flow behavior could lead to biased conclusions. To separate this latter type
of deviant situations from sustained changes in the vantage points’ behavior, we have
introduced a windowed filtering of single-flow observations.

We recall that adPRISMA tries to obtain a model for the distribution of {∆RTTi}
for separate network segments. Therefore, it requires some stability on the fitted
distribution. In this regard, we detected two main issues that may appear because
of the flows’ stochastic behavior. On the one hand, changes on the underlying
distribution can lead to sub-optimal adjustments—e.g., a sustained change on the
expectation of {∆RTTi}. On the other hand, the convergence to a fair approximate of the
distribution depends on the number of observations, as stated in the Glivenko-Cantelli
theorem [Wellner et al., 1977].

This entails a bias-variance trade-off—i.e., the balance between how far the estimated
model to the theoretical distribution is, and how the model fits the observations.
adPRISMA copes with this matter by clustering single-flow observations in time
windows. We distinguished two possible strategies to proceed with this aggregation.
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3.4. Projections to reduce the variance

On the one hand, the first strategy is intended to extract a central representative within
each time window. This would lead to robust models for typical behaviors sustained in
time. This can be accomplished using a projection as in (3.5):

∆RTT(t) = arg min
x∈R

∑
j∈Jt

(d(∆RTTj , x)), t ∈ T (3.5)

where t ∈ T represents the time-domain partition, Jt the index set of {∆RTTi}within each
element of the time-domain partition, and d(·, ·) a distance—e.g., any Lp distance. The
projection can lead to different centroids, such as the median (L1) or average (L2) for the
observations within the interval. With this, adPRISMA introduces a variance-reduction
procedure that can attenuate the effect of flow distortions—i.e., isolated extreme values
do not affect model fitting.

On the other hand, the second strategy pursues the determination of boundaries for
extreme values. This is accomplished by using order statistics of the observations within
each time window as in (3.6):

∆RTTp(t) = inf

x : p ≤ 1

|Jt|
∑
j∈Jt

1[0,x](∆RTTj)

 , t ∈ T (3.6)

where t ∈ T represents the time-domain partition, Jt the index set of {∆RTTi} within
each element of the time-domain partition, 1A(t) the indicator function of set A—i.e. its
value is 1 if t ∈ A and 0 otherwise—and p ∈ [0, 1] indicates the selected probability level.
This approach is useful to define and model extreme values’ bounds with sensitivity to
trends along time.

Bias control on projections is accomplished with the study of convergence to a
robust empirical estimate of the theoretical distribution function. Dictyogram [Muelas
et al., 2015] offers a basis for quantitative criteria to determine whether the time-domain
partition suffices to a reasonable convergence—i.e., if the number of observations offer
a fair representation of the distribution. Dictyogram maps time-depending study of
the distribution of a flows’ characteristic, such as the ∆RTT, onto the analysis of the
number of flows lying on categories defined in terms of order statistics of the specific
characteristic.

To do so, once the values corresponding to a grid of probability levels {xk}k=1,...,N are
selected, then flows can be partitioned using the intervals in (3.7):

Ik =


[0, x1] if k = 1

(xk−1, xk] if 1 < k < N + 1

(xN ,∞) if k = N + 1

(3.7)

These intervals induce a set of time series with the number of flows within each interval
and time window, which we denote as fk(t) in (3.8):

fk(t) =
∑
j∈Jt

1Ik(∆RTTj) (3.8)

Using these series, we can define a relative measure of variation along time as
presented in (3.9):

d[fk(t)] =

∑
k|fk(t)− fk(t− 1)|∑

k fk(t)
, t ∈ T (3.9)
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(a) Scatter plot of hops 1 and 2 for RTT.
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(b) Scatter plot of hops 1 and 2 for ∆RTT.

Figure 3.3: Results for Dataset1. The × shows the intersection of the modes.

Table 3.2: Estimated mode of ∆RTT1 and ∆RTT2 in Dataset1, for each of the methods.

∆RTT1 ∆RTT2

Model Mode R2 AIC BIC Mode R2 AIC BIC
KDE 0.1080ms - - - 0.161ms - - -
HSM 0.1124ms - - - 0.167ms - - -
Normal 0.1042ms 0.990 -4754.719 -4747.567 0.7553ms 0.05 -1728.580 -1721.429
Lognormal 0.0861ms 0.905 -4711.002 -4703.850 0.1223ms 0.295 -4093.103 -4085.950
GEV 0.1055ms 0.992 -4750.049 -4739.321 0.1251ms 0.651 -4251.231 -4240.504
Burr Type XII 0.1063ms 0.995 -4754.618 -4743.890 0.1546ms 0.708 -4275.132 -4264.402
α-stable ∼0.1042ms 0.991 -4750.721 -4282.579 ∼0.1568ms 0.970 -4296.883 -4282.579

which accounts for the cumulative relative variation of the number of flows in each
category.

Then, bursts in d[fk(t)] are equivalent to abrupt variations in the Empirical
Cumulative Distribution Functions (ECDFs) in adjacent time windows. In other words,
the stability of this function offers a quantification of ECDFs’ stability.

3.5 Results
In the first stage of experiments, we analyzed flow records from a data center network

with adPRISMA to assess its outcomes in an actual case study. This dataset, hereinafter
denoted Dataset1, has the following characteristics:

• It includes real traffic traces of core and service switches, load balancers and virtual
machines in operation, gathered from an Internet Service Provider (ISP) data center
network.

• It was captured using the management software of two vantage points, so no
special equipment was completely dedicated to network monitoring.

Due to the presence of some outliers in the second hop of the dataset, some
preprocessing was applied to visualize and plot the data. As some of the destinations of
the connections are virtual machines, the outliers were likely caused by the hypervisors
managing virtual machines.

Finally, the second experimental stage was intended to assess the validity of fixed
distribution models along longer observation periods. For this purpose, we consider a
second real dataset (Dataset2) retrieved from an enterprise datacenter.

In contrast to Dataset1, Dataset2 is composed of roughly seven working hours of traffic
captured in two vantage points deployed to monitor the performance of an in-between
operational firewall during working hours in one day. This network presents heavy
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(a) Histogram and density comparison, ∆RTT1. (b) Violin plots, ∆RTT1. Horizontal lines show
percentiles 5th, 50th and 95th of the sample.

(c) Histogram and density comparison, ∆RTT2. (d) Violin plots, ∆RTT2. Horizontal lines show
percentiles 5th, 50th and 95th of the sample.

Figure 3.4: Comparison among models and observation for ∆RTT1 and ∆RTT2 in
Dataset1.

traffic load during the peak hour around 9:00 AM, and some other minor peak moments
during the rest of the day. Whereas Dataset1 lasted for only some few minutes, this latter
case represents a scenario where single-flow estimates might not be stable along time.
With this, we assessed the principles that grounded the projection methodology to obtain
node indicators from individual flow estimates—trying to capture a fair representation
of the global node performance.

3.5.1 Short-term device monitoring
Once we have assessed the accuracy of adPRISMA, we inspect the results obtained

during the study of a real data center network. In a similar way to the previous
experiments, we present scatter plots of RTT and ∆RTT in Figure 3.3 and summarize
the results of model fitting and mode estimation in Table 3.2. Additionally, we include
in Figure 3.4 the representation of sample data compared to the three models that
provided the best goodness of fit. Figure 3.4a and 3.4c present the comparison among
the estimated densities and the normalized sample histogram, and Figures 3.4b and 3.4d
depict the corresponding violin plots with some remarkable order statistics—specifically,
the median as centrality measure, and the 5th and 95th percentiles for extreme values.

For ∆RTT1 (i.e., measurements in the first vantage point), Burr Type XII model
obtained the highest R2, whereas AIC and BIC suggest that a normal model is also
reasonable and much less complex. This behavior is coherent with the insights from
Figure 3.4b, where Burr Type XII presents higher accordance with the order statistics of
the sample, while the adjusted normal model fairly fits the sample distribution.

However, the behavior of ∆RTT2 (i.e., measurements in the second vantage point) is
very different. In this case, the preferred model is the α-stable distribution, with better
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Figure 3.5: ∆RTT distribution, single-flow estimates, Dataset2.

scores (either when considering R2, AIC or BIC) for any other option. The skewness
and tail of ∆RTT2 prevent from considering more simplistic models, with poor accuracy
in the representation of the shape and order statistics of the sample distribution—see
Figures 3.4c and 3.4d for illustration.

This situation exposes two important matters. First, this dataset provides evidences
of disparity in the behavior of RTT components among vantage points. That is,
we cannot assume the existence of a one-fits-all model for network KPIs, even
within the same network. Moreover, our results show that complex models with
outstanding performance in some situations can fail where simpler ones achieve good
results. Additionally, this analysis shows that RTT components (i.e., ∆RTT) locate and
differentiate how traffic is affected when traversing each of the vantage points. This
fact is useful to detect situations of local saturation in a network segment that are not
detectable with the aggregated RTT.

3.5.2 Long-term device monitoring
Once the short data ranges’ modeling has provided good results for the

characterization of real measurements, we move forward to the evaluation of its
outcomes in longer periods. To do so, we considered the ∆RTT extracted from Dataset2,
which lasts for several hours and exhibits severe extreme ∆RTT values as a result of the
firewall operation.

In this case, the situation is completely different due to the bursty nature of the single-
flow estimates. Figure 3.5 shows this situation with the Complementary Cumulative
Distribution Function (CCDF) of ∆RTT for all the flows in the trace, showing that the
aforementioned models cannot fit either central or extreme values. In this scenario,
projections within different time windows—1s, 30s, 60s, 300s—can reduce the variance
in centrality measures caused by isolated extreme values.

As stated before, Dictyogram enables the definition of quantitative metrics to evaluate
ECDFs’ stability along time and determine whether a window size may be suitable.
Figure 3.6 shows the cumulative relative variation of Dictyogram for the aforementioned
window sizes, by applying (3.9). Remarkably, the lower the window size is, the projection
effect will become less noticeable—i.e. models of projected observations can be expected
to be similar to the single-flow ones.

Hence, robust fitting of central delay values will require larger windows sizes
although either excessively coarse or fine-grained pre-filtering can obfuscate significant
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(b) 30s-windows.
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(c) 60s-windows.
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Figure 3.6: Dictyogram cumulative relative variation in Dataset2. Effect of window size
for computation of flows per decile.

punctual deviations—see the peaks at 8:00 and 12:30 in Figures 3.6b and 3.6c, which are
undetectable in Figures 3.6a and 3.6d.

These situations clearly translate into different fitted models after projection, as
shown in Figure 3.7. This figure illustrates that the coarser the projection is, the better
the model fits: both Figures 3.7a and 3.7b present cases where few extreme observations
impoverish the fitting, whereas Figures 3.7c and 3.7d display models that fairly fit the
data up to 99th percentile.

On the other hand, extreme values’ modeling can be tackled using other order
statistics instead of the median. This is useful to represent boundaries for network
equipment performance improving the detection of service disruptions. Hereinafter, we
consider the 95th percentile for illustrative purposes and aiming at the discrimination
of the large ∆RTT peaks in our data. Time-based pre-filtering with the later statistical
modeling allows the model to capture extreme values with a reduction of over- or
under-represented atypical observations. The effect of window size in this procedure
is illustrated in Figure 3.8, which shows the convergence to a stable situation with an
acceptable fitting of the extreme values and a progressive reduction of the weight of
observations near central values.

With this, adPRISMA corroborated its capabilities to reach a comprehensive yet simple
description of how network elements behave. Remarkably, this description distinguishes
the dynamics of central and extreme values and includes quantitative criteria to balance
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(a) Median ∆RTT, 1s-windows.
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(b) Median ∆RTT, 30s-windows.
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(c) Median ∆RTT, 60s-windows.
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(d) Median ∆RTT, 300s-windows.

Figure 3.7: Results for ∆RTT in Dataset2. Time-based aggregation, median projection,
with diverse window sizes.

variance—i.e., reducing the effect of bursty measurements—and bias—i.e., considering
the ECDFs’ variability during the projection stage.

3.6 Discussion
The evaluation of adPRISMA has illustrated the viability of monitoring systems with

the desirable characteristics that grounded this work. Our proof of concept and case
studies have exposed some remarkable ideas that improve current network management
state of the art:

1. Passive retrieval of relevant information can be distributed: adPRISMA implements a
distributed data gathering strategy, which is useful to improve the scalability of
monitoring systems. Then, data aggregation and processing provided meaningful
contextual information to characterize the network state comprehensively.

2. RTT components help to locate where performance issues are most likely to appear: as
shown above, the observations of RTT do not fully characterize the behavior of
RTT components. Therefore, the application of strategies such as ours can improve
the detection and actuation in case of network issues.

3. Models that are more complex are not necessarily better: our evaluation and first case
study reveal that simpler models may be better to represent measurements if
complexity is included in the selection criteria. That is, slight improvements of
goodness of fit may not justify the usage of more sophisticated models.

4. Projection of flow-based estimates can improve the extraction of node-level KPIs: second
case study presented adPRISMA outcomes when analyzing data lasting for several
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(a) 95th percentile ∆RTT, 1s-windows.
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(b) 95th percentile ∆RTT, 30s-windows.
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(c) 95th percentile ∆RTT, 60s-windows.
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Figure 3.8: Results for ∆RTT in Dataset2. Time-based aggregation, 95th percentile
projection, with diverse window sizes.

hours and in the presence of large peaks in the RTT component under test. This
has exposed a moral: since single-flow estimates can produce sub-optimal models
with high variance, we need techniques that reduce the variance and allow us the
characterization of the regular behavior in the vantage point correctly.

However, some practical issues may arise during the operation of adPRISMA. For
instance, random packet sampling in vantage points may harm the fitting of models
because of the reduction of mutual observations.

3.7 Conclusion
We have described adPRISMA, a network monitoring system able to provide

comprehensive multi-point RTT modeling. It relies on the decomposition of passive RTT
values in components that reflect the state of different network segments. adPRISMA is
equipped with an automatic model selection algorithm that takes into account goodness
of fit and complexity to optimize computational cost of analysis. This fitting also includes
projection methods to improve the extraction of KPI trends from single-flow estimates.

Although experimental results have focused on RTT measurements, our methodol-
ogy can be extended to other performance indicators measured at multiple points—e.g.
delay variation or jitter at each vantage point. Specifically, adPRISMA provides a pro-
cessing engine with a general set of features for measurements: namely, (a) pre-process,
correlate and cluster the measurements, (b) segment observations using time or spatial
location, and (c) fit models and choose the most suitable one depending on the situation
and trade-offs between accuracy and complexity. Furthermore, adPRISMA’s design and
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operation make easier the definition of wide monitoring perspectives, as observations
from different vantage points can be simultaneously considered and correlated.

These features turn adPRISMA into a promising framework to enrich network
management platforms and tools, given its advantages for the characterization of
network KPIs with high adaptability. For instance, high values can be distinguished from
atypical values—as seen in the first case study—, and projections with different window
sizes can be used—as shown in the second case study—which may be helpful to improve
bias-variance trade-offs. Remarkably, both use cases were intended to illustrate how
these insights can improve and support the business logic inherent to many management
tasks. Hereby, we believe that our work provides evidences of adPRISMA applicability to
the monitoring, analysis and modeling of diverse network KPIs.

In sum, the experimental assessment of our proof of concept exposed that it provides
promising results both in synthetic scenarios and in field trials with real-world traces
gathered from enterprise networks. Additionally, we have released a prototype that is
freely available to the community.1

1https://github.com/hpcn-uam/adprisma
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4Time-aware modeling: time series
characterization of central behaviors

4.1 Introduction
Network characterization is an important task for alerting and provisioning.

However, in strongly time-dependent network KPIs is not immediate to provide a
suitable model. In this light, we aim at the modeling of real-world network time series,
where several phenomena such as multiple modes or extreme behaviors are frequent,
and we want to extract the most from this data.

Nowadays, most of the monitoring systems rely on simple baselines (moving average
or moving median with thresholds based on standard deviation) [Vega et al., 2018] that
work really well if curves are similar. Consequently, one of the jobs of a network operator
is to analyze the different daily behaviors and try to group similar days, such as grouping
by the day of the week. Nevertheless, we found out that, in many cases, patterns are
really obscured or even not periodical but random instead. This entails our next objective:
classify daily trends so that we can still use previous baselines in a more reliable way
reducing the cost of manual operators and make it scalable.

In contrast to previous section, the model here is based on stochastic processes and not
random variables. Consequently, the natural approach would be extending the previous
techniques for the functional case. Nevertheless, that is not always feasible and complex
models in this scope will tend to have infinitely many parameters and, indeed, even
simple models can present non-trivial issues. In conclusion, we define

Xt =

d∑
i=1

θiX
(i)
t , (4.1)

as the model for our data, where d is the number fo components, θi are some random
coefficients that satisfy

1. supp(θi) = {0, 1}

2.
∑d

i=1 θ = 1, i.e. only one of the θi can be activated at the same time.
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The X(i)
t are stochastic processes defined as

X
(i)
t = µ

(i)
t + ε

(i)
t , (4.2)

where µ(i)t ∈ L2([0, T ]) are some deterministic functions and ε(i)t are heteroscedastic error
terms with E[ε

(i)
t ] = 0. The objective is to estimate all the parameters: the number of

components d, the functions µ(i)t and to provide a bound or a soft characterizing ε(i)t .

From the model, it is simple to foresee the approach to this problem, we will be using
unsupervised learning methods to classify the functions into artificial categories, usually
called clusters. We will cover several methodologies for the same purpose, commenting
on differences, advantages and disadvantages. These methodologies are functional k-
means, principal components, functional principal components and autoencoders, where
the first one is a direct approach and the rest are all based on projection methods.

4.2 State of the art
Few works have addressed the use of FDA applied to network related data.

In [Muelas et al., 2017], authors propose an architecture for network data processing
using functional data and evaluate some application cases such as clustering, outlier
detection and capacity planning. Furthermore, authors in [Ben Slimen et al., 2017] apply
functional data techniques over a set of KPIs to predict potential performance problems
in radio cells. Authors in [Ben Slimen et al., 2018] explored co-clustering methods for
functional data by an adaption of the expectation-maximization algorithm to functional
data, showing the application of co-clustering to mobile networks. Although these works
point out some interesting applications of the functional data analysis as well as some
fundamentals, they lack the service-oriented approach, the combination with machine
learning and the functional multi-modal approach.

On the other hand, in recent years several works have used machine learning and
neural network techniques applied to network data. Authors in [Boutaba et al., 2018],
present a survey on the application of machine learning techniques to different network
areas, such as traffic prediction and classification or network security and routing.

Other approaches, like [Jalalpour et al., 2019], present a traffic monitoring analytics
system. Such system uses clustering techniques and autoencoders over flow features
extracted from incoming traffic to detect attacks and anomalies with a 76% recall.
Similarly, in [Nguyen et al., 2019], authors apply variational autoencoders over NetFlow
data to detect and cluster network anomalies. Other works like [Kiran et al., 2020] use
autoencoders, isolation forest and PCA techniques to detect anomalous packets in TCP
data transfers by means of clustering.

The above works provide valuable insight into the application of machine learning
techniques over network data, but they are focused on classifying either individual
packets or flow records rather than classifying network aggregates using time series
information. These approaches are suitable for anomalies or attacks detection, where
some previous knowledge is available, but not for service or behavioral characterization.
In this work, we present clustering techniques applied to time series of network
aggregates, not suitable for fine-grained network monitoring, but more useful to network
provisioning and performance assessment.

Recently, Hidden Markov Models (HMM) and Bayesian networks have also received
much attention in network monitoring. Authors in [Chen et al., 2016] present a HMM
to predict traffic volume in terms of flow counts using an auto regressive approach.
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In [Mouchet et al., 2020], a system is presented to segment time series of network
delay using an Infinite HMM. Although the latest approach is helpful to detect different
states of the network, they lose the time component, so it is not possible to know
when the network will change from one state to other. Our aim here is different: we
classify the whole daily time series and not time sub-intervals, since we are interested
in characterizing frequent trends of the network operation without losing the time
component.

Focusing on service characterization, authors in [Samani and Stadler, 2018] model
key service metrics using infrastructure measurements in a cloud environment by means
of mixture density neural network. This type of network provides as output model
the parameters for a mixture of Gaussian distributions. Using such a model, they can
predict SLA conformance. Although this work is somehow similar to our proposal, it
focuses mainly in the prediction of conformance using mean values estimated from a
distribution. In our case, we provide a model based on a mixture of stochastic processes
(not necessary Gaussian processes), whereas they present a Gaussian mixture model for
each time, leading to having precise models in each time moment, but not being able to
see time-dependent behaviors such as correlation between events.

Finally, while all previous works addressed the classification or characterization
problem by using either functional or machine learning approaches separately, regarding
the joint use of functional data and neural networks there is little literature. For instance,
in [Rossi et al., 2005], a method for using functional data as input for neural networks
is presented. In this work, several methods for functional processing such as FPCA or
projection on smooth bases are presented. A similar approach is presented in [Rossi
and Conan-Guez, 2005], focusing on multi-layer perceptrons. While these works present
some interesting foundational ideas that are used in this paper, they rely on simple
neural networks that are far from modern deep neural network models. Moreover,
there are some contributions of the neural networks to the functional data analysis, more
explicitly radial basis function neural networks [Broomhead and Lowe, 1988] exposed a
kernel method that it is inherently based on a functional data representation of the data.
Nevertheless, its application to networking has been limited [Baras et al., 1997] and it is
restricted to this kind of basis representation, where we propose a more general idea of
using any functional orthonormal basis representation.

4.3 Functional k-Means
The first approach is to directly solve the problem using a clustering method in

the functional setting. Among the many available clustering methods in the state of
the art, we chose k-Means [Hartigan and Wong, 1979] because it is one of the simplest
methods and it does not rely on distributional assumptions as, for instance, Expectation-
Maximization (EM) algorithm does.

The k-means algorithm is described in Algorithm 4.1. It has two main parts:

1. Initialization: we need a set of initial centroids to start working. They are
normally chosen randomly but the convergence of the algorithm is strongly
affected by bad choices of them. In this light, alternative methods as k-Means++
initialization [Arthur and Vassilvitskii, 2007] arise.

This improvement is as simple as choosing centroids that are far from each other,
this is, we choose at random one and the subsequent ones are chosen randomly
with weights inversely proportional to the mean distance to other centroids.
Another possibility is to perform a random search of the seed, so that the random
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Algorithm 4.1 k-Means algorithm: main body
1: function K-MEANS(K, X)
2: # 1. Initialization
3: centroids← initialize(X,K)
4: # 2. Main loop
5: for i in 1:ITER_LIMIT do
6: # 2.1 Compute the classes
7: for j, x in X do
8: classes[j]← closest(x, centroids)
9: end for

10: # 2.2 Compute the new centroids
11: for k in 1:K do
12: centroid← deepest(X[classes == k])
13: end for
14: end for
15: return classes, centroids
16: end function

seed does not affect the algorithm. Both initializations procedures are described
in Algorithm 4.2, in particular, classic initialization is function INITIALIZE1 and k-
means++ initialization is INITIALIZE2.

Algorithm 4.2 k-Means algorithm: initializations
1: # Classic initialization
2: function INITIALIZE1(X, K)
3: return random_choice(X,K)
4: end function
5: # K-means++ initialization
6: function INITIALIZE2(X, K)
7: centroids← [random_choice(X,1)]
8: for k in 2:K do
9: distances←min(distance(X, centroids), axis=1)

10: centroids.append(random.choice(X,1, weights=distances)
11: end for
12: return centroids
13: end function

2. Main loop: it is divided in two steps. First, the classes are computed by choosing
the same class as the closest centroid, i.e. the closest centroid is the representative
of the class.

Second, we update the centroids (2.2). For that purpose, we use a functional depth
measure [Cuevas et al., 2007]. These depth measurements generalize the concept
of median and quantiles [Gijbels and Nagy, 2017, Nieto-Reyes and Battey, 2016]. A
functional depth measure D(f, P ) indicates how "deep" the function f is in terms
of the distribution of the data, P . In our case, we consider the following half-region
depth measure [Zuo and Serfling, 2000, López-Pintado and Romo, 2009, López-
Pintado and Romo, 2011]. Given that P is estimated by the samples {fi}Ni=1, we
define our depth measure

D(f, P ) = min(SLP (f), ILP (f)), (4.3)
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Figure 4.1: Principal component analysis in R2 for a multivariate Gaussian distribution.

where

SLP (f) = mean
i=1,...,n

1

T

∫ T

0
1{t∈[0,T ]; f(t)≤fi(t)}(t)dt (4.4)

and

ILP (f) = mean
i=1,...,n

1

T

∫ T

0
1{t∈[0,T ]; f(t)≥fi(t)}(t)dt, (4.5)

being 1A(t) the indicator function of set A. SL and IL measure the proportion of
time that f is below the samples or above the samples.

In order to improve cases where noise was dominant, we add artificial curves to
the sample before computing the depth measure. In particular, we add the median
function, i.e.

median({fi}Ni=1) = {medianf(xj)}dj=1,

which is just the median at the grid points. This curve normally obtains the highest
depth measurement as the median is resilient against the noise of the signals, but it
can lie outside the distribution. Since our model separates the noise (ε(i)t ) and the
trend (µ(i)t ), we are still interested in this approach since we expect that the median
resembles µ(i)t better.

To conclude, we mentioned before that k-Means algorithm can be strongly affected
by a wrong choice of the initial centroids, compromising convergence of the algorithm.
To deal with this issue, we can just run the algorithm several times with different seeds
that lead to different initializations and choose always the one that scores better.

4.4 Principal Component Analysis
PCA is one of the most powerful and used techniques for dimensionality reduction.

It is based on searching for the directions where the data has more variance, i.e. more
information. Concreting, the vk is the kth principal component of random vector X if
and only if

vk = arg max
α⊥vj ; j<k
‖α‖=1

Var(X · α). (4.6)

Figure 4.1 shows an example of PCA directions. In the left-hand side, we see the
original space that has a dominant direction that contains almost all the information
of the sample and its orthogonal that contains the rest. In the right-hand side, the
transformed space shows that data is now equally distributed in both directions.
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Figure 4.2: Original data and the estimated eigenfunctions whose eigenvalues are the
largest ones in magnitude.

Nevertheless, this technique is commonly used with high-dimensional data. Now,
let X be our data matrix of size N × d and let X be the centered version, X =
X− 1

N

∑N
i=1X

(i). It is easy to thatX ′X is proportional to the empirical covariance matrix.

We need to compute the eigenvalues {λk}dk=1 and eigenvectors {wk}dk=1 of X ′X .
These eigenvalues, order by magnitude, represent the amount of variance explained by
each direction, and the eigenvector is the direction itself.

To obtain the projected version, we just need to use the directions, i.e. multiply the
data and the direction:

Y = X[w1; . . . ;wK ] = [Xw1; . . . ;XwK ]. (4.7)

It is clear that if K ≥ d, the projection is just a change of basis that makes the
covariance matrix of X the identity. If K < d, then Y is a compression of the original
data where the amount of information is normally measured in terms of the explained
variance (i.e. the partial sum of the eigenvalues).

4.5 Functional Principal Component Analysis
Once PCA is clear, it is simple to explain the FPCA. In this case, X will not be a matrix

or a random vector but a stochastic process, which means that samples will be functions.
As before, we want to maximize the variation, but directions in this case should be
understood as directions in L2([0, T ]), this means that vk(t) is a principal component if
and only if

vk(t) = arg max
α⊥vj ; j<k
‖α‖=1

Var(〈X,α〉) = arg max
α⊥vj
j<k
‖α‖=1

Var

(∫ T

0
α(t)X(t)dt

)
, (4.8)

where 〈·, ·〉 denotes the scalar product and α ∈ L2([0, T ]). Although approach is quite
similar, computation is not as direct as before.

First, we call X the centered version of the process, X = X − E [X] and k(t, s) the
covariance operator, k(t, s) = E

[
X(t)X(s)

]
. Thanks to Mercer’s theorem (Theorem 2.2.1),

this operator can be decomposed as follows

k(t, s) =

∞∑
j=1

λjej(t)ej(s), (4.9)
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Figure 4.3: Results of FPCA. Left-hand side shows the embedding space of the coefficients
and right-hand side the compressed version with three principal components

where {λj}∞j=1 play the same role of the eigenvalues and {ej}∞j=1 are the eigenfunctions,
which are akin to the eigenvectors but in the functional setting. Figure 4.2 shows some
of the empirical data we use in this chapter and the three principal components whose
eigenvalue has the largest magnitude.

Once we have this decomposition, the subsequent steps are analogous to the previous
case. We obtain the projection by just using scalar products:

Y = [〈X, e1〉, . . . , 〈X, eK〉]. (4.10)

In this case, the dimension of the data, unless unusual cases where almost all
the eigenvalues are zero, is always infinity. In particular, Karhunen-Loeve theorem
(Theorem 2.2.2) decomposes X as the sum

X =

∞∑
i=1

Yiei(t), (4.11)

where Yi is the ith component of the Y vector and ei(t) the eigenfunction. If we sort the
eigenfunctions by the magnitude of the eigenvalue, then a partial sum of the previous
series provides a compressed version of X , i.e.

X̃ =
K∑
i=1

Yiei(t). (4.12)

Figure 4.3 displays Y , belonging to the embedding space R2 and also the compressed
version X̃ that can be reconstructed from {Y }3i=1.

An useful way of understanding PCA and FPCA is also thinking of it as another
minimization problem, in particular,

min
{αi}Ki=1;{yi}Ki=1

E

∥∥∥∥∥X −
K∑
i=1

yiαi

∥∥∥∥∥
2
 , (4.13)

where the norm ‖·‖ is either the l2 norm of Rd (PCA) or the L2([0, T ]) norm (FPCA) and
αi are either the eigenvectors (PCA) or the eigenfunctions (FPCA).

Once we have computed Y , either with PCA or FPCA, the next step is the same,
perform a cluster algorithm in Y . This approach based on projections has the advantage
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Figure 4.4: Architecture of a sequential autoencoder. Green nodes represent the original
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nodes intermediate layers.

of using the projection for compression or anomaly detection, but the embedding can
be sometimes misleading. In this particular case, it is quite intuitive since PCA and
FPCA are linear transformations, but we will see next that non-linear techniques produce
completely different embeddings.

4.6 Autoencoders
About non-linear techniques, Autoencoderss (AEs) are a common technique based

on neural networks that aims at building an embedding space with non-linear
transformations. This is done by training a neural network where inputs and outputs
are the same and placing a bottleneck, a layer with a number K of neurons, in the
middle. Figure 4.4 shows the architecture of a sequential autoencoder, generally called
just autoencoder.

Some remarks should be made before seeing its properties. The left-hand part of the
network from X to Y will be called the encoder and usually referred as fθ : Rd → RK ,
where θ are the parameters of the network. On the other hand, the right-hand side from
Y to X̃ is called the decoder, fφ : RK → Rd. Basically, the training of the network can be
seen as a minimization procedure, i.e.

θ, φ = arg min
w1,w2

mean
i

Loss(X(i), fw2(fw1(X(i)))), (4.14)

where, as loss function, we will use the MSE, Loss(X,Z) = 1
N

∑d
j=1(Xj − Zj)

2 =
‖X − Z‖2.

Seeing the AE as a minimization problem allows us to expose a relation between
PCA and AE. Assume we have a neural network with only one hidden layer of size K
and linear activation functions, so in this case, the encoder is

fθ(X) = Y = [X · θ1, . . . , X · θK ] (4.15)

and the decoder is

fφ(Y ) = X̃ =

K∑
i=1

Yiφi, (4.16)
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where θi and φi are vectors in Rd. Focusing on the decoder, it is easy to see that expression
of the MSE is similar to PCA,

Loss(X, fφ(Y )) =

∥∥∥∥∥X −
K∑
i=1

Yiφi

∥∥∥∥∥
2

2

(4.17)

and the cost function is

mean
i

Loss(X(i), fφ(Y )) ≈ E
[
Loss(X(i), fφ(Y ))

]
= E

∥∥∥∥∥X −
K∑
i=1

Yiφi

∥∥∥∥∥
2

2

. (4.18)

Therefore, as long as Im(fθ) = Rk (i.e. independent variables in data are at least K),
we proved the equivalence between minimization problem (4.14) and

Y, {φi}di=1 = arg min
Y ∈Rk,φi∈Rd

E

∥∥∥∥∥X −
K∑
i=1

Yiφi

∥∥∥∥∥
2

2

. (4.19)

So, the simplest possible AE is equivalent to PCA in terms of minimization problem.
Bear in mind that PCA ensures Y is composed of variables that are not correlated, where
in this case we have not this property and some further orthonormalization procedure
should be conducted.

The next reasonable question is, is FPCA also equivalent to some AE? To answer
this, we define a brand-new concept, functional neural network. We will call a
functional neural network a neural network whose inputs are coefficients of an
orthonormal functional basis. Consequently, an AE with functional inputs will be called
a Functional AE (FAE). In some basis representation as Fourier, it is automatically
achieved the orthonormality but in others, such as finite elements, it is not. For non-
orthonormal representations, we recall Gramm-Schmidt orthonormalization procedure
in equation (4.20).

vi =

{
ui if i = 1

ui −
∑i

j=1
〈ui,vj〉
‖vj‖2

vj otherwise
(4.20)

The orthonormalization base allows us to state an important property: the
minimization of the MSE of the coefficients is equivalent to minimize the L2([0, T ]) norm.
This is due to Plancherel’s theorem. It states that if we have an orthonormal basis {vi}∞i=1

and X =
∑∞

i=1 αivi, then the norm can be expressed as:

‖X‖2 =
∞∑
i=1

α2
i , (4.21)

being then a generalization of the Pythagorean theorem for more general spaces.

Analogously to PCA, we consider again a single hidden layer of size K. We will
assume that the basis used is one so that data is represented with no loss. In some
general case where X is some stochastic process, this is not possible, but given that data
is sampled at some finite frequency, we cannot have infinite dimension empirically. Thus,
it is easy to see that the decoder can be seen as f̃φ : R2 → L2([0, T ])

f̃φ(Y ) =

d∑
i=1

〈φi, Y 〉bi, (4.22)
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Figure 4.5: Autoencoder embedding. Curves 1, 4 and 6 in right-hand side of the figure
are the centroids in the original space, indicated with a red cross in left-hand side.

where {bi}di=1 is the functional basis. As long as d > K, we can see also the minimization
problem as

min
φ

E

∥∥∥∥∥X −
d∑
i=1

〈φi, Y 〉bi

∥∥∥∥∥
2
 = min

φ
E

∥∥∥∥∥
d∑
i=1

(Xibi − 〈φi, Y 〉bi)

∥∥∥∥∥
2


= min
λi

E

∥∥∥∥∥
d∑
i=1

(Xi − λi) bi

∥∥∥∥∥
2


= min
λi

E

[
d∑
i=1

(Xi − λi)2
]
,

which as mentioning before is minimizing the MSE of the components.

Figure 4.5 shows the embedding space of an autoencoder. In this case, the non-linear
decoder hides a geometrical property. As it can be seen in the embedding, there exists a
linear relation, i.e. the true dimension of the embedding is 1. So, if we say that this linear
relation is y = ax+ b with x ∈ R and the decoder is fφ, we have that

Φ(x) = fφ(ax+ b), (4.23)

defines a parametrization of a manifold in L2([0, T ], displayed in right-hand side of
Figure 4.5. This means that the dimension of the data is, in fact, lower than expected
since the structure of the curves lives mostly in this 1-dimensional space.

4.7 Choosing the most appropriate K
A question that remains unanswered is which is the most suitable number of

components. To answer this, we use the silhouette coefficient (SC). This multivariate
technique is entirely valid for any metric space, in particular, for functional spaces such
as L2([0, T ]). In particular, the silhouette coefficient is defined as

SCK = mean1≤j≤NsK(j), (4.24)

where

sK(j) =
bK(j)− aK(j)

max{aK(j), bK(j)}
, (4.25)
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aK(j) =
1

|Cj |−1

∑
i∈Cj ;i 6=j

d(i, j) (4.26)

and
bK(j) = min

i 6=j

1

|Ci|
∑
l∈Ci

d(l, j), (4.27)

where d(·, ·) is the distance, in our case, the L2 distance, Ci stands for the cluster which
the curve ith belongs to, and |Ci| the number of curves in the cluster.

Analyzing these formulas, we see that aK is the mean distance of all elements in the
same cluster, so it is a measure of the compactness of the cluster and the lower it is, the
better the performance is. On the other hand, bK is a minimum of the mean distance to
all the functions that belong to other clusters, i.e. a measure of how far it is from other
clusters and, thus, the greater it is, the better the clustering obtained is.

Since sK = bK − ak with some additional normalization factor, we expect that higher
values of this metric implies that associated clustering has compact clusters and clusters
are well-spaced. sK is a local metric that it is compute per sample, so we take the mean
as a final metric. As shown before, it is clear that we want to maximize the silhouette
coefficient and therefore we choose the K that maximizes it

K̂ = arg min
K∈N

SCK . (4.28)

It is also remarkable that silhouette coefficient needs to be a metric that is not biased
by the number of components, i.e. it is not systematically better if we increase the number
of components and it can be used for this purpose [Kaufman and Rousseeuw, 1990].

4.8 Results
First of all, we have to remark that it is not possible to use traditional metrics such as

accuracy or recall if we do not have the true labels. Only artificial scenarios will have then
these metrics available. So, we will cover first the metrics that we can use to evaluate a
unsupervised problem.

4.8.1 Metrics
We will use two metrics, the silhouette coefficient already covered and whose

formulation is in (4.24) and the Davies–Bouldin Index (DBI) [Davies and Bouldin, 1979].

As well as silhouette coefficient, DBI works for any metric space since it is wholly
based on distances. So, in particular, it works in L2([0, T ]).

DBI is based on two concepts, the scatter of cluster Ci,

Si = mean
x∈Ci

d(x, µ̂i), (4.29)

and the separation of the clusters

Mi,j = d(µ̂i, µ̂j), (4.30)

where µ̂i is the centroid of cluster Ci. The ratio between the two quantities above

Ri,j =
Si + Sj
Mi,j

, (4.31)
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Figure 4.6: Centroids obtain with simulations

preserves some interesting properties such as being positive, being symmetric and
improving in the following two situations: if two clusters are equally compact (Sj = Sk)
but one is farther away from Ci than the other (Mi,j ≤ Mi,k), then Ri,j > Ri,k and the
dual one, if two clusters are equally far from Ci (Mi,j = Mi,k), but one is more compact
than the other (Sj ≤ Sk), then Ri,j < Ri,k. To measure the performance of cluster Ci, the
worst Ri,j is chosen, i.e. we define

Di = max
i 6=j

Ri,j (4.32)

and the functional DBI as
DBI = mean

i={1,...,K}
Di. (4.33)

Compared to silhouette coefficient, it relies heavily on the centroids to ensure the
obtained clusters are tight and separate one from each other. Furthermore, it is
computationally less expensive to compute, since it only iterates once over the whole
set of time series. Nevertheless, the more clusters we have, the better this metric scores,
so it is only comparable if we fix the same number of clusters for all the methods.

4.8.2 Simulations
For the simulations, we will reproduce the experiments in [Cuevas et al., 2007], where

the authors introduced some synthetic situations to benchmark classification using depth
measures. Bear in mind that this problem differs from theirs, since we are coping with
unsupervised data.

We will cover two cases where the main difference is the number of elements in each
class. In both cases, the model is assumed to be (4.2).

Case 1: balanced clusters

First, the mean functions are

µ
(1)
t = 30(1− t)t1.2 (4.34)

and

µ
(2)
t = 30(1− t)1.2t, (4.35)

and the random noise functions are defined ε1t and ε2t as two independent Gaussian
processes with zero mean and covariance Cov(X(s), X(t)) = 0.2exp(−|s − t|/0.3). Also,
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Table 4.1: Results of the experiments for case 1 and configurations of the parameters

Case 1: balanced clusters
Experiment Precision Recall L1 distances L2 distances

F. k-means N=60 0.93103 0.93103 0.80747, 0.85301 1.00959, 1.06130
with median 0.93548 1.00000 0.17028, 0.20957 0.21123, 0.26858

F. k-means N=120 0.98182 0.76056 0.83224, 0.74568 1.02664, 0.95606
with median 0.92727 1.00000 0.11272, 0.16516 0.14534, 0.20065

F. k-means N=360 0.85185 0.98773 0.78501, 0.76361 0.99911, 0.98696
with median 0.95238 0.97297 0.07627, 0.07682 0.09528, 0.09744

PCA N=60 0.96774 1.00000 0.13131, 0.16403 0.16821, 0.21379
PCA N=120 0.96923 0.92647 0.09033, 0.14816 0.11298, 0.17953
PCA N=360 0.95238 0.97826 0.05821, 0.06100 0.07280, 0.07664
FPCA N=60 0.96774 1.00000 0.15670, 0.23892 0.19767, 0.29530

FPCA N=120 0.96923 0.92647 0.11445, 0.15417 0.14161, 0.18603
FPCA N=360 0.95238 0.97826 0.06451, 0.05751 0.07843, 0.07613

AE N=60 0.63636 0.61765 0.42593, 0.38448 0.49871, 0.44875
AE N=120 0.93846 0.96825 0.16077, 0.23679 0.20234, 0.28080
AE N=360 0.94578 0.96319 0.09355, 0.12453 0.11849, 0.15043

Table 4.2: Results of the experiments for case 2 and different configurations of the
parameters

Case 2: Imbalanced clusters
Experiment Precision Recall L1 distances L2 distances

F. k-means N=60 0.87500 0.58824 0.80747, 0.75365 1.00959, 0.94715
with median 1.00000 0.74194 0.26790, 0.55455 0.32386, 0.64678

F. k-means N=120 0.95000 1.00000 0.78501, 0.74499 0.99911, 0.93045
with median 0.47000 0.90385 0.24270, 0.65084 0.29543, 0.74889

F. k-means N=360 0.98305 0.80556 0.78819, 0.76475 0.96087, 0.91427
with median 0.98305 0.87879 0.06515, 0.13854 0.08136, 0.17489

PCA N=60 1.00000 0.75000 0.25478, 0.56055 0.29804, 0.65403
PCA N=120 1.00000 0.95238 0.07703, 0.18788 0.09816, 0.23166
PCA N=360 0.96678 0.99658 0.05155, 0.09762 0.06422, 0.12366
FPCA N=60 0.53846 1.00000 0.23362, 0.53867 0.27395, 0.61573

FPCA N=120 1.00000 0.95238 0.07760, 0.27962 0.10012, 0.33064
FPCA N=360 0.96678 0.99658 0.08739, 0.12541 0.10425, 0.15362

AE N=60 0.50980 0.92857 0.27384, 0.64494 0.33641, 0.74088
AE N=120 0.56075 0.90909 0.24730, 0.68374 0.29386, 0.77499
AE N=360 0.96429 0.80597 0.15626, 0.24205 0.19043, 0.28721

θ1 ∼ Bernoulli(0.5) and θ2 = 1 − θ1, i.e. both clusters are balanced and the choice is
random. This should be the ideal case as it happens in classification problems where
classes are balanced.

Case 2: imbalanced clusters

This case is exactly the same as before but θ1 ∼ Bernoulli(0.85), this is, we assume
a situation where clusters are not balanced. Although the original authors do not cover
imbalanced experiments, these cases are closer to real-world data as we will see in next
section.
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Figure 4.7: Network segments daily time series for three months

Figure 4.6 displays simulations corresponding to the case of imbalanced clusters. We
see that the centroids are pretty similar, and many curves even overlap. Right-hand side
of the figure shows the result of k-means algorithm. In this case, we see that using the
median suppose an improvement since the centroids has no noise and all the samples are
noisier.

Results of all methods can be found in Table 4.1 and 4.2. As we see, simple
methods as k-means, PCA and FPCA scores better than FAE. This is due to the fact
that neural networks usually need many samples or proper hyperparameter tuning. As
commented before, the k-means algorithm performs better adding the median. In terms
of classification metrics, it does not impact the final result, it only affects the obtained
centroids as it can be seen in terms of the L1 and L2 distance.

4.8.3 Real-world data: data center monitoring
From the network under study, we have selected four network segments that provide

different services, which represent some of the most interesting cases that arise when
facing network monitoring in real-world environments. Each time series is a full day
of the metric aggregated in intervals of five minutes, and days are not necessarily
consecutive. In this case, we recall that one of the objective is to classify similar trends
together, so we want to see if this is the case and it can really improve the monitoring
systems. Once this is done, they can be fed into systems such as [Vega et al., 2018],
providing a more consistent approach instead of guessing a weekly periodicity of the
time series.
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Figure 4.8: Clusters for each network segment. Best centroids are represented as wider
black lines with the same line style.

1. Network segment 1, survivable branch appliance: it contains several devices responsible
of the uninterrupted Voice over IP (VoIP) communications of different branches
of the company. Figure 4.7a shows the time series of the number of connections
among the day. Several trends can already be guessed but, in fact, it seems to
have a stable behavior between 15 to 75 connections. Figure 4.8a shows the two
detected clusters: one of high activity (Cluster 1) and another one of low activity
(Cluster 2). This simple classification also shows that Cluster 1 is more likely to
have extreme behaviors whereas cluster 2 is more stable but it also jumps to levels
similar to the cluster 1 at the end of the day. Other state-of-the-art systems that
would incorrectly consider that, when Cluster 2 intersects the centroid of Cluster 1,
the level of dispersion would be the one of Cluster 1, while we are able to properly
detect the real trend.

2. Network segment 2, regional DHCP and DNS servers: it is composed of several
servers that act as DHCP or DNS of the company for a whole geographical region.
Figure 4.7b displays the time series of the number of connections among the day.
Although it seems to have a very bursty behavior, it is periodic and has to do
with the synchronization with the rest of regional servers. Figure 4.8b depicts
three clusters. Cluster 1 and Cluster 2 are work days and Cluster 3 is weekends.
We observed a limitation of our method: since we consider daily trends, any
trend that is not periodical each 24 hours or a multiple of 24 hours can lead to
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4. Time-aware modeling: time series characterization of central behaviors

Table 4.3: Results of the clustering methods for network segments 1 and 2 for several
sizes of dataset.

Network Segment 1 Network Segment 2
Methods SC DBI SC DBI

F. k-means (1 month) 0.61714 0.47776 0.42202 0.80097
with median 0.61714 0.41333 0.49735 0.76369

F. k-means (2 months) 0.59032 0.65805 0.32844 1.05486
with median 0.59032 0.57102 0.37922 0.87207

F. k-means (3 months) 0.57107 0.66552 0.29950 1.22141
with median 0.57107 0.59909 0.34325 1.24314

PCA (1 month) 0.61714 0.54452 0.49735 1.00426
PCA (2 months) 0.59032 0.59857 0.37978 1.31938
PCA (3 months) 0.57107 0.61461 0.36283 1.54504
FPCA (1 month) 0.61714 0.56901 0.45510 1.72075

FPCA (2 months) 0.59032 0.61359 0.37978 2.03991
FPCA (3 months) 0.57107 0.59858 0.34250 1.82842

AE (1 month) 0.61714 0.81439 0.47984 4.58737
AE (2 months) 0.59032 0.58760 0.34726 2.30413
AE (3 months) 0.55785 0.60325 0.33632 2.23477

* SC: More is better. DBI: Less is better.

Table 4.4: Results of the clustering methods for network segments 3 and 4 for several
sizes of dataset.

Network Segment 3 Network Segment 4
Methods SC DBI SC DBI

F. k-means (1 month) 0.89050 0.11431 0.82868 0.20817
with median 0.85614 0.17242 0.82868 0.22088

F. k-means (2 months) 0.84572 0.20396 0.83508 0.25474
with median 0.84572 0.18104 0.83508 0.25324

F. k-means (3 months) 0.86293 0.21974 0.78822 0.30459
with median 0.86293 0.21802 0.77675 0.29689

PCA (1 month) 0.89050 0.21448 0.85415 3.76542
PCA (2 months) 0.84572 0.22227 0.83508 3.89442
PCA (3 months) 0.86293 0.22415 0.81444 3.94855
FPCA (1 month) 0.89050 0.23799 0.85415 0.26204

FPCA (2 months) 0.84572 0.28235 0.83508 0.29437
FPCA (3 months) 0.86293 0.26692 0.81444 0.32805

AE (1 month) 0.89050 1.85030 0.77582 6.93602
AE (2 months) 0.84487 0.30296 0.75568 2.62730
AE (3 months) 0.86293 0.23725 0.74551 5.33807

multiple clusters. Nevertheless, clusters are still usable for daily baselines and it
only impacts the estimation errors since cluster sizes are smaller.

3. Network segment 3, payment gateway 1: it is composed of only one server that
acts as gateway for the payment mechanism, providing not only connectivity to
bank companies but security mechanisms to protect the data of the transactions.
Figure 4.7c depicts the time series of the number of connections among the day.
Clearly, it exposes three different trends that are stronger in the peak hours of
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activity of the day. Figure 4.8c exposes the three observable clusters. This case
proves the usefulness of this approach. One of the motivations was to help
baselines systems by grouping similar trends. In this case, operators were unable
to estimate when a day belong to Cluster 1, since it has some random and user-
dependent behavior. Our system provide a baseline for these days preventing false
alarms and improving monitoring capabilities.

4. Network segment 4, payment gateway 2: similar to the previous one, it is composed of
only one server that acts as gateway for the payment mechanism. In Figure 4.7d,
the time series of the number of connections among the day can be observed.
Although it is related to a payment system as before, we see a rather different
case. Some similarities are still present such as the three trends and the peak
hours of the morning and the afternoon, but the peak activity at the last hour of
the day is the most remarkable event that makes it difficult to differentiate the
three existing trends. Because of this, we employ the aforementioned companding
procedure using the µ-law with µ = 1023, which makes the apparent clusters more
spaced apart. Figure 4.8d shows the resulting clusters and conclusions are similar
to previous case since these systems have similar purpose.

For all the network segments described above, we have fitted the methods described
in previous sections. Results in terms of SC and DBI are shown in Table 4.3 and Table 4.4.
As a reminder, SC does not take into account centroids, so it is common to have ties if
two methods formed the same clusters. Thus, we must look at the DBI to distinguish
which algorithm scores better.

K-means algorithm is usually better than projection-based algorithms, which is
reasonable since projections reduce the amount of information, whereas direct approach
can work with the whole signal. Difficult cases as network segments 2 and 4 are
particularly hard for PCA or AE, which can be due to the loss of information of the
projection and the small number of samples for training. It is remarkable that in case
of network segment 4, FPCA scores better than PCA, given that it is able to differentiate
better the two clusters that were very close.

4.9 Conclusion
In this chapter, we have successfully created a model that represents different

functional modes or daily trends. This classification provides a deep insight of the series
behavior without depending on expert information which, in some cases, is obvious
(e.g. workings days and holidays behave differently) but in many other cases it is not.
Thus, providing new mechanisms that automatically detects these different trends help
to provide the best model.

Besides, we manage to show the relationships among the different projection
techniques, which leads to the development of new methodologies where we are able
to use FPCA or PCA as lower bounds in terms of performance to properly dimension
more complex and capable neural networks.

Once we have a model that groups similar time series, we can rely on simple methods
to provide monitoring and baselines for every network of a datacenter, without the
necessity of operators who configure them manually. Thus, it is a more scalable and
economical approach that simplifies the tasks of network operators and analysts.
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5Variable size network registers: DNS
registers

5.1 Introduction
In this chapter, we introduce another type of network register. We will extract

information of the web browsing behavior using just the DNS records. In contrast to
previous chapters and as we will cover next, data are sequences of strings. Consequently,
special techniques will be covered to deal with this particular case.

We cover three approaches: the first two ones, TF-IDF and doc2vec, are based on
projections, i.e. they rely on an intermediate representation in a numeric space; and the
last one is a direct approach based on sequence modeling neural networks. The three
methods are compared to see the performance and the impact of the DNS cache.

5.2 State of the art
Deep Packet Inspection (DPI) allows network operators to be able to have a deeper

insight than the one with just flow aggregates. In many cases, DPI techniques are not
employed due to the additional overhead that introduces in the performance of the
monitoring systems, but it has several use cases when it is necessary. The main example is
security: firewalls, Intrusion Detection Systems (IDSs) and Intrusion Prevention Systems
(IPSs) perform DPI to analyze payloads of sensible protocols as HTTP, HTTPS, DNS or
SMB to detect possible security breaches.

In the last few years, IDSs have been introducing brand new techniques based on
neural networks, in particular, in CNN and in RNN. We have observed a change in the
perspective, some of previous work in DPI just consider byte frequency information to
classify a packet as anomalous, as PAYL [Wang and Stolfo, 2004]. Besides, many of the
previous papers that consider payload rely on feature extraction to feed a ML classifier
[Lin et al., 2015].

Nowadays, neural networks are becoming increasingly popular and so they are
systems that used them to build intrusion detection algorithms. Authors in [Liu
et al., 2019] introduced Payload CNN (PL-CNN) and Payload RNN (PL-RNN) which
are just neural networks that are fed with the preprocessed payload of each packet.
Indeed, preprocessing techniques applied by the authors are word embeddings
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word2vec [Mikolov et al., 2013] that are explained in next sections. The main difference
of our approach is that we consider further work of the same authors and use doc2vec [Le
and Mikolov, 2014] instead of just feeding word2vec vectors to a RNN and a CNN.

Far from security, there are other many applications for DPI. In particular, we will
look at the main topic of chapter 5, which is traffic identification and classification: know
what the user is actually doing. Authors in [Morichetta and Mellia, 2019] proposed
a classification of traffic based on iterative modification of the density-based spatial
clustering of applications with noise (DBSCAN) algorithm. Compared to our objective,
there are two differences: first, their approach is unsupervised, so labels are not needed
for training and second, their categories are coarse-grain, i.e. in many cases they do not
resemble web pages as we want but general concepts as video streaming.

A seminal work of this project is [García-Dorado et al., 2018]. In this paper,
authors propose DNSPRINTS, a system based on DNS weighted footprints that build
an exhaustive algorithm that emulates the behavior of the DNS cache. Encryption of the
traffic is more and more popular, and this makes sniffing protocols such as HTTP totally
unfeasible, which makes DNS sniffing a promising alternative. Nevertheless, even for
DNS, encryption is gaining popularity and DNSSec [Rose et al., 2005] or DNS over
HTTPS (DoH) [Hoffman and McManus, 2018, Mozilla Foundation, 2020] are the most
common ways of addressing this. Fortunately, similar data can be obtained from TLS’s
Server Name Indication (SNI) field. The only issue is that we need information about TTL
for training this system, whereas this alternative cannot obtain any similar concept. Thus,
in this project, we want to train new methods just using the sequence of DNS queries so
that it can also be trained with, for instance, SNI data. This make our system not only
an improvement from current DNSPRINTS but also future-proof to incoming changes in
network operations.

5.3 Description of the problem
The objective of our model is to identify the domain the browser is searching given

the sequence of DNS queries it has performed. So, let D be our vocabulary, i.e. the set
of all domains. Also, all the possible sequences may have many more elements outside
D, all these words, that are basically any string that is returned in the DNS queries, will
be called S. The first issue is the dimension of D. We are normally solving classification
problem where there are few classes, but, in this case, the number of classes is potentially
infinite. Furthermore, the different subdomains we use as predictors are also potentially
infinite and they come in sequence with no fixed length. Here is an example of what our
model f should do

{encrypted-tbn0.gstatic.com, twitter.com, twitter.com, . . . } f−→ twitter.com

In order to specify properly the problem, we will call the sequence of subdomains Sd,
where Sd = {si}N(d)

i=1 and the domain is d ∈ D. Although these sequence Sd may seem
constant, we will see cases where there is some random behavior, mainly two cases: first,
the domains are not queried because they are in the cache of the browsers and, second,
some parts of the name of the domains are random.

It may be thought to be an easy problem, since the main domain d is likely part of
Sd, but the problem is that, for other domain d′, it may also happen that d ∈ Sd′ , in
our example, that Twitter appears in other pages. Indeed, Twitter is always referenced
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whenever a button of "Sign in with Twitter" is placed, so it is more common than expected
and makes the problem way more difficult.

5.4 Classical approach: term frequency and inverse document
frequency

In this very first approach, we want to think of this as a recommendation algorithm
based on k-Nearest Neighbors (k-NN) or a MLP classifier. As a training set, we use, at
least, a sample sequence of each domain that we want to identify. For each document we
want to classify, we assign the class or domain of the nearest neighbor (if k = 1, if we
have more samples, we can use k = 3 or k = 5) or the one given by the MLP classifier.

The k-NN algorithm needs a metric space, in this case, the Term Frequency - Inverse
Document Frequency (TF-IDF) methodology provides one. First, we define TF as

TF(s, Sd) =

{
1 + log2 freq(s, Sd) if freq(s, Sd) > 0

0 otherwise
(5.1)

and IDF as

IDF(s) = log
|D|+1

|Ds|+0.5
, (5.2)

whereDs = {d ∈ D : s ∈ Sd}, i.e. the domains whose sequences contain s. Then, for each
d ∈ D, we define vd as the vector

vd = [TF(s, Sd) · IDF(s) For s ∈ S] (5.3)

As we see, vd is a vector with infinite dimension. This would be problematic, but, the
number of non-zero terms is finite due to the form of TF (s, Sd). In order to measure the
similarity between two domains, we use the cosine distance defined as simply the cosine
of the vectors vd,

sim(d, d′) = cos(vd, vd′)

=
vd · vd′
|vd||vd′ |

=

∑
s∈S TF(s, Sd)TF(s, Sd′)IDF2(s)√∑

s∈S TF(s, Sd)2IDF2(s)
√∑

s∈S TF(s, Sd′)2IDF2(s)
(5.4)

As we see, the sum of the scalar product and the norm does only involve the non-zero
terms, so, in fact, the dimension of S does not impact the algorithm, but the performance
depends on length of the sequence. To properly use the TF-IDF representation, a sparse
matrix is usually employed where only non-zero terms are stored. These sparse vectors
can be fed into other supervised methods such as a MLP classifier.

5.5 Modern approaches: neural networks
Sequence modeling both in time series and text processing is one of the areas where

neural networks excels. In this case, we want to follow a similar approach to neural
networks that are able to classify texts or paragraphs (in our case, Sd) into categories
(in our case, the domain d). Two approaches will be cover: first one is based on the
construction of an embedding based on context and second one is a direct approach that
exposes an end-to-end neural network model working.
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Prior to the models, we want to highlight that neural networks do not work directly
with strings as TF-IDF, they rely on building first a vocabulary. This vocabulary is a
mapping of each word to a number. Due to dimensionality of the data, normally the
vocabulary is capped and words that are less frequent are considered as OOV (Out of
Vocabulary) tokens. Also, other tokens are usually added as start of the sequence, end of
the sequence or padding token. These last tokens solve the problem of variable length of
the sequence, since the neural network does only work with inputs of fixed dimension.

5.5.1 Generic embeddings: Word2Vec and Doc2Vec
First, in order to understand Word2Vec, it is necessary to understand the two

techniques used to perform the algorithm: Continuous Bag of Words (CBoW) architecture
and Skip-Gram. Both architectures rely on the same concept: an artificial target variable
to train the neural network.

Continuous Bag of Words (CBoW)

In this first case, we build sequences where we delete an element, for instance, in
sequence S = s1, . . . , sN , we call Si to the sequence without si and the idea is to train
a neural network so that fφ(Si) = si, using some classification loss functions such as
the logarithm of the cross entropy. Once the neural network is trained, we only need
to specify the embedding, for these purpose, we use the same approach as the AE, use
a hidden layer of size K. Normally, since these networks can easily have millions of
parameters (≈ |S|×Sequence length ×K), it is recommended to keep the architecture as
simple as possible and usually it is just a hidden layer and an output layer with a soft-max
activation function. Figure 5.1 shows the architecture of the CBoW.

si−m

si−1

si+1

si+m

...

...

Y1

Yk

... P̂ (si)

Input
layer Embedding

Output
layer

2m|S|
neurons

K
neurons

|S|
neurons
(softmax)

Figure 5.1: Continuous bag of words architecture

Skip-Gram

As before, we build an artificial target to predict. In this case, the approach is
completely the opposite, just with the information of one word si, we try to guess the
context Si, i.e. fφ(si) = Si. In terms of parameters, these problem looks heavier and,
in fact, it is known to be slower in terms of convergence than CBoW but it also results
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in better representations. As before, a single hidden layer is usually considered to avoid
an excessive number of parameters. Figure 5.2 shows the architecture of the Skip-Gram
network.

si

Y1

Yk

...

P̂ (si−m)

P̂ (si−1)

P̂ (si+1)

P̂ (si+m)

...

...

Output
layerEmbedding

Input
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2m · |S|
neurons
(softmax)

K
neurons

|S|
neurons

Figure 5.2: Skip-Gram architecture

Once the embedding is trained and ready, for each word, we have a number of Rk.
Given this, now, the problem is just a classification problem in Rk with many classes. As
long as we have enough samples to train a classifier, we will be solving the problem. In
order to compare the obtained result with incoming architectures, we use another neural
network (a MLP) as classifier.

Once word2vec methods are clear, it is easier to follow the doc2vec approximation.
As well as before, there are two possible approximations Distributed Memory Model of
Paragraph Vectors (PV-DM) and Distributed Bag of Words Model of Paragraph Vectors
(PV-DBoW).

First case, PV-DM is an extension of CBoW. For each word, we compute the
representation using neural network in Figure 5.3. Once all vectors are computed for
every word based on some tags, the word itself and the context, the resulting embedding
is concatenated or averaged in a final vector which represents the whole paragraph. Tags
act as a way of adding information of the domain to the network, so tags weight matrix
encodes an embedding of the tags.

Second, PV-DBoW follows an analogous procedure than skip-gram, but instead of
creating the context from the center word, it is performed with the tags. Figure 5.4
explains this architecture. Once network is trained, likelihood of the observed words
can be computed to see from new samples the estimated probabilities of belonging to a
class.

Implementation of all methods can be found in Python library for topic modeling
gensim [Rehurek and Sojka, 2010].
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Figure 5.3: Fundamental unit for the distributed memory model for paragraph vector
(PV-DM).

5.5.2 Custom neural networks: vectorizing layer and direct approach with recurrent
neural networks

Although the usual approach to text processing is unsupervised, we have categories
available so we can create directly a classifier. Thus, the objective now is to create a direct
model based on neural networks. The architecture is shown in Figure 5.5.

In this case, in contrast to previous ones, we use an LSTM layer for the input, i.e. the
input is treated as a sequence. If this is not done, the input would be treated as a vector.
This means that having the whole sequence of subdomains but the first one would lead
to a totally different vector, whereas with LSTM cells, neural network can learn patterns
in the sequence.

5.6 Data acquisition and preprocessing
One issue here is how to get data to train the neural networks. For that purpose,

authors of [García-Dorado et al., 2018] built a system that is composed of a capture engine
only listening to DNS packets and a web browser that access the objective domain.

This system, hereinafter called "robot", is used to query the information for domains
include in the top 100 and 2500 of Alexa. The robot provides a register that includes much
more information than the performed DNS queries, e.g. the Time-To-Live or the server.
Nevertheless, these extra attributes will not be used to feed the neural network, since we
want to improve the system of [García-Dorado et al., 2018] so that it does not requires all
that information.

Once we have acquired our dataset, we need to adapt it to be fed into a neural
network. The first step is to build a vocabulary. The vocabulary models S by adding
two extra tokens or words and eliminating the least used ones. So, the vocabulary will be
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called Ŝ ⊂ S ∪ {OOV,BLK}, where OOV and BLK stand for Out of vocabulary token
and Blank token respectively. The first one is used whenever a element in S is not in Ŝ
and the second one is used when a sequence is shorter than the maximum allowed by
the neural network.

Once this is done, we map each word to a number. This can be done through a one-
hot encoding (so each word is mapped to a number in {0, 1} ˆ|S|) or by a simple hashing (so
each word is mapped to a number in {0, . . . , |Ŝ|}). Always the first approach is preferred,
since distances between words in the second space are not representative whereas, in the
first case, all the words are equally spaced.
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Although it is clear that the first option is better, we have to think that this means that
if vocabulary size is around 100 000, we are working with an input space of dimension
100000m where m is the length of the sequence. This makes everything so expensive to
compute that we have to stick to the second option in many cases.

Keras have an Embedding layer which helps to deal with the second case. This layer
uses a linear operator and a scaler to map the input space to fixed dimension real vector
space, for instance, if we want to map the sequence of integers to a sequence of real
vectors. This provides a mixed solution that it is usually used so that the dimension of
the input layer is not too big and the topology of the words (that now are vectors in Rk)
is more coherent

5.7 Results
In this section, we will evaluate the different methods explained before TF-IDF,

doc2vec and the direct approach (RNN). For all these methods, we will evaluate the
performance with several datasets that will model the impact of DNS caching. We recall
that each time a system queries a DNS domain, the result is returned with a Time-To-Live
(TTL) field. This means that as long as TTL has not expired, the device will not ask for
the same domain while accessing it.

To obtain the datasets, we used the aforementioned robot to query the top 100 and
top 2500 of worldwide most visited domains according to Alexa [Amazon Web Services,
2020]. This is done for two web browsers: Chromium, the open-source alternative of
Google Chrome, and Mozilla Firefox.

In real traffic, we have observed that a set of just four domains (Google, Facebook,
Apple and Microsoft) can accumulate more than 60% of the global traffic in terms of
number of accesses. In fact, these tops follow a Pareto’s Law, as it happens in salary
distribution.

5.7.1 Results for TF-IDF
First, we test the TF-IDF embedding. TF-IDF embedding retains a lot of information

from the texts, in fact the frequencies of the words, but we expect that high-dimensional
data may arise when coping with huge datasets. For that purpose, sparse matrices are
used to avoid computational issues. Nevertheless, dimensionality of the data can also
impact the convergence of the algorithm, so we do not have high expectations in this
method for huge datasets.

Figure 5.6 shows the results in terms of the accuracy for the dataset obtained for the
Top 100 of Alexa. The dataset is composed of 15000 samples of the top 100 domains
in terms of visits. The train subset, in this case, it is just composed of one sample per
class whereas the test is the rest of the dataset. Although this split seems very aggressive,
bear in mind that this representation can get highly dimensional and it can be affected by
noise (random subdomains). As we mentioned before, the objective of the experiments
is to see the impact of the DNS caching in the results. We observed than results are not
affected when 4 or 5 domains are in the cache. However, from that point on, the results
are affected by an approximate ratio of 10% per 5 excluded domains.

For the case of the top 2500, we expect worse results since dimensions are way higher.
In this case, the train set and test set are just classic random split with 70% of the sample
for training and 30% for test. Figure 5.7 displays the results for this case. In this example,
we see that the behavior is almost a straight descending line. MLP classifier scores better
than k-NN due to its complexity, but it cannot show results higher than 85% of accuracy.
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Figure 5.6: Results for the top 100 of Alexa for TF-IDF embedding. Blue line represents
training data set and orange line test dataset.

It can be observed also that in both classifiers we have overfitted the training data so the
performance for the test subset is always lower.
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Figure 5.7: Results for the top 2500 of Alexa for TF-IDF embedding. Blue line represents
training data set and orange line test dataset.

5.7.2 Results for Doc2Vec
In this case, we split the dataset into a train set composed of 70% of the sample and

a test set composed of 30% of the sample. Then we trained the embedding using both
PV-DM and PV-DBoW algorithms with different sets of parameters. Once embeddings
are trained, we use k-NN and a MLP classifier to solve the classification problem now in
some real-valued space.

As before, this is done for both top 100 and top 2500 of Alexa. Figure 5.8 shows
the results for the top 100 of Alexa. We observed that both MLP and k-NN classifiers
score similarly and, again, the decay of the amount of information when eliding
subdomains of the sequence is linear and more or less with a similar slope to TF-IDF.
As a positive advantage, there is no overfitting in this case. About the hyperparameters,
we found out that a hyperparameter was critical: whether to concatenate or to average
the representations of the words. When doing concatenation, the embedding retains
information of the order of the sequence. However, retaining this information cause the
algorithm to overfit and not to generalize really well. On the other hand, averaging
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Figure 5.8: Results for the top 100 of Alexa for doc2vec embedding. Blue line represents
training data set and orange line test data set.

provides a way of representing the words and their contexts partially ignoring the order
of the sequence.

0 5 10 15 20 25 30
Number of excluded domains

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Performance of Doc2Vec embedding with k-NN classifier

(a) k-NN classifier.

0 5 10 15 20 25 30
Number of excluded domains

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Performance of Doc2Vec embedding with MLP classifier

(b) MLP classifier.

Figure 5.9: Results for the top 2500 of Alexa for doc2vec embedding. Blue line represents
training data set and orange line test data set.

For the top 2500, Figure 5.9 represents the score for k-NN and MLP classifiers. Now,
overffiting is clear and the difference between k-NN and MLP also is more obvious, being
MLP better than k-NN. It is similar also to TF-IDF with no highlighted differences.

5.7.3 Results for RNN
Following the previous case, for both top 100 and top 2500 datasets, we performed a

train-test split with 70% of the sample for training and 30% for test. In the first case, we
found out that performance is similar to other methods as we can see in Figure 5.10 and
the difference between train and test is negligible (which means there is no overfitting
issues). However, the decay of the accuracy as function of the number of missing
subdomains is quite steep and not linear in this case. This can be due to the fact that RNN
takes into account order of the domains whereas TF-IDF and doc2vec with averaging do
not, which makes the algorithm more sensible to missing elements of the sequence.

In the second case, the achieved accuracy is way worse than TF-IDF. In this case, the
decay is not so steep but since accuracy is below 50%, it does not make sense to consider
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Figure 5.10: Results for the RNN for the top 100 and top 2500 of Alexa. Blue line
represents training data set and orange line test data set.

the results. Again, neural network methods fail to properly converge when the number
of classes is too high.

5.8 Conclusion
We have observed several text modeling techniques applied to DNS data. As in many

situations, we did not find out a perfect technique able to be absolutely used in every
situation. While TF-IDF seems the weakest (prior results), it is really useful for situations
where there is a large number of domains and, thus, neural networks may not converge
making doc2vec and RNN worthless. However, TF-IDF comes with an overfitting issue
that doc2vec and RNN do not. In general, doc2vec is better than RNN, due to the fact
that order of the sequence in this case provides no information. We leave as future work
to improve RNN performance through data augmentation with permutations, since it
looks promising if we are able to cope with the aforementioned problems.
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6Conclusion

6.1 Summary
In this work, we have covered three different topics: time-unaware models, time-

aware models and models for text-based registers. In all three cases, we follow a similar
approach testing different alternatives to choose the best one for each case, aiming at the
generalization of the results. Besides, we support all the evidences with real-world data
to test the algorithms in an environment as close as possible to a real deployment.

First main part of this document explored the application of different probabilistic
model to network KPI modeling where there is no dominant time-dependent trend. We
observed that, although state of the art employed many models for the same or almost
the same purpose, there was no perfect model able to cope with every situation that
we observed in a scenario such as multi-point RTT measurements. Thus, we found that
criteria that use both goodness of fit and complexity help choosing the right model for
the right situation. Also, when the considered time window gets longer, we found out
that no model was able to properly fit the situation, so we employed projections to reduce
the variance of the data. This approximation also allowed us to follow a more scalable
deployment based on flow aggregates instead of storing all flows, what it is becoming
unfeasible in some real cases.

Second, we moved to cases where a trend was dominant, i.e. the distribution changes
as a function of the time. We considered daily curves of network KPIs, each one as a
sample, and use FDA techniques to provide a model. This model has a clear advantage
over the previous one, it is multi-modal, i.e. we assume that there are many possible
daily behaviors. In contrast to classical methods where base lines were built with
assumptions such as all Mondays have the same behavior, here we proposed a technique
to automatically separate the sample into clusters and classify each curve to a cluster.

Last, we covered how to process text registers. These text registers can come from
a very different source such as application logs, DPI or even social networks or chat
bots. In this case, we use the information from DPI of DNS packets to characterize the
web browsing behavior. We evaluated different methods: some of them classical such
as TF-IDF and some of them based on neural networks. We paid attention to the loss of
information when we remove elements from the sequence of subdomains emulating the
DNS cache working.
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6.2 Contributions
In all cases, we have studied the advantages and disadvantages of many models to

determine the best use case scenario. As we have anticipated in chapter 1, the novelty of
this work can be seen in terms of its main contributions.

For the first part, we have analyzed the application of model selection techniques to
choose the best model for a stable KPI. Since the trade-off bias-variance was central in all
this discussion, we have studied how projections can help to reduce the bias. In all this,
we observed that the window size has an important effect in event detection, being then
a critical parameter to be assessed in many systems. All these contributions that appear
in this work are already published and can be found in [Perdices et al., 2019].

Next, we have studied the state of the art of unsupervised classifiers for functional
data, daily curves of network KPIs. Using metrics for clustering methods extended to
the functional setting, we have assessed which model is the best and see advantages or
disadvantages. Besides, we showed that neural networks are sensible to the inputs, so
using a functional basis as input of the neural network can help the neural network to
consider the topology and structure of the space. This work was sent for publication to a
journal and reviewers have considered it for a second round of peer review.

To conclude, we have also studied text processing methods that include text
embeddings such TF-IDF or doc2vec and sequence models such as RNN. All the models
were studied and compared in terms of their performance and the impact DNS caching
policy. We have observed that many of them look promising, but performance suffers
when the number of domains is too high leading not only to worse results but also
overfitting. An extended version of this work is also intended to be published soon.

In all cases, an important factor in research is also the applicability of the results
to real-word situations. In this work, we have applied the results and techniques to
real-world situations. In the first case, we have shown the results of assessing the
performance of the network equipment, which was done for both an international level
telecommunication company and a national logistic company. The second part also
displayed results obtained inside a Spanish energy company. About the DNS analysis,
we are preparing a prototype alongside previous systems to be tested and compared in
situation when not only accuracy but also prediction speed or parallelization can be key.

6.3 Future work
As future work, we leave some topics open that have yet to be explored and that can

unveil the full capabilities of all the proposed models and techniques.

For the first part, we plan to extend data gathering modules to improve
interoperability with SDN and virtualized elements. Additionally, and as stated
above, we are starting to study the compatibility of adPRISMA with packet sampling
techniques to alleviate computational burdens. Also, we point to the exploration of RTT
decomposition as predictor of network overloads and failures.

For the time-aware modeling, we want to extend the system to support multivariate
time-series as well as introduce other factors in the comparison as the time required for
training or for test. Besides, we are working on also the use of this cluster and centroids
to build improved regressors such as a RNN that play the same role as the base line.

As we foreseen before, we can also add to the text processing techniques new
improvements such as data augmentation to cope with the effect of order or the missing
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elements of the sequence so that we are able to improve the performance of the RNN.
Furthermore, we want to test new systems to collect data that do not only rely on DNS
but also on TLS so that we can work even if DNS is not captured or it is encrypted, using
the Server Name Indication and Server Certificate of the TLS handshake as a substitute.
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