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Hybrid experimental and model approaches for the caracterization of
Lymnaea stagnalis neural activity

Part I:
Experimental and theoretical characterization of CPG activity in Lymnaea

stagnalis
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Abstract

Central Pattern Generators (CPG) are neural circuits that produce and coordinate
rhythmic motor activity. Their robust rhythms consist of sequences of neuron activa-
tions, which result in effective motor patterns. These rhythms are at the same time
flexible and can adapt as a function of the behavioral context. This work characterizes
the intervals that build up the rhythm and the associated sequence of the feeding CPG
of the mollusc Lymnaea Stagnalis. The study entails both the activity obtained in elec-
trophysiolocal recordings of living neurons and in a realistic conductance-based model.
The analysis reported here assesses the quantification of the variability of the intervals
and the existence of relationships between some of these intervals and the period in the
form of dynamical invariants.

Keywords— CPG, Lymnaea Stagnalis, model, dynamical invariant, temporal characterization, electro-
physiology.

Resumen

Los Generadores Centrales de Patrones (CPG) son circuitos neuronales capaces de
producir y coordinar actividad ŕıtmica motora. Los ritmos robustos que presentan estos
circuitos son generados por la activación secuencial de neuronas, las cuales derivan en
patrones motores efectivos. Estos ritmos son capaces de adaptar la función al contexto de
comportamiento gracias a su flexibilidad. En este trabajo se caracterizan los intervalos
que conforman el ritmo y las correspondientes secuencias del CPG que controla la
alimentación del molusco Lymnaea Stagnalis. Este estudio abarca tanto la actividad
obtenida por medio de registros electrofisiológicos en neuronas vivas, como la obtenida
a través de un modelo realista basado en conductacias. El análisis aqúı presentado
expone una cuantificación de la variabilidad de los intervalos, aśı como la existencia de
relaciones lineales, en forma de invariantes dinámicos, entre algunos de los intervalos y
el periodo.

Palabras clave— CPG, Lymnaea Stagnalis, modelo, invariante dinámico, caracterización temporal, elec-
trofisioloǵıa.
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A mi familia, por tanto apoyo y confianza incondicional que siempre me han dado, y que me siguen dando. A
mis padres, por escucharme y hacer todo lo posible aunque fuera a la distancia, a Carmen por tener siempre
el consejo adecuado y a Maŕıa por aguantarme en el d́ıa a d́ıa y cuidarme tan bien.

Por último, que no menos importante, a mis amigos, por escucharme y estar pendientes de mi desde cualquier
sitio. A los que están a la distancia, por esas visitas, vueltas a casa o llamadas, que reaniman a cualquiera,
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1 Introduction

The project proposed for this master thesis addresses the experimental and theoretical characterization
of a central pattern generator (CPG) activity in the mollusc Lymnaea Stagnalis. In particular, intervals
that build-up the sequence of the CPG rhythm are characterized from electrophysiological recordings and
also from a realistic CPG model. The presence of dynamical invariants in the form of linear relationships
between time intervals and the period is assessed. The study also includes in a second part the design of
hybrid experiments to understand computational input/output relations in neural circuits.

This project is divided in two different documents to meet the requirements of the double master degree at
EPS-UAM: the fist one corresponds to the present document that reports the experimental and theoretical
characterization of the intervals that build the sequence of a CPG rhythm, and the second one is entitled
“Design and implementation of hybrid circuits in Lymnaea stagnalis” [Garrido Peña, 2019], which discusses
the use of hybrid circuits built with model synapses to address the input/output response of living neurons.
Both documents approach neural activity characteristics individually and in circuits from different viewpoints
to assess the temporal structure of neural coding.

Here on, we will focus on the temporal characterization of the intervals that build sequences of neural activity
and the role of their interaction to build up robust motor rhythms. For this purpose, as a brief introduction
to computational neuroscience, we will first review Lymnaea morphology and different electrophysiological
recording techniques, as well as computational models to study this kind of behavior. Then, we will charac-
terize the sequences that underlie the CPG rhythm and discuss the presence of dynamical invariants both
in the living circuit and in a CPG model.

1.1 Computational Neuroscience

1.1.1 Neural information processing

Understanding the Brain is not a new challenge in science, it has been approached in many different ways from
the perspective of distinct disciplines [Kandel et al., 2012, Rabinovich et al., 2006, Dehaene, 2014]. Counting
on tools from fields like biology, mathematics, physics or computer science, an interdisciplinary field as
Computational Neuroscience is conformed from different sources of knowledge. It involves the assessment of
neural information processing using theoretical models of neural functionality at different levels of abstraction
(channels, cells, circuits, systems...) to all practical studies sustained by different measurement techniques.
Furthermore, studying the brain has not only been important to get to know this organ and its functionality,
but also as a basis for important progresses in several other fields. Examples of this can be found in Machine
Learning with the development of Neural Networks inspired in cerebral function, which has been boosted
during the last few years due to their good performance in solving complex problems. The importance of
Computational Neuroscience is undeniable for all these advantages and, thanks to the fast growth of tools,
technologies and computational power, this field is also growing faster everyday with important implications
also in biomedical research [Fairhall and Machens, 2017].

1.1.2 Selecting data and description levels

Since the beginning of Computational Neuroscience, researches have addressed multidisciplinary subjects of
study at different levels of abstraction, with their corresponding measurement and modeling techniques. The
human brain is a complex system, where the activity at the cell (e.g., monitored through intra/extracellular
recordings) is as important, in terms of its computational role, as the activity averaged in a whole area of
the brain (e.g., as quantified in EEG or fRMI recordings). Therefore, we could classify all these different
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techniques and their associated data regarding the kind of activity they measure.

Although each of the techniques used in neuroscience research are typically oriented to one specific field of
study, they all have some aspects in common. What is usually measured in most of them is the voltage
of the cells or a derived magnitude, which represents an overall measure of their activity. In intracellular
recordings, representative informational events such as spikes or bursts are much more easy to detect and
characterize [Arroyo et al., 2013, Varona et al., 2016] than events in EEG, where the recorded signal is an
accumulation of the activity of up to millions of neurons [Grech et al., 2008]. Having acute recordings of
spikes or bursts from one specific cell is not always required, and coarse information from one or several
brain areas may be needed instead. In some cases, resolution or accuracy of some aspects of the recording
might be minimized in order to obtain more informational content of a specific neural system. A similar
problem is found when considering the access to the recording, or even the viability, since not all methods
can be applied to the same animal models, and not all of them are easy to set up or sustain for a given
experimental goal.

The issue of the different description levels not only concerns the experimental recordings, but also the
use of theoretical models that formally describe different types of neuronal and neural network activity. In
Computational Neuroscience literature there are two groups of model abstraction: top-down models, which
describe activity, typically with a simplified approach, from general phenomena observed in some brain areas;
and bottom-up models, which intend to simulate the biophysical knowledge available from ionic channels,
synapses and membrane potentials. Phenomena such as neural sequence generation and coordination can be
addressed both with top-down and bottom-up approaches which provide complementary views and insight
[Venaille et al., 2005, Kiebel et al., 2009, Rabinovich et al., 2010, Latorre et al., 2013, Varona and Rabinovich,
2016]. In this project, bottom-up models will be used and neuronal activity from individual neurons will be
accurately reproduced and their synapses and their characteristic behavior in a circuit will also be represented
in the model. Of course, bottom-up models can include insight from top-down descriptions dealing with
neural dynamics, as we will also discuss below.

Theoretical models are key elements when studying brain activity. They bring in a reproduction of neural
activity with full access to the dynamics of the variables that are represented in their description, and
thus provide a wide variety of explorations which typically cannot be performed over in vivo or in vitro
preparations. This allows a better understanding of living neural systems and their observed activity, being
in many occasions a basis for a universal formalism on neural information processing. Furthermore, they are
also a crucial element in hybrid circuits, where living and model neurons interact (this is widely explained in
the complementary document of this project [Garrido Peña, 2019]), e.g., being able to play the role of specific
neurons and synapses to realistically perturb or explore neural dynamics [Szücs et al., 2000, Amaducci et al.,
2019, Reyes-Sanchez et al., 2018].

Experimental techniques might be applied in different ways, depending once again on the aim of the study.
Most of them allow not only passive recording to perform offline analysis in a pure observation goal, but also
interactive protocols that further contribute to characterize neural dynamics. Examples of this are close-loop
and neurofeedback paradigms [Potter et al., 2014, Chamorro et al., 2012, Grosenick et al., 2015, Patel et al.,
2017], where there is a dynamic interaction with the neural system under study, standing the possibility of
performing online stimulation in an activity-dependent manner during the experiments. These approaches go
beyond classical in vitro experiments and have been generalized to EEG and fMRI studies [Fernandez-Vargas
et al., 2013, Karahanoğlu and Van De Ville, 2017]. These techniques have a wide range of applications, from
unveiling dynamics hidden in passive recordings or traditional stimulus-response paradigms, to controlling
healthy or pathological neural dynamics for a specific goal.

Here in this project, the techniques employed in the experiments and in the models will address the single
cell and small-circuit description level. Intracellular and extracelullar recordings explained below will be
performed in an invertebrate preparation, due to its robustness and relatively easy access. In section 1.3, we
review the nervous system of Lymnaea, the animal model used in this study.
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1.1.3 Central Pattern Generators

Central Pattern Generators (CPGs) are neural structures capable of generating rhythmic activity producing
robust motor sequences in a highly autonomous manner [Hartline and Maynard, 1976, Selverston et al., 2000].
This kind of circuits is found in many different organisms, from invertebrates to vertebrates. CPGs display
non-open topologies, i.e. all members of the circuit receive information from at least one other member to
the circuit, which typically relies also on mutual inhibition [Huerta et al., 2001]. This characteristic endows
CPGs with the ability to produce robust yet flexible rhythms where neurons negotiate the intervals that
build the sequences in different behavioural contexts [Elices et al., 2019].

CPGs are believed to be the generators of rhythmical movements also in humans, e.g., in tasks such as
walking, breathing, etc. Eventhough there is not as much data in humans as in animal models, there are
evidences of its existence [Dimitrijevic et al., 1998] and studies that describe them a part of many neural
systems [Pavlidis et al., 2016, Arichi et al., 2017] (mainly related to the locomotion function in humans).
In an intuitive view, we could say that all rhythmic motor functionality that we perform unconsciously is
induced by such circuits. In fact, CPGs have enough flexibility to alter their activity patterns to adapt to
unexpected circumstances, e.g., to stumble while walking and restart that movement.

This is why CPGs have been taken under consideration for many years now in Neuroscience community, also
in theoretical studies and robotic research [Selverston et al., 2000, Katz and Quinlan, 2019, Elices and Varona,
2015, Elices and Varona, 2017, Herrero-Carrón et al., 2011]. Even though there are obvious differences not
only on the system but the functionalities between humans and different animal models, studying them on
simpler individuals such as mollusc or crustacean give the chance of a deeper analysis regarding neurons
interactions and intrinsic properties which generate rhythmic motor movements, and how they adapt their
rhythm to alterations in their context.

When using CPGs for research, experiments are usually performed with the isolated neural system, either
from physical separation in the preparation or induced by muscle relaxators. Even when isolated, CPGs still
maintain their rhythm, which makes them an ideal circuit model to study neural sequence generation and
coordination.

1.2 Electrophysiology

Even though electrophysiology is an area traditionally related to physiology and neurology, it is also a fun-
damental tool in computational neuroscience. Knowing how a system works from the associated voltage
dynamics is necessary to reproduce it, as it is done with models. Additionally, advanced electrophysiological
techniques are used in hybrid experiments to interact with and modify the activity of living elements [Ama-
ducci et al., 2019]. This is why it is also important to go through the electrophysiological techniques used in
this project.

Since the beginning of electrophysiology at the end of the eighteenth century, many different methods have
been developed. It was Luigi Galvani who first associated some electrical phenomena involving animals
nerves, observing the frog muscle contraction [Galvani, 1791]. From then on, the aim of all methods developed
has been measuring these electrical flow in living circuits in order to characterize them and extract useful
information about their activity [Cole, 1955, Bauer et al., 2014].

Therefore, we could say, these measures should tend to be as easy to implement as possible, trying to obtain
good quality recordings to precisely characterize neural events and their temporal structure. However, when
choosing these techniques, one must take into account that it is not always possible to achieve both quality
and implementation ease. This is why, as it happens in many other fields, sometimes minimizing quality
could be an advantage if it means easier and more reproducible experiments.
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Figure 1: Intracellular (top) and extracellular (bottom) amplifiers used for the experiments reported in
this project.

In overall terms, for the characterization of the neural dynamics of the cells, specific electrodes are chosen
as it is necessary to record the voltage in the biological entity. Electrodes are connected to an amplifier,
which measures the potentials and injects, eventually, current modifying the neuron dynamics as we will see
in next subsection. The intracelluar and extracellular amplifiers used in this study are shown in figure 1.

1.2.1 Extracellular and intracellular recording techniques

Taking into account this brief discussion on electrophysiological techniques and this duality (quality and
ease), let us focus in two main groups of recordings that involve intracellular and extracellular experimental
data. They both might have good performance regarding the characterization in these experiments, and
both techniques have been widely used through the years. We have knowledge on the interactions at the
level of single cells and microcircuits because of these electrophysiological protocols. In figure 2 there is an
example of intra- and extracelullar recordings.

Figure 2: Example of extracellular (top panel) and intracelullar (bottom panel) neuronal electrophysiolog-
ical recordings.

Extracellular recording involves all kind of techniques which use extracellular elements from the biological
entity where electricity occurs, e.g. in nerves. From the data acquired by these methods, characterizations
that involve spike detection can be performed. However, these recordings are usually noisy, they do not
reflect the details of subthreshold dynamics, and in many cases contain the activity of several cells whose
spikes have to be sorted. Therefore, when a more accurate measurement is required, e.g. one that requires
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recording subthreshold neural dynamics, it is necessary to apply intracellular techniques.

Intracellular techniques, on the other hand, entail the measurement of an electrical flow in terms of current
or voltage into the cell membrane. Hence, they record directly from the neuron itself, so they are much less
noisy than extracellular techniques. What makes intracellular techniques interesting is not only this accurate
recording, but aslso the possibility of membrane voltage control by inducing current by clamp techniques.

However intracellular recordings have also some negative aspects, as it is far more invasive than extracellular
techniques, since some methods such as sharp microelectrode injection might harm the membrane. They are
also more complicated to implement in the preparation, and precise manipulators are needed to impale the
electrode in the neuron.

These two techniques are completely compatible, extracellular recordings might be in many occasions a
perfect complement to intracellular data to study neural the system behavior. When simultaneous recordings
of several cells are required, intracellular techniques are usually not enough, since several electrodes are not
always available or easy to fit in the preparation (typically no more than two to six). This is why having
signals from an extracellular recording with the spike traces from one or several neurons solves this issue in
many cases.

There are different techniques available to perform neuronal intracellular recordings. The technique chosen
for the experiments in this project uses sharp electrodes. They were developed by Ling and Gerard in 1949
and have not had any huge change since then. The idea of these microelectrodes is to penetrate the cell
membrane with its sharp tip to record the voltage minimizing the damage.

For extracellular recordings, we use stainless steel electrodes isolated along with the nerve using vaselin. The
application of these two techniques will be further discussed in section 2.1.

1.2.2 Clamp methods

Through the years, in the aim of studying cellular dynamics, several electrophysiological methods have been
developed, leading to what we could call “modes” in measurement. These modes depend on both, the subject
of study and the role of the amplifier in relation to this subject. The two classic intracellular recording modes
are current- and voltage-clamp, where current and voltage are hold, respectively, and the other magnitude
can be characterized [Brette and Destexhe, ].

Current-clamp is well used when the only requirement is to hiperpolarize or depolarize the membrane, but
not when changes in its dynamics want to be addressed. A current at a fixed value is applied to the clamped
neuron, and then what changes is its voltage.

On the other hand, using voltage-clamp, current through the membrane can be measured, fixing the voltage
and computing the current. Here using two electrodes (one in the case of patch-clamp), a feedback protocol
can be established, receiving voltage values and adapting the current value so that the voltage value is kept
over time. When having a detailed model of the conductance, this mode of measurement, contributes to the
characterization of the parameters of the model.

Based on these modes and in order to overcome the limitations of studying the dynamics of the clamped
neuron individually and also in circuits, the dynamic-clamp method was invented in the early 90’s [Robinson
and Kawai, 1993, Sharp et al., 1993]. The set-up for this technique is pretty similar to voltage- or current-
clamp, except from one important change: in this set-up current is not modulated uniquely from the amplifier
but also from a computer. This allows dynamic changes and accurate simulation of artificial ionic or synaptic
conductance models, and thus the implementation of hybrid circuits [Szücs et al., 2000, Amaducci et al.,
2019, Reyes-Sanchez et al., 2018]. Counting on the computational power of the computer, mathematical
equations of neuron models, synapses, input spikes, and complex protocols can be programmed setting
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dynamically the values of the current to apply. This can be performed in an open-loop from a previously set
input train or in a closed-loop activity-dependent protocol processing the voltage recorded with the computer
and delivering the current to the living elements. This loop can serve to implement complex neuron and
network models interacting with the living cells.

Thus, hybrid circuits relate a living entity, corresponding to the preparation of the neurons and a set-up
similar to the one used in voltage- and current-clamp, and an artificial one, which is the model running
on the computer, processing the input from the living neuron and computing an output according to the
recorded signals in real-time. This topic is widely discussed in the complementary document of this project
[Garrido Peña, 2019].

1.3 Lymnaea Neural System

In addition to the recording techniques’ performance restrictions, there are many different issues involv-
ing the biological preparation. The fact that all these electrophysiology experiments are performed with
delicate living individuals must be taking into account. This issue is, in many occasions, a huge restric-
tion, which involves aspects regarding reproducibility and ease of the preparations and the decision on
the experimental techniques that will be used. For instance, is it not the same to make recordings from
mice than a crab, not only due to the distinct complexity of their neural system but for the methods

Figure 3: Lymnaea Stagnalis

used. Any research work involving animals, must follow animals treat-
ment guidelines, where all these restrictions are contained, guaranteeing
protection and welfare of animals for research purpose. In this work, we
followed the guidelines from the European Commision and Universidad
Autónoma de Madrid.

Therefore, working with biological individuals with less complex neural
systems has many advantages. Their welfare and manipulation involve
less requirements, e.g., usually, there is no need of having a specific ani-
mal lab facilities for hosting them. Apart form that, their simple neural
system is adequate when the subject of study are individual cells or their
interactions in microcircuits, as in the case of CPGs. Invertebrate prepa-
rations allow studying neural dynamics from identified neurons and known
connections which has had a huge impart in understanding the nervous
system [Katz and Quinlan, 2019].

Due to all the advantages discussed above in addition to the ease of the
associated preparation, the large size of neuron cells, the simplicity of the circuits, etc., many invertebrate
spices have been studied yielding a vast amount of information regarding their morphology, electrophysiology
and behaviour.

One of the invertebrate species that has been widely studied in the context of neuroscience research isLymnaea
Stangalis. The knowledge gathered in the last decades from this animals includes the detailed morphology of
its nervous system and the the relationship of the dynamics of different circuits to several motor activities.
This makes it a good candidate for the experiments addressed in this project.

1.3.1 Lymnaea morphology

Lymnaea Stangalis is a pond snail, whose neural system is shown in figure 4. As in some other molluscs,
e.g. Clione, the neural system is conformed by several ganglia, each of them controlling (mainly, but not
exclusively) some specific function of the snail. Figure 6 shows a diagram of the different ganglia which are
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part of this system. The symmetry of the system can be observed in this figure. This system has two ganglia
of each type, except from the visceral ganglion, all of them are interconnected by nerves. In order to have
an overview of the system, bellow we will go through the different ganglia describing their main function.

Figure 4: Lymnaea preparation after dissection
and desheathing pinned in Petri dish.

Figure 5: Lymnaea buccal ganglia.

Figure 6: Lymnaea nervous system diagram.

On the upper area, we find the buccal ganglia, which control the buccal muscle involved in the processes
of open-rasp-swallow, known as the feeding cycle, initiated by a CPG circuit contained in these ganglia,
together with the motoneurons generating the movement, as we will discuss further on in detail. Right
bellow it, two cerebral ganglia are found. They are involved in the activation and modulation of many
circuits and processes. Located on the sides of the diagram, the pedal ganglia control the snail pedal
movements as crawling or swimming, and they are originally joined leading to the ring shape of the system.
The pleural ganglia, which contain sensory neurons, are connected to the mantle. And finally, at the bottom
of the diagram, we find the parietal ganglion, involved in the control of the gill (respiratory organ) and the
olfactory organ, and the visceral ganglion, connected to organs of the Lymnaea such as the intestine, the
heart, and part of the genital apparatus.

In this work, we are going to focus in one of the ganglia containing a CPG circuit: the buccal ganglia.
Our goal is to analyze and characterize the time intervals that build the sequence of its feeding cycle. This
ganglia, is showed in detail in a photo taken with the microscope in figure 5. Other ganglia will be also used
in the second part of this project because of the activity and shape of their neurons in relationship with the
implementation of hybrid experiments [Garrido Peña, 2019].

1.3.2 Lymnaea feeding rhythm

The feeding activity of the Lymnaea, concerning the buccal mass, is classified in three main steps: Rest,
protraction, rasp and swallow. This sequence of buccal movements in the snail is executed by the motor
neurons distributed in the ganglia. Each of these phases is leaded by one interneuron from the CPG: N1,
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N2, N3, and consequently, the motoneurons associated to them, which generate bursts at the same time.

In a first approach, it is easier to see this feeding as an hierarchical sequence of neuronal activations. First
of all, a sensory input handled in a ganglion makes some neurons in the cerebral ganglion change their
activity, consequently initiating the CPG rhythm in the N-neurons which are followed by the motoneuron
rhythm. However, the activation of this circuit is not hierarchical but distributed. It has been proved that
motoneurons are also implied in the feeding cycle activation [Staras et al., 1998], having some of the neurons
activated simultaneously and not sequentially. Moreover, there are some neurons such as SO (in the buccal
ganglia) or CGC (in the cerebral ganglia) which have a modulator role in the CPG, even though they are
not part of it, as they have their own behaviour and function when the rhythm is inactivated.

Hence, an initial resting state, where the CPG as well as the moto-neurons have no activity, may change
due to a sensory input. This input, received in the presence of food or during hunger, is handled in the
cerebral ganglia generating activity and changing the SO tonic spiking during resting (which was inhibiting
the CPG) to a bursting mode, meaning the start of the feeding cycle. Table 1 displays a summary of some
neurons involved in each phase.

Neuron Protraction Rasp Swallow

Interneuron N1 N2 N3

Motoneuron
B7 B10 B3
B6 B4 B9
B1

Table 1: Neuron participation in feeding phases.

1.4 Aim of this study

Concerning the Lymnaea feeding behavior, there is a wide background knowledge on the neurons implied
on the feeding cycle, which covers their individual role in the cycle, activation sequences, and morphology
studies regarding their shape and configuration. Even so, there is not too much research focused on the
temporal patterns of these neurons, and in particular the characterization of the associated time intervals
and their variability. In the last few years, research on this mollusc has been popular in the context of
memory functions. However, temporal relations and variability of time intervals building robust sequences
and the presence of universal rules of the associated information processing can also be addressed in the
feeding CPG.

The groups of neurons discussed above perform all necessary functions of the snail, from eating, to crawl, or
swim. In order to build such functions, the coordination of what group is activated and when is activated is
crucial. The specific spatio-temporal pattern that the neurons generate is really important, as it carries key
information associated to the temporal coherence of the action. This is why it is highly relevant to study
the spiking bursting behavior of the neurons, and also to address the characterization of the sequences from
the temporal structure of their constituent intervals.

Furthermore, this kind of circuits are biological networks with associated variability. Since this is an intrinsic
characteristic of the behaviour, and the system works efficiently in spite of it, there might be a role for this
variability in the context of the rules involved in the generation and organization of the sequences. The
study of this topic is directly related the the auto-organization of CPG dynamics as a key element of motor
control.

This kind of rules has been recently discussed in the stomatogastric pyloric CPG [Elices et al., 2019]. In
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particular, the presence of robust dynamical invariant intervals was shown in the pyloric CPG rhythm. The
3-phase rhythm in this system is mainly built by three neurons (LP, PY and PD). Studying cycle-by-cycle
sequences, dynamical invariants in the form of linear relationships between the LP-PD interval/delay and the
period were found, while other intervals that build the sequence did not display such relation. This points
out the relevance of the study of the variability of the sequence intervals and the rhythm instantaneous
timing. Since these CPG generate motor movements, the sequence of neurons activation is not their only
relevant feature, but also the timing of the intervals that determine when and for how long each neuron
participates in each cycle of the rhythm.

In Lymnaea literature similar phenomena was revealed when studying the temporal feeding rhythms and its
alteration applying stimulus to different neurons of the circuit [Elliott and Andrew, 1991]. Here, the feeding
cycle was studied with different kinds of stimulation (stimulating N1 and SO), which induced variability, as
well as in spontaneous feeding rhythms. The phase corresponding to N3 was identified as the most correlated
to the period, although at that time this was not related to the concept of dynamical invariants. The aim of
this project is the characterization of the cycle-by-cycle time intervals that build the sequence of the Lymnaea
feeding CPG and the analysis of the presence of dynamical invariants as the ones found in the pyloric CPG.
This will be approached not only through experimental recordings but also in realistic Lymnaea feeding CPG
models.

For this purpose, recordings from the Lymnaea buccal ganglia will be performed. Once the feeding rhythm is
found, it will be characterized cycle-by.cycle from events in each neuron individually to quantify the intervals
that build the sequence. We will reproduce and expand the results from Elliot et al. [Elliott and Andrew,
1991] by focusing on the variability analysis following the work of [Elices et al., 2019] in the pyloric CPG.
Finally, we will perform the same analysis in a biophysical model which allows full access to all time intervals
involved in the sequence.
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2 Methods

This section describes the different methods used for the electrophysiological experiments done for this work
with Lymnaea as well as the model used, along with the signal characterization procedure applied to both.

2.1 Lymnaea preparation and electrophysiological recordings

As it has been mentioned before, recordings for the CPG sequence characterization were carried out in the
mollusc Lymnaea Stagnalis because of its easy accessible neural system, and the size and resistance of its
neurons to electrode impaling.

In order to record cell signals extra- and intracellularly, it is necessary to have full access to the neurons and
the nerves. This is why the central neural system (CNS), as it was shown in section 1.3, was isolated from
the rest of the snail structure in all experiments reported here.

Figure 7: Dissection steps for isolating neural system. Left panel: Microscope with the preparation. Middle
panel: snail after shell extraction. Right panel: buccal mass, esophagus and CNS exposed.

The first step isolating the ganglions containing the cells is extracting the snail shell and removing all
unnecessary elements above the buccal system. It is important to localize the mouth and foot of the snail,
since the bucall mass and CNS is right above them, so cuts must be parallel to them and as superficial as
possible to avoid harming any important part of the neural system. Once the buccal mass, the esophagus
and the CNS are exposed, the nerves connecting them to the rest of the pedal and buccal skin are cut. Now
the only element that remains connected is the buccal mass containing all the muscles directly controlled by
the buccal ganglia in the feeding cycle studied here.

Once the system is isolated by separating the nerves connected to the mass, it is important to stretch and
fix the system well in the dish. This is crucial for the later manipulation and recording phases.

The intracellular technique selected in this study for recording the membrane potential of the neurons uses
sharp electrodes filled with cloride solution, obtained by pulling glasses. Figures 8 and 9 show the puller
machine and an example of a sharped electrode for the intracellular recordings.

As it was set out in the introduction (section 1.2), in this technique the electrodes are introduced gently
into the cells, allowing the membrane potential recording while trying to minimize the harm to the cell.
The Lymnaea ganglia are protected by a sheath above them which is thicker than in other animals used
in similar electrophysiological studies. This is usually solved doing desheathing, i.e. peeling the ganglia
manually removing this layer with the forceps. However, such technique is not enough for Lymnaea in most
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Figure 8: Puller used to pull sharped micro-
electrodes for the intracelluar recordings.

Figure 9: Example of a sharp micro-electrode.

cases and it must be complemented (or substituted) with protease application (Sigma type XIV). This is an
enzyme that digests the tissue when applying a small amount on the preparation.

Besides intracellular recordings, there is also an extracellular set up which is typically used to record the
activity of the nerves to identify the presence of the CPG rhythm. For its use, it is necessary to isolate
the nerve to be recorded and the electrode from the rest of the preparation. This is done using vaseline
surrounding both the nerve and the electrode.

For the purpose of this study, the nerves employed for the extracellular recordings are the symmetrical pair
of nerves coming out from the buccal ganglia, which were originally connected to the buccal mass. Since
these nerves send out the impulses to move the muscles, the neurons whose activity is recorded in the
extracellular signals are mostly motoneurons [Benjamin et al., 1979], not the ones initiating the rhythm but
the ones following the CPG neurons. It is important to localize these neurons in the extracellular recording
for detecting the rhythm and the patterns.

Obtaining good quality recordings for the characterization of the CPG temporal dynamics is not an easy
task. On the one hand, the feeding rhythm in Lymnaea is pretty slow and it is not always active. In
Lymnaea literature, several options are proposed to solve this issue. The first solution is stimulating the
neurons responsible for the initiation of the feeding rhythm, such as the SO modullator neuron on the buccal
ganglia or also the CBC, CVs neurons, located on brain ganglia. Stimulating these cells usually activates
the target circuits [Benjamin, 2012]. However, the access to these neurons is not always easy, apart from
the fact that it might be necessary to keep them in constant stimulation. Another option for activation
discussed in the literature is appliying octopamine. Some neurons in the buccal ganglia are sensitive to
octopamine and, as a result, this procedure activates the rhythm [Vehovszky et al., 2004]. Alternatively,
some electrophysiologists leave the mouth of the snail semi-intact in order to apply sucrose resulting in the
rhythm activation [Vavoulis et al., 2007, Vehovszky et al., 2004, Straub et al., 2002]. This technique, however,
requires extensive experience on dissection techniques. As a foresighted option, starving the snails for three
days with no food and selecting the first animal approaching the food seems to be effective for obtaining the
feeding rhythm, with up to 80% of success [Elliott and Andrew, 1991].

Apart from the difficulties obtaining the rhythm, there are typically difficulties to reach the neurons. In-
terneurons that are part of the CPG are the smaller ones, which, concerning the electrophysiology method
used in this project (sharp electrodes) increases the difficulty of the recording process. Apart from that, the
motoneurons which are more directly associated to each of these interneuron feeding phase, are about the
same small size, which adds to this inconvenience.

Taking all these issues and recommendations into account, recordings using the above mentioned electro-
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physiological techniques can be performed. Their aim is not only recording the rhythm, but also the activity
of relevant neurons that contains the right temporal reference of the feeding rhythm.

2.2 Data analysis and temporal characterization

In a neuronal signal, there are typically two basic elements carrying the main information: spikes and bursts.
A spike or action potential is a fast raise and fall in the membrane potential, typically considered as a unit
of information, whereas a burst is a group of several spikes separated by a hyperpolarization interval. CPGs
typically produce spiking-bursting behavior, which allows the recognition of well-defined time references for
neural sequence analysis and characterization [Latorre et al., 2006, Lago-Fernández et al., 2009, Elices et al.,
2019].

There are several methods for detecting these events. They could be detected by a self-coded script to
detect the spike peaks over a threshold. However, there are also general purpose analysis tools which
include functionality for this kind of data analyses. This is the case of DataView [Heitler, 2007], defined
by the authors as “a program for viewing and analyzing digital data derived from analog signals using
A/D acquisition systems” [dat, ]. Therefore, along with self-coded scripts, Dataview will be used for event
detection in this project, due to its many possibilities on such analysis and its visualization tools to evaluate
the associated performance.

Overall, the process followed to detect the events on DataView its summed up as follows:

1. 1st derivative transformation. Derivative of the signal generates one trace containing the most signif-
icant changes of the action potential. This is important in cases such as the one shown in figure 10,
where it is not possible to set a single threshold above the spikes.

Figure 10: Spike detection from the first derivative of an intracellular recording. Black trace on the top:
original signal with spikes being generated at different voltage values. Green trace: derivative of the signal
where the spikes can be easily detected by a fixed threshold.

2. Threshold event detection. This tool, detects events automatically from a fixed threshold. It is ideal to
detect spike events from the derivative trace. Here, it is also possible to set event duration restrictions,
which might be useful in detecting bursts for non-noisy recordings. Setting the minimum time an event
must be off is an easy way to differentiate from spikes and bursts. An example of spike detection using
this tool is shown in figure 11.

3. Burst detection. Dataview also gives the chance to automatically detect bursts departing from the spike
detection. From a channel containing the times of the spikes events, it can detect groups of them by
clustering events based on some probability distribution based on the event duration selected. Options
can be seen in figure 13, which displays a screenshot of the tool. This is an alternative to threshold
event detection, for cases where the bursts are not that differentiated or there are remarkable frequency
differences in spiking. This is the case illustrated in figure 12 where two phases are represented in the
same burst, and can be detected by a change in spiking frequency.
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Figure 11: Dataview threshold event detection tool.

Once the events are detected, they can be exported and represented by time stamps, start time (on) and stop
time. Further characterization of this data was done using Python 3.6 [pyt, ]. This is a friendly language
for data analysing and widely used for this purpose, and also for reading complex data files and plotting the
analysis results.

Figure 12: Example of the presence of two spiking frequencies in one same burst.

Time references, intervals and CPG sequence

As it was mentioned before in this document, this project is focused on analyzing temporal intervals in
the feeding CPG rhythm of Lymnaea, including their variability. Particularly, we assess the presence of

24



Figure 13: Dataview burst detection tool based on the spike event temporal distribution intervals.

relationships between the intervals that build the sequence and the cycle-by-cycle period to characterize and
unveil similar dynamical invariants as those found in the stomatogastric CPG [Elices et al., 2019]. Hence,
the burst events detected are going to be used to define three intervals in the trace of each individual neuron,
and two additional intervals defined from the relation between two neurons. This is shown in figures 14 and
15, where single neuron intervals and intervals defined between neurons are represented, respectively.

Here is the definition of each interval:

1. Burst Duration (BD), measured as the time interval between the first and the last spike of the
burst (start to end in the trace of a given neuron).

2. Inter burst interval (IBI), characterized as the difference between the last spike of a burst and the
first one of the next one (end to start in the trace of a given neuron).

3. Period, which envelops the bursts from the three neurons, measured as the distance between the first
spike of one burst in a neuron and the first spike of the next one on that neuron (start to start).

4. NeuronX-NeuronY interval, this interval is measured from the burst beginning of neuron X to the
burst beginning of neuron Y (start X to start Y).

5. NeuronX-NeuronY delay, being the time lapse between the burst end of a neuron X and the burst
beginning of neuron Y. (end X to start Y).
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Figure 14: Individual neuron interval definition. Each BD label represents the duration of the burst, from
start to end in each neuron. Period goes from N1 start to the next N1 start, covering 3 phases in relation
to the activity of the other neurons. IBI represents the interburst interval, from the end to the start of the
next burst in the same neuron.

Figure 15: Definition of intervals involving pais of neurons. NXNY interval represents interval from NX
start to NY start. NXNY delay represents interval from NX end to NY start. Period goes from N1 start to
N1 start, covering 3 phases.
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2.3 Computational model

Neural activity can be represented using mathematical models, as stated above. Thanks to their repro-
ducibility and accurateness, they are a remarkable effective tool for studying neural behaviour.

To represent the Lymnaea feeding CPG network, we will use an existing detailed model which simulates
faithfully the main neurons involved in the generation of the feeding rhythm, i.e. SO, N1m, N2v and N3t
(modullatory, protraction phase, rasp phase and swallow phase, respectively) [Vavoulis et al., 2007].

The model description is based on the Hodgkin-Huskley (HH) formalism [Hodgkin and Huxley, 1952] which
represents single neuron biophysical properties as an equivalent electrical circuit as shown in figure 16.
Adaptation of this model to specific neurons can include adding further ionic conductances besides sodium
and potassium with active dependencies on the voltage or the concentration other ionic species [Torres and
Varona, 2012].

In this single neuron formalism, the interaction between the voltage and the conductance variables results
in the generation of neural events such as action potentials (spikes) or bursting behaviour. This interaction
also shapes the temporal structure of these events as a response to a given stimulus in the form of an injected
or synaptic current [Varona et al., 2001a, Varona et al., 2001b]

Figure 16: Hodgkin Huxley circuit [Hodgkin and Huxley, 1952]

In this work, the HH formalism is extended in a description of a snail feeding CPG by adding ionic currents
representing specific behaviour for each one of the four neurons involved in the feeding rhythm. Furthermore,
this model is a two compartment model which defines the soma and the axon as two differentiated structures
coupled by an axial resistance, which is usually represented in models as Ie1 = g ∗ (V1−V2), where V1 and V2
represent the voltage in each of the two compartments and g is the coupling conductance, the inverse of the
axial resistance and Ie1 is the current that flows into one compartment from the other. This separation of
soma and axon is used when it is important to differentiate between the fast and slow dynamics. In Vavoulis
et al. model, this could be intuitively explained as having the slow dynamics in the soma, whereas the fast
dynamics takes place in the axon compartment of the model. This distributed formalism is represented in
figure 17, where each circle represents either soma or axon, with the distinct currents in each of them. The
equations, corresponding to each compartment are (1) and (2) for soma and axon, respectively:

τS
dVS
dt

= Iinj − IL,S − IX − Iec,S − Isyn, with IX = [IACh, INaL, IT ] (1)

τS
dVA
dt

= −IL,S − INaT − IK − Iec,A (2)
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Figure 17: Ionic channel currents distribution in the two-compartment model. At the soma: IACh, acetyl-
choline ionic channel; INaL, slowly inactivating sodium ionic channel;IT , low-threshold calcium current; Iinj ,
injected current; IL,S leakage current in soma; Isyn synaptic current. At the axon: INaT , fast inactivating
sodium current; IK delayed rectifier potassium current; IL,A leakage current in axon.

The CPG modeled here, follows the scheme shown in figure 18, where the connections between neurons are
represented by dashed or solid lines, depending on whether the connection is slow or fast, and filled or empty
circles at its end, denoting the direction and the effect on the postsynaptic neuron: excitation (empty circles)
or inhibition (filled circles).

Figure 18: Lymnaea feeding CPG circuit.

In addition to the distinct connections conforming the circuit, what differentiates the neuron activities in
this model are the ionic channels used for modelling each of them and their corresponding parameters. The
resulting difference in voltage waveform, and the effect of the connections shown in the diagram in shaping
the phase among neurons, is displayed in figure 19. The traces correspond to a simulation of the model with
the complete circuit.

For a better comprehension of the model, here on, we will describe each neuron in detail, indicating the
channels involved in their dynamics and their associated parameters, which shape their activity waveform
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Figure 19: Complete circuit simulation example trace.

and temporal structure.

2.3.1 N1M neuron

The N1M neuron, which is in charge of the protraction phase has the particularity of a plateau, that is
generated by the inhibition of the N3t neuron, as it can be seen in figure 19. The channel generating this
property is IACh representing acetylcholine ion, since it is been shown it is the responsible of this plateau
behaviour. The expression of this channel, as described in [Vavoulis et al., 2007] is the following:

IACh = 200 ∗ p3 ∗ (Vs + 30) (3)

with p a dynamic gating variable.

Therefore, N1m behaviour, has a first plateau before spiking activation, and then goes progressively increasing
firing rate and decreasing in amplitude. An example of its behaviour in isolation is shown in figure 20.

Figure 20: N1m isolated activity.

It is important to underline that thanks to that ionic current, increasing Iinj modifies burst duration but
not this plateau effect, which will have important effects in the relation between neurons, and affecting the
period. An example of this is shown in figure 21, where the Iinj values are 6 and 9 respectively.
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Figure 21: N1m in the complete circuit. Top: Iinj = 6; Bottom: Iinj = 9.

2.3.2 N2v neuron

N2v corresponds to the rasp phase, its characteristic trace can be seen in figure 22. As well as N1M, it has
a plateau depolarization, however, it is much shorter. The waveform in this case is more conventional, as it
is exposed in [Vavoulis et al., 2007]. Its spiking activity is shorter and similar to some pyloric CPG neurons
where the dynamic invariants were discovered [Elices et al., 2019].

Figure 22: N2v activity.

For this purpose, an INaL (slowly inactivating sodium) current, which follows equation (4), is used to
reproduce the slow activation of the neuron. Thanks to this slow activation, the spiking takes longer to
start, simulating this plateau effect of the living neuron.

INaL = 2 ∗ p3 ∗ q3 ∗ (VS − 55) (4)

On the other hand, N2v has a lower spiking frequency in the burst and thus the conductance in the electrical
connection between soma and axon is lowered. In figure 23 there is an example of the effect of this conductance
alteration in this neuron, changing conductance from 0.06 to 0.3, widely increasing spiking frequency, losing
(consequently) some of its intrinsic properties as the plateau effect (since it starts earlier its spiking activity).

Regarding the interaction between neurons, it should be noted N2v inhibits all three other neurons involved in
this circuit, being this inhibition fairly high, so it is the only neuron spiking at its time. Due to this connection,
increasing the injected current ((Iinj) causes a higher bursting frequency in N2v and, consequently in the
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Figure 23: N2v spiking changes when the soma-axon couplling conductance is modified. Top: ga = 0.06
(default); Bottom: ga = 0.3.

other neurons. The bursting frequency change is shown in figure 24, where this current value changes from
2 to 4.4.

Figure 24: N2v in the complete circuit. Top: Iinj = 2; Bottom: Iinj = 4.4.

2.3.3 N3t neuron

This neuron corresponds to the last phase: swallow. In this case, what makes N3t behaviour different is a
post-inhibitory rebound property, i.e. after inhibition, it experiences a high spiking frequency increase and
then slows down entering a tonic spiking mode. This can be observed in figure 25.

This effect corresponds to the IT ionic current, which is a low-threshold calcium current, as it is set out in
[Vavoulis et al., 2007] with equation (5):
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IT = 3.27 ∗ p3 ∗ q ∗ (VS − 80) (5)

The relation between this current and the injected one, turns into a proportional increase of the initial higher
firing frequency, as it is shown in figure 25.

Figure 25: N3t in the complete circuit. Top: Iinj = 0; Bottom: Iinj = 6.

When interacting with the rest of the circuit, after the strong inhibition of N2v, N3t starts its activity and
fires until N1M finishes its plateau and starts firing. Therefore, this neuron fits N1m plateau duration,
ceasing its activity as it finishes.

2.3.4 SO neuron

Finally, the SO modulator neuron is the only one which, although being located in the buccal mass, it is
not a direct part of the CPG. However, its modulatory role is important not only for controlling frequency,
but also for initiating or ceseating the rhythm. When its spiking is tonic, it inhibites N1M and N2v, due
to their connections shown in figure 18, and stops the feeding activity. When SO has bursting activity, its
burst duration is coupled to N1M and N3t, regulating their burst duration, as it is shown in figure 26.

The SO neuron does not have any distinctive ionic current in the two compartment model. Its burst duration
depends on the injected current, being shorter as Iinj increases. An example of its behaviour depending on
this current is shown in figure 27.

The effect of this change in its burst duration is also shown in figure 26, since N1M burst duration has been
reduced in order to fit both N1M and N3t in SO burst duration.
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Figure 26: SO effect on the circuit, with c being the current applied to SO.

Figure 27: SO in the complete circuit. Top: Iinj = 8.5; Bottom: Iinj = 13.
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2.3.5 Synapse model

The synapse used in Vavoulis et al. model is graded, in contrast to other classical synapse descriptions where
the activation of the post-synaptic effect is only carried by the presence of a pre-synaptic spike [Destexhe
et al., 1994]. This means that any time a spike occurs in a classical pre-synaptic neuron, the synapse current
“activates” and lasts only during the pulse, since the equation representing this effect is the following:

dr/dt = α[T ] ∗ (1 − r) − β ∗ r (6)

indicating [T] weather a pulse has occurred or not.

The main difference between this kind of synapse and the graded one used for this model is the effect of the
presynaptic effect of the spike into the synapses. Instead of being 1 during the spike and 0 otherwise, the
r value here, depends on the voltage value of the presynaptic neuron. In this way, not only a whole spike
but also depolarization effects and low membrane potentials have a proportional effect in the post-synaptic
neuron.

The equations for this type of synapes are the following:

drj
dt

=
r∞,j − rj
τsyn,j

(7)

dsj
dt

=
rj − sj
τsyn,j

(8)

r∞,j =
1

1 + e(−40−Vpre)/2.5
(9)

The s factor ponderates synapse current value as follows:

Isyn =
∑
j

γsyn,jsj(VS − Esyn,j) (10)

The total Isyn applied to each neuron as the sum of all the synapses which affect the target neuron is shown
in figure 28, where currents are displayed right bellow the neuron activity.
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Figure 28: Complete circuit rhythm and associated currents from the input synapses.
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3 Results

3.1 Sequence characterization from intracellular recordings

3.1.1 characterization of time intervals building the sequence

Following the electrophysiological techniques described above, about 25 experiments were carried out with
the objective of obtaining and characterizing the CPG rhythm. As it has been mentioned before, obtaining
this feeding rhythm is not something trivial, neither is recording two neurons simultaneously. This is why,
only a few experiments provided good enough data to analyze it in terms of the interval characterization and
the assessment of the dynamical invariants. Data may not be valid for many reasons, in some experiments
no phase was found, even though rhythm was present. In some other cases, where phase and rhythm were
found, the recording was not long enough to obtain enough statistics, as Lymnaea activity was so slow that
in some recordings of about 20 minutes, there where only 4 bursts. For some experiments, other technical
issues appeared, such as difficulties reaching the neuron with the electrode due to a too thick sheath or soft
because of the protease effect, or damage to the neural system while performing the desheathing.

The utility of the extracellular recording to check the presence of rhythm during the experiments must be
emphasized. Even though the neurons present in the extracellular recording were not enough to identify the
tri-phasic CPG rhythm, it was useful to discern between the presence or absence of rhythm.

One of the cases where two simultaneous intracellular recordings were in anti-phase, i.e., neurons were
inhibiting each other, is shown in figure 29 with the traces plotted one over the other to visualise the details
of their waveforms. In figure 30 the two recordings are superposed for a better view of their anti-phase
evolution.

Figure 29: Representative intracelullar recordings with two neurons bursting in anti-phase.
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Figure 30: Three identified phases in the two intracelullar recordings with anti-phase activity.

Thus, here we have a simultaneous recordings of two neurons with antiphase activity. Although it is difficult
to identify each cell with full certainty, they are supposed to be B7 and B4, both from the right buccal
ganglion (N1 and N2 respectively, see table 1). As we mentioned in section 1.3, each phase of the CPG
(N1, N2, N3) are followed by the respective motoneurons, which are identified by BN (B1,B3,B10...). There
is a higher chance of impaling a motoneuron (due to not only their size, but also the number of neurons
motoneurons available), and they can be used as a reference of each phase. We can consider them as a
representation of the N cell observing the spike rate, even though they do not have the exact same duration.

By performing a frequency study in DataView for neuron 2 (green trace in figures 29 and 30), a significant
change of firing rate during the burst can be observed, which might be due to the inhibition by a third
neuron. Motoneurons do not necessarily have the same duration as the interneuron they follow, but they
can also be active during a different interneuron burst, e.g. B4 starting along with N2 but being active (with
slower activity) during N3. Therefore, here on we will assume that this recording has two separated phases,
one corresponding to the fast firing and the other one to the slower phase. Thus, using this two recordings
we can measure the three phases being the first one present in the the first neuron recording (red trace) and
the second and the third one represented by the second neuron trace (green trace). This is illustrated in
figure 30, where the three phases are labeled.

Using the techniques discussed in section 2.2 regarding the burst detection tool in DataView, it is possible to
differentiate both phases in each burst, by taking their associated frequencies into account. Thanks to this
distinction of two phases from a single neuron recording, it is possible to have a reference for each feeding
phase of the rhythm.

Hence, having the 3-phase events detected, the variability of the distinct intervals from cycle to cycle can
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be characterized, and they can be analyzed comparing the correlation of each of the intervals, defined and
represented in figures 14 and 15, to the instantaneous period in a cycle-by-cycle manner. Their correlation
can be quantified by the R-squared value from the regression. The results for the variability analysis in
this case with 32 cycles is shown in figures 31 and 32. In the first figure, a box-plot with each interval here
defined displays their corresponding variability. On the one hand, the first interval shown is the period (in
light orange), set as a temporal reference, this is the most variable interval, since it involves all the rest of
the intervals, see figures 14 and 15.

For the other intervals, there is a remarkable difference between some of them notably variable, in contrast
to other ones barely variable. The ones presenting a wider range of variability are all the intervals related
with N3 bursts, which are N2-N1, N3-N1, N3-N2 intervals; N2-N1 delay and N3 burst duration. The relation
of these intervals with N3 is present since they all include N3 burst duration, e.g., see N2-N1 definition in
figures 14 and 15. Focusing on the N3 duration and comparing it to the analogous intervals for N1 and
N2, there is a clear difference in variability, N3 has a larger difference between its minimum and maximun,
as well as its data is distributed among a higher range, being its median low. The other intervals related
to it have a similar distribution of the data, this can be explained because all of them integrate N3 burst
duration. It is interesting to note that interval N3-N2 seems to be the most variable one, since it is covers
N3 and N1, which increases its variability, being this one the closest to the period.

Regarding this variability distribution, the most variable intervals (N3-BD and related intervals) might be
expected to have the strongest linear relations with the period, whereas the ones less variable (N1-BD,N2-BD
and related intervals), should be the less related to the period, since their variability distribution has nothing
to do with the period one.

3.1.2 Presence of dynamical invariants

Complementary to this box-plot, which represents the variability of each interval, figure 32 illustrates the
correlation analysis of each cycle-by-cycle interval duration to the period. In the first row of this figure, we
first see the correlation between burst duration and period, which captures a remarkably difference: N1 and
N2 lack correlation with the period, and there is a strong correlation of N3 with the period. This fits with
the high variability of N3 appreciated in the previous figure.

On the following rows of the panel, we find the correlation analysis of interval and delay durations against
the period. Here, as we hypothesised previously, some of them also show correlation with the period, being
just those involving the N3 phase. These intervals are N2-N1, N3-N1, N3-N2 intervals (third row in panel
32) and N2-N1 delay (fifth row in panel 32).

This emphasises the fact that, from the three burst duration intervals, the N3 phase seems to be the one
most related to the period, as no other interval has that high correlation to the period. On the other hand,
the less correlated ones are all intervals related to N1 and N2 phases, which where the ones differing the
most with the period in terms of variability.

Thus, in the analysed data, the rhythm seems to have two neurons with a rather constant burst duration,
whereas the third one (N3) is the most variable one, and thus most changes to the instantaneous period
duration are due to this one. We can conclude this one seems to be the one carrying the period, since most
of the changes in the period duration are due to this one. This is why, N3 is the most correlated with the
period, obtaining a high R-squared value with its predicted regression line.

This results here exposed, are similar to the ones set out by [Elliott and Andrew, 1991], regarding the burst
duration intervals, obtaining two phases not correlated with the period and the third one highly correlated.
Here we have discussed these results in the context of the concept of dynamical invariants, which may
underlie the functional coordination of the sequence intervals regarding which ones display a higher degree
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of flexibility while keeping the robustness of the sequence [Elices et al., 2019].

The following table summarises each neuron statistics, including R-squared value and the mean and standard
deviation for the three burst intervals taking into account burst duration, interburst interval (IBI) and period.

Neuron R2 BD IBI Period

N1 0.0526
Mean 2.6416 30.9051 33.5385
Std 0.2884 15.0613 15.1250

N2 0.0017
Mean 2.9627 30.5780 33.5431
Std 0.7409 15.1950 15.2083

N3 0.9970
Mean 27.2023 5.8916 33.5217
Std 15.0324 0.7813 15.1695

Table 2: Statistics results from intracellular recording, in seconds.

Figure 31: Box-plot representing the interval variability as measured from intracellular recordings.
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Figure 32: Intervals correlations to Period for intracellular recording. First row: Burst duration. Second
and third row: Two-neuron intervals. Forth and Fifth: Two-neurons delays.
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3.2 characterization of sequence time intervals and invariants in the computa-
tional model

From the results presented in [Elices et al., 2019, Elliott and Andrew, 1991] and in this work, it seems that the
dynamical invariants are present in different biological entities. However, reproducing them in computational
models is not trivial. When connecting two model neurons with an adequate network topology can result in
anti-phase rhythmic behavior, However this does not mean that the duration of the associated intervals will be
related to the period. Moreover, even though there are some models with intrinsic variability [Komendantov
and Kononenko, 1996], it is not always possible to induce variability into a model neuron or a model circuit.
As we saw in section 2.3.2, augmenting Iinj in the N2v neuron forces a faster bursting frequency, but it has
no effect in N2v burst duration.

In the Lymnaea feeding CPG model [Vavoulis et al., 2007], the activity of the main neurons involved in
the CPG rhythm is faithfully reproduced, including the interaction between them. Due to, not only the
connections that where represented in the diagram of figure 18, but also the intrinsic activity of each neuron,
the model reproduces the feeding rhythm and the correlation of some intervals with the period as described
in [Elliott and Andrew, 1991].

Thanks to the current Iinj , variability is induced into the model, effectively changing burst duration. This
current injection can be added to any model, but it does not have the same effect in all of them. Just like we
saw in section 2.3, in N2v what changes is the bursting frequency, while in SO the current injection changes
burst duration.

By varying the current injected into N1M, its burst duration is kept barely constant, but its plateau becomes
longer. Since N3t is the neuron fitting in the sequence in that plateau, it also increases its burst duration,
being the most variable one in the rhythm.

When the Iinj variability is over SO, it has the same behavior that we saw in section 2.3.4. The current
injection changes SO burst duration and, consequently N3t and N1M burst duration.

Here on, we are going to reproduce this effect by changing the current injection into SO and N1m. Thus, we
will test the robustness of the rhythm while inducing an external perturbation that evokes variability.

Note that when the injected current has a fixed value for each neuron, the circuit does not present any
variability. This is illustrated in figure 33, which displays the result of the simulation, and table 3, where
some difference between intervals can be observe, but the range is so small that is irrelevant. The intervals
shown in the table are the ones defined in figure 14.

Neuron R2 Duration IBI Period

N1 0.0070
Mean 0.6629 1.1519 1.8149
Std 0.0007 0.0011 0.00001

N2 0.0003
Mean 0.1647 1.6500 1.8148
Std 0.00003 0.00007 0.00003

N3 0.0132
Mean 0.7105 1.1042 1.8148
Std 0.0013 0.0013 0.00001

Table 3: Statistics results from fixed current injection applied to each neuron, in seconds.

Therefore, to induce variability in the model, a variable c which controls the current injection amplitude
is increased from a minimum to a maximum value, and then decreased back to the initial value. The
value is increased each N3t burst (aprox.). The minimum and maximum values vary and have been chosen
experimentally depending on the effect of the injected current on the neuron and ensuring burst generation
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Figure 33: Complete circuit rhythm obtained by applying a fixed current value to each neuron.

in all neurons.

3.2.1 N1m driven activity

Setting the variable c into the N1M neuron, as the Iinj current, produces the result shown in figure 34, where
the last row displays the current c applied.

Using the same procedures as with the recordings from the living neuron, spike and burst events have been
detected for each neuron. From this data, all intervals represented in figures 15 and 14 have been quantified.
Using the self-programmed script, the variability and the correlation between the period and each interval
has been computed, leading to the result shown in figures 35 and 36.

In the box-plot, similar results to the intracellular recording analyses (see 3.1) can be observed (regarding
variability, not intervals duration). From the three burst duration intervals, the most variable one is the
one corresponding to N3t neuron, since this is the one showing a wider range of values, presenting a larger
difference between its maximum and minimum. Furthermore, the derived intervals which cover N3 burst
duration are also the ones presenting more variability, which also corresponds to what was found in the in
vitro recording. However, the model data seem to be concentrated closest to the minimum. The distribution
found in intervals N2-N1, N3-N1, N3-N2 intervals and N2-N1 delay, is equivalent to the one in period interval,
being once again, the N3-N2 interval the more similar one. Hence, the linear relations are more likely to
appear in these intervals whose distribution is closer to the period.

On the other hand, the less variable intervals are the ones related to N1m and N2v bursts duration, even
though N1 do have some additional variability. This explains why the most variable one (similar to the
period) is the N3N2 interval in this case, since it is the combination of N3 and N1 burst intervals.

Regarding the figure for the linear correlations with the period, consequent results to these variability effects
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Figure 34: Complete circuit applying different Iinj values to N1M.

are observed. The first row displays burst duration intervals, which are the intervals analysed in Elliot et
al. [Elliott and Andrew, 1991] from data obtained in in vivo recordings and in Vavoulis et al. from data
obtained in model simulations [Vavoulis et al., 2007]. The results shown here match those results, being the
third phase the most variable one. Due to this variability, is also highly correlated with the period, while
the two other phases have small variation and, thus, are not related to period interval changes.

The most variable intervals identified, derived from other time references, show also a high correlation with
the period in this figure. Therefore, since the ones involving N3 burst duration are the most correlated to
the period, interval changes seem to be due to N3 variability.

On the other hand, intervals related to neuron N2 are the ones less variable. This neuron is the one less
affected by the global activity of the circuit, in terms of its burst duration. Moreover, some of the intervals
are too small, or even negative, since the end of one of the neuron activity overlaps the next one’s beginning.
This is the case for N1-N2 and N3-N1 delay (4th row, 1st column and 6th row, 2nd column, respectively).

As a complement to the other two figures in this section, the following table summarizes each phase stats,
including R-squared value, and the mean and standard deviation for the three burst intervals, taking into
account burst duration, interburst interval (IBI) and period.
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Neuron R2 Duration IBI Period

N1 0.7467
Mean 1.1237 1.5354 2.6577
Std 0.0576 0.5423 0.5896

N2 0.3578
Mean 0.2819 2.3775 2.6595
Std 0.0008 0.5930 0.5935

N3 0.9760
Mean 1.1568 1.4959 2.6595
Std 0.5277 0.1081 0.5935

Table 4: Statistics results from N1m-driven activity, in seconds.

Figure 35: Box-plot intervals variation fro N1m simulation
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Figure 36: Intervals correlations to Period for N1m-driven simulation. First row: Burst duration. Second
and third row: Two neurons intervals. Forth and Fifth: Two neurons delays.
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3.2.2 SO driven activity

To simulate SO driven activity, the same protocol was implemented with a gradually increasing and decreas-
ing current applied to SO to induce variability. Some parameter tuning was needed here. The minimum
current value for SO to generate a burst was aprox. 8.2, so the injected current ranged from 8.2 to 13. and
the current step change was also lower, set at 0.1. This current was applied to SO with the rest of the
neurons with the same Iinj value as in the N1m driven activity (see 3.2.1). However this simulation did not
obtain the same invariant results as in the previous case, neither the correlations shown in Vavoulis et al.
[Vavoulis et al., 2007]. Figure 37 displays the whole circuit activity. As it can be appreciated here, N3t is
barely variable, while N1m is the most variable one. This is corroborated in figure 38, where the correlation
between the burst duration and the period for each of the neurons is exposed. N1m correlation is the highest,
whereas N3t has a high value, but not as remarkable.

Figure 37: Complete circuit activy when applying different Iinj values to SO.

Figure 38: Burst duration correlations to Period for SO-driven simulation with Iinj = 0 for N3t.

In order to reproduce the results in [Vavoulis et al., 2007], where both N1M and N3t present variability, it is
necessary to adjust parameters, so that N3t activity is strong enough to adapt to SO variability and carry
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period information jointly to N1m. This way, N3t kept a constant Iinj value, since, regarding the effect of
this parameter into this neuron (see 2.3.3), if a higher value is applied, the firing rate increases, so it will be
harder for N1M to inhibit N3t. Thus, N3t value was changed from 0 to 4. On the other hand, the injected
current in N2v controls burst frequency, increasing proportionally to the current. Therefore, N2v was also
decreased from 2 to 1, so that SO burst could be longer.

To sum up, injected values for each neuron was finally set as follows: N1m=10; N2v=1; N3t=4; and SO
injection dynamically changed with the c value. The result of this set up is displayed in figure 39. In this
case, N3t variability was higher and the period was driven by both N1m and N3t.

Figure 39: Complete circuit applying different Iinj values to SO. N3t Iinj = 4

With these simulation results, we have performed the same analyses as in the previous section. Events were
detected and all intervals were measured and their variability was characterized in figures 15 and 14.

Figure 40 shows a box-plot representing interval variability, similar to the ones used for N1M-driven activity
and the intracellular recordings. However, here we found more intervals showing high variability. N2 intervals,
as it happened in the previous results, show low variability, which indicates that period variability is more
likely a consequence of N3 and N1 activity. These two neurons show high variability in their burst duration
intervals, being N1 even more variable than N3, while it was the other way round in previous results with
distinct stimulation. All intervals derived from these two have high variability and a similar distribution in
all of them. In spite all this, what remains constant from N1m-driven simulation is the variability of the
N3-N2 interval, which includes both N1 and N3 burst duration, being N3-N2 the most variable one, and the
closest to period variability.

Hence, as it happened in the previous results, the intervals with more variability and, thus, those that had a
more similar distribution to period, were the ones that showed a highest linear relation to the period. Since
in this case there are more neurons showing variability, we should expect finding more correlations when
plotting each interval against the period.

Figure 41 displays the corresponding correlation analyses. Here we find the intervals correlation panel that
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we have also discussed in the results reported in previous subsections. However, in this case we find different
results, since period information, as we have just seen, seems to no longer be carried only by N3. Hence, we
find correlations in the same intervals as before: N2-N1, N3-N1, N3-N2 intervals and N2-N1 delay; which
are the intervals related to N3 burst duration. However, N1-N2, N1-N3 intervals and N3-N2 delay are also
highly correlated to the period. These intervals are the ones related to N1 neuron activity.

Furthermore, it is important to notice that N3-N1 delay is negative, up to -1 in the scale. This means that
there is a constant overlapping between N3 and N1 in each cycle.

Compared to N1m-driven results, there is another difference in period and burst duration, which is about
half of the previous analysis. When driving the rhythm with SO, burst duration is much shorter, so the
period and the rest of intervals are consequently smaller.

Hence, when driving the rhythm by SO, the model produces a rhythm where the period duration information
seems to be carried by N3t as well as by N1M. This reproduces the experimentally analyzed effect set out
in [Elliott and Andrew, 1991].

The following table summarizes each phase stats, including R-squared value, and the mean and standard
deviation for the three burst intervals, taking into account burst duration, interburst interval (IBI) and
period.

Neuron R2 Duration IBI Period

N1 0.9627
Mean 0.8607 1.2498 2.1077
Std 0.2947 0.18698 0.4679

N2 0.7030
Mean 0.1702 1.9305 2.1008
Std 0.0029 0.4572 0.4548

N3 0.9374
Mean 1.4376 0.6650 2.1009
Std 0.2529 0.2188 0.4549

Table 5: Statistics results from SO-driven activity, in seconds.
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Figure 40: Box-plots of interval variability from SO-driven simulation.

49



Figure 41: Intervals correlations to Period for SO-driven simulation. First row: Burst duration. Second
and third row: Two-neuron intervals. Forth and Fifth row: Two-neurons delays.
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4 Discussion

Along this document, we have addressed the characterization of the intervals building up the sequence of
the rhythms of the central pattern generator present in the feeding system in Lymnaea Stagnalis, both from
in vivo recordings and from computational models describing its behaviour. This characterization has also
included the study of the presence of dynamical invariants in the form of linear relationships between the
sequence intervals and the cycle period of the rhythm [Elices et al., 2019].

On the one hand, for the living neuron recordings, electrophisiological techniques were used, carrying out
experiments involving intracellular and extracelullar recordigns on the isolated neural system. In the analysis
of the intracellular recordings, we identified three different phases (N1,N2,N3) from two simultaneous record-
ings: one phase from the recording of one of the neurons (N1), and the other two phases from the recording
of the second cell (N2,N3). Thanks to a significant change in firing rate frequency in each burst of the second
recording, it was possible to differentiate between the two phases (N2,N3) of this second recording. Since
these three phases were assumed to correspond to the each one of the three phases in the CPG, all intervals
building the sequence were analyzed in terms of variability and compared to the period in a cycle-by-cycle
manner obtaining linear relations in several cases.

The results found in these recordings go along with the phenomena exposed in Elliot et al. [Elliott and
Andrew, 1991] where in a recording from the spontaneous feeding rhythm in Lymnaea buccal ganglia, a
high correlation between the period and the third phase was reported. In this work, we have extended this
analysis by characterizing each interval building the sequence and relating the linear relations found to the
concept of cycle-by-cycle dynamical invariants proposed in [Elices et al., 2019] for the coordination of robust
yet flexible CPG rhythms.

On the other hand, for computational model simulations, two main cases have been addressed in the analysis:
N1M-driven and SO-driven activity. This was based on the two different possibilities of inducing variability
in the model according to the results reported in [Vavoulis et al., 2007]. When variability is driven by the
stimulation of N1M, the results are rather similar to the ones obtained in intracelullar recordings, being N1M
a bit more variable. Therefore, linear correlations are present, mainly in all intervals related to N3 burst
duration, since those are the ones with a variability distribution more similar to the period.

When the stimulation is applied on SO, i.e., this neuron is inducing the variability, a different rhythm
variability distribution is found, since there are more intervals presenting variability. This is due to the
specific variability of N1M and N3t burst durations, since in this case period information seems to be carried
not only by N3t but also N1M. Hence, consequently to the variability analyses, different linear relations are
found, involving all intervals related to N3t and N1M. The intervals not showing relation with the period
are the ones related to N2v, which is also the less variable entity.

These results reproduce and extend the ones discussed in [Vavoulis et al., 2007] and [Elliott and Andrew,
1991]. It is interesting to highlight the differences in the result when the period is driven by N1M or SO.
When the variability is induced in N1M, N3t is still able to inhibit N1M carrying the main variability, while
SO is adapting to both. However, when SO is the one stimulated, since it is connected to N1M by mutual
excitation, they are both boosting each other’s activity, leading to a higher variability of N1M. Here, N3t
must adapt to N1M, what is harder due to the SO constant excitation. For this reason, it was necessary to
inject some additional current in N3t, which would usually be an effect received from the cerebral ganglia.

As it was explained in section 1.3, each of the three phases here exposed correspond to a specific motor
action: N1 protraction, N2 rasp and N3 swallow. As it is pointed out in [Elliott and Andrew, 1991], these
phases are an example of two-stroke relaxation, which would be divided in protraction and rasp (N1,N2), in
charge of moving the radula and swallowing (N3). In these kind of systems, it is usual to find one of them
fixed and the other one variable, in our case it would be the swallow one. In this line, SO stimulation is
related to sucrose stimulation [Benjamin, 2012, Rose and Benjamin, 1981], this could be related with the
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increase in N1M variability, since in presence of food, protraction phase may get more important for a better
food reaching. Thus, there might be now two phases showing more variability in their intervals duration.
The discussed invariants can participate in the coordination of these mechanisms of motor coordination.

In this master thesis, the study of cycle-by-cycle invariant relationships, found not only in experimental
recordings but also in computational models, highlights the presence of organized variability in a motor
rhythm. Previous results that indicated the existence of these invariants in Lymnaea Stagnalis have been
reproduced, providing a wider analysis of variability, not only in the burst duration intervals but in a complete
set of intervals obtained from the relation between different neurons in dual recordings.

The presence of dynamical invariants in other CPGs beyond the already found in Carcinus maenas [Elices
et al., 2019], points out to a general phenomena that can be present in other more complex neural systems.
Moreover, the results indicate that invariants can be found in a computational model, which is not trivial
because of the lack of sources for flexibility in theoretical paradigms. In this study, variability was induced
by external stimulation into single neurons. It is important to emphasize that in the Vavoulis et al. model,
variability is induced by applying a variable current to N1M or SO, being quite constant when this current
is fixed.

As future work, it will be interesting to analyze key elements generating this invariant into the model and
a comparison between this one and other models which cannot reproduce the invariants. Regarding the in
vivo recordings, it will be necessary to move forward into the identification of neurons for a more precise
characterization of the rhythm and the antiphase sequential activations so the results shown here can be
analyzed under different behavioral conditions.
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strategies for central pattern generator control in modular robotics. Bioinspiration and Biomimetics,
6(1):16006.

[Hodgkin and Huxley, 1952] Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of mem-
brane current and its application to conduction and excitation in nerve. The Journal of physiology,
117(4):500–44.

[Huerta et al., 2001] Huerta, R., Varona, P., Rabinovich, M., and Abarbanel, H. (2001). Topology selection
by chaotic neurons of a pyloric central pattern generator. Biological Cybernetics, 84(1):L1—-L8.

[Kandel et al., 2012] Kandel, E. R., Schwartz, J. H., and Jessell, T. M. (2012). Principles of Neural Science.
McGraw-Hill Education, New York, 5 edition.
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