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Abstract 
 
 As the climate changes and nutrient overloading from anthropogenic activities increases, the 
abundance of harmful cyanobacterial blooms increases with it. These blooms can cause significant 
challenges to water management such as serious threats to human and wildlife health, impinging 
recreational uses, and impacting the aesthetics of the ecosystem. The most common cyanotoxins 
found in lentic and lotic systems are microcystsins (MC) and anatoxin-a (ANA) respectively. The 
presence of these cyanotoxins has been tentatively linked to various environmental stressors. 
Identifying the most influential biotic and abiotic conditions on the concentration of these cyanotoxins 
can help determine acceptable thresholds that correspond with benchmark values outlined in 
legislation for water quality. A statistical Bayesian modelling approach was taken to analyze the 
cause and effect relationships of the most important environmental variables with the exceedance 
of MC and ANA thresholds for low risk. Three independent models were developed in total, one for 
each of the case studies: Spanish lentic systems (using 88 samples from 76 reservoirs and lakes), 
Mexican lentic systems (using 65 samples from nine reservoirs and lakes), and Spanish lotic 
systems (46 data samples from Phormidium mats located in 10 rivers). Using a correlation matrix to 
identify strong linear and nonlinear relationships, with a validation of each of the Bayesian networks 
through sensitivity analyses, core parameters that will guide water managers to predict MC and ANA 
levels were discovered. Results propose the most important parameters for increased probability 
prediction of concentration and presence of toxic cyanobacteria in each case study were: total 
chlorophyll a (ChlaTotal), chlorophyll a from cyanobacteria (ChlaCyano), and dominance of 
cyanobacteria in a bloom for Spanish lentic systems; dissolved oxygen, conductivity, and 
temperature for Mexican lentic systems; and DIN, SRP, pH, and conductivity for Spanish lotic 
systems. Complying with the estimated thresholds outlined for each system, cyanotoxin risk can be 
effectively suppressed. The incorporation of probabilistic Bayesian modelling offers parsimonious 
solutions in a functional way that accommodates a certain level uncertainty for water managers to 
determine the likelihood of surpassing acceptable levels of risk.  
 
Key words: Cyanobacteria, Harmful algal blooms, Bayesian network modelling, Microcystin, 
Anatoxin-a, Risk assessment, Water management  
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1. Introduction  
 
1.1 Cyanobacteria and Cyanotoxins  

Eutrophication (i.e. increased input of nutrients, largely phosphorus but also including 
nitrogen) is a constant daunting problem that is plaguing freshwater sources as a consequence of 
an overwhelming number of factors. These factors range from excessive nutrient runoff from 
fertilizers, agriculture wastes, and stormwater runoff, being additionally exacerbated by direct and 
indirect effects of climate change such as increased water temperature or prolonged water stability 
(Ibelings et al., 2014). Physical pollution also can play a part, as disruption of water continuity, 
diversions, or salinization cause an increase in residence time and vertical stratification which 
enhances the formation of a harmful cyanobacterial bloom (cyanoHAB), i.e. high population 
densities. Figure 1 shows examples worldwide. Cyanobacteria can be found in all-natural 
ecosystems including soil, bare rock, freshwater, oceans, brackish water, estuarine salt lakes, salt 
marshes, rivers, etc. (Niamien-Ebrottie et al., 2015).  The increased eutrophication of the trophic 
state normally favors the exponential growth of cyanobacteria, as most species are adapted to hot 
temperatures, stratification (due to the gas vesicles which incite buoyancy), and are salt-tolerant 
(Paerl and Otten, 2013).  These ecophysiological abilities allow these bacteria to ubiquitously exploit 
anthropogenic modifications to ecosystems.  
 
  Cyanobacteria are photosynthetic prokaryotes that can be found in almost every aquatic 
ecosystem across the globe due to their ability to adapt to a plethora of climatic and geochemical 
changes. This ability has evolved since their first appearance around 3.5 billion years ago. These 
microorganisms are thought to be the first oxygenic photoautotrophs present on the Earth that lead 
to a biosphere that included oxygen, paving the way for the atmosphere today. Although they are 
usually not visible without the use of a microscope, cyanobacteria can exist as free-living cells, as 
colonies, or as filaments (Quiblier et. al, 2013). Moreover, since these prokaryotes are ever-present 
in ecosystems, they can grow planktonically (in the water column, primarily in lentic systems), 
metaphytically (piled on the water surface), epiphytically (attached to macrophytes, other algae, or 
even other cyanobacteria), or benthically (attached to the sediment of the bottom of systems) (Figure 
1b and 1c) (Quiblier et. al 2013).  Although cyanoHAB are found in a large range of areas, 
traditionally planktonic cyanobacteria bloom formation and characterization has been given more 
scientific attention. However, under certain environmental conditions, cyanobacteria can proliferate 
massively, initiating the so-called blooms, which can reach concentrations of several thousands of 
cells per mL-1 and accumulate on the water surface in the form of scums or as benthic mats covering 
most of the river beds. Planktonic proliferations can cover areas of several km2 making them even 
visible from satellites (Figure 1a and 1d).   
 

 
 
 
 



Application of Bayesian networks on risk assessment of cyanobacteria proliferations 
 

 

5 

 
Figure 1 - a. CyanoHAB satellite image in Lake Erie( Pennsylvania, United States) (Paerl and Paul, 2012) b. 
Phormidium Benthic cyanoHAB in Waipoua River (North Island, New Zealand) (Quiblier et al., 2013) c. Benthic mat in 
Lake Rotoiti, New Zealand (Quiblier et al., 2013) d. CyanoHAB on Lake Dianchi, Yunan Province, China (Paerl and 
Paul, 2012) 
 

According to Paerl and Otten (2013), along with decreased ecosystem productivity and 
species richness, cyanoHAB can also produce toxic secondary metabolites (the so-called 
cyanotoxins) which can cause serious adverse health effects in mammals, and to a lesser extent 
aquatic biota. These cyanotoxins have been reported in at least 66 countries worldwide with a range 
of 25-75% of the blooms being considered toxic (Bláha et al., 2009; Ibelings et al., 2014). Although 
the purpose and function of these cyanotoxins are unclear, it is imperative to analyze the dangers 
presented. This can be carried out by understanding their chemical and physical properties. The 
cyanobacterial toxins can be sorted into four broad categories for the toxic effects on the body that 
include hepatotoxic (affecting the liver), neurotoxic (affecting the nervous system), dermatotoxic 
(affecting the skin), or cytotoxic (which is the general inhibition of protein synthesis)(WHO, 1999). 
Compounding with these categories, cyanotoxins can also fall into groups based on chemical 
structure. Although there can be hundreds of different forms of the compounds (more than 300 have 
been described up to date (Cirés et al., 2013), cyanotoxins can generally fall into the classification 
of cyclic peptides, alkaloids, and lipopolysaccharides (LPS) (WHO, 1999). Table 1 outlines the 
cyanotoxin groups, as well the most common genera that produce the toxin. To date, there have 
been about 40 genera of cyanobacteria that have been described as cyanotoxin producers (Bernard 
et al., 2017).  
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Table 1. General characteristics of cyanotoxins (World Health Organization, 1999)  

Toxin Group Most targeted 
organ in 
mammals 

Cyanobacterial genera  General chemical structure 

Cyclic peptides  

Microcystins Liver, inhibit 
protein 
phosphatase 

Microcystis, Anabaena, 
Planktothrix, Nostoc, 
Hapalosiphon, 
Anabaenopsis 

 
(Metcalf and Codd., 2012) 

Alkaloids 

Anatoxin-a Nerve synapse, 
lungs 

Anabaena, Planktothrix, 
Aphanizomenon, 
Phormidium   

 
(Metcalf and Codd., 2012) 

Cylindrospermopsins Liver, inhibits 
protein synthesis   

Cylindrospermopsis, 
Aphanizomenon, 
Umezakia 

 
(Metcalf and Codd, 2012) 

Saxitoxins Nerve axons  Anabaena, 
Aphanizomenon, Lyngbya, 
Cylindrospermopsis 

 
(Solter and Beasley, 2013) 

Lipopolysaccharides (LPS) Affects any 
exposed tissue 

All  

 
(Durai et al., 2015) 
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The cyanobacterial toxins most commonly found in blooms are of the microcystin (MC) family 
(and therefore the most common species included in legislation worldwide) (Svirčev et al., 2019). 
MCs are cyclic heptapeptides containing two variable amino acids and the unusual cyclic amino 
acid 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-4,6-decadienoic acid (normally known as 
ADDA). Due to the different possible amino acids of the two variable positions, more than 140 
variants of MCs have been discovered (Meriluoto et al., 2017). In mouse bioassays, it was found 
that these toxins can cause death by liver hemorrhage only a few hours after acute ingestion due to 
the strong binding to the essential cellular enzyme: protein phosphatases (WHO, 1999). 

 
Another common cyanobacterial toxin that is found in North America, Europe, and Australia 

is called anatoxin-a (ANA) which is a neurotoxic alkaloid. These can cause death quickly, usually 
between two and 30 minutes, by causing respiratory failure. Alkaloids are considered very diverse 
in their chemical structures and in their toxicities, but generally are classified by heterocyclic 
nitrogenous compounds that contain ring structures with at least one carbon-nitrogen bond (WHO, 
1999). The World Health Organization (WHO) also claims that these are found to be common in 
rivers. The last common cyanotoxin that is quoted in legislation and guidelines is cylindrospermopsin 
(CYN). Initially CYN was considered to be a toxin mostly affecting tropical waters in Australia and 
Asia, but during the last two decades, it has been found in several other regions including temperate 
areas of Europe (including Spain) and North America. In fact, CYN is considered thus far as the 
second most widespread cyanotoxin group after MCs, as CYN is cited in 10% of cyanotoxin records 
worldwide (Svirčev et al., 2019). It is a cytotoxic alkaloid which normally affects the liver, but in some 
variations of the structure can also affect the kidneys, spleen, thymus, or heart (Niamien-Ebrottie et 
al., 2015).  

 
These cyanotoxins can be either extracellular, which are released during bloom decay during 

the lyse of the cells, or intracellular, which are consumed by zooplankton and fish and can be 
bioaccumulated in some species (Pawlik-Skowrońska et al., 2013). There are a few exceptions of 
cyanotoxins (e.g. Cylindrospermopsins) which may present active release. Common cyanotoxins in 
legislation include ANA and MC variants which are stored intracellularly and are usually discovered 
during the growth stage of the toxic blooms. These can be easier to remove from the water column 
than extracellular toxins due to the water-soluble properties of these compounds, and the fact that 
latter can be adsorbed by clays and organic material (Niamien-Ebrottie et al., 2015). According to 
Munoz et al. (2019), 10-95% of all recorded cyanobacterial blooms contain cyanotoxins, 
emphasizing the need for proper risk management. Methods for cyanotoxin removal include 
chlorination, adsorption, ozonation, photocatalysis, and advanced oxidation processes. The 
efficiency of these processes depends on the type of toxin and the physicochemical parameters of 
the source water (Munoz et al., 2019).  
 
 To further complicate the issue, additional knowledge gaps are present when it comes to 
records and data from developing countries. Although cyanotoxins are known to be present, there 
is barely any legislation on risk assessment or management and there are difficulties in creating 
monitoring programs or implementing preventive measures (Pírez et al., 2012). Specifically, 
publications in South America are few and far between. CyanoHABs can grow out of control in 
places where there is uncontrolled erosion or untreated sewage that is discharged directly into the 
bodies of water. Furthermore, detection methods of Microcystis by microscope are labor intensive 
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and do not directly indicate toxicity. To determine if the cyanotoxin is present by HPLC or mass 
spectrometry (MS) are costly, making large amounts of sampling for routine monitoring unfeasible. 
The difficulty continues to be compounded by the fact that there are more than 240 chemical 
congeners of the MC family with the predominant local variants not yet being identified (Meriluoto et 
al., 2017). Luckily, cost effective immunoassays are becoming increasingly accepted by the 
academic community for rapid screening of a large number of samples. Enzyme-Linked 
ImmunoSorbent Assay (ELISA) is an established analysis that is accepted by several regulatory 
agencies, including the U.S. Environmental Protection Agency (EPA). Pírez et al., (2012) suggests 
that this tool is suitable for supplying global information on toxicity, though with the limitation that 
ELISA is not able to distinguish the relative proportion of each MC variant.  
 
 Due to the various limitations of MC analyses, such as their high cost and low availability of 
technology in some water management laboratories, it is vital that risk assessment networks include 
low cost parameters based on biomass that are easier to measure (such as chlorophyll a, hereafter 
referred to as ChlaTotal) or physicochemical characteristics that can moderately help predict and 
anticipate blooms before cyanotoxins reach dangerous levels.  
 
1.2 Physicochemical Variables That Affect Formation of CyanoHAB 
 
 Due to the dangers of cyanoHABs (loss of water clarity, oxygen depletion, and cyanotoxins), 
the physicochemical parameters that contribute to the success of common toxin producing 
cyanobacteria are necessary to be analyzed.  Cyanobacteria can thrive and exploit both nutrient-
scarce and nutrient rich terrestrial and aquatic environments around the world due to 
ecophysiological abilities such as the ability to fix atmospheric nitrogen (an anaerobic process), store 
phosphorus, iron, and other trace elements, buoyancy regulation and the formation of akinetes 
(resting spores) (Mantzouki et al., 2018, Paerl and Otten, 2013). An example would be Microcystis 
aeruginosa which can surpass stratified layers of enhanced water column stability, as well as using 
the buoyancy regulation to sink down to access nutrients at deeper layers, then floating up to obtain 
light from the surface (Mantzouki et al., 2018).  
 

As human population density, agricultural, and industrial activities increase, the nutrient 
loading rates are rapidly increasing in freshwater systems (Davis et al., 2009). Among these 
nutrients, phosphorus has routinely been quoted as the main limiting nutrient for primary producers’ 
productivity and algal biomass in freshwater systems, and nitrogen as the catalyst for new 
production in marine environments. Nutrient enriched water bodies are more susceptible to 
cyanoHABs if they have low flushing out rates (long residence times), higher water temperatures 
(periodically over 20 °C), calm surface waters (absence of wind), or have prolonged, persistent 
vertical stratification (Paerl and Otten, 2013).  Moreover, phosphorus enrichment is thought to play 
a larger part in the development of cyanoHAB, more so with nitrogen fixing cyanobacteria genera 
(Anabaena, Aphanizomenon, Cylindrospermopsis, Lyngbya, Nodularia, Oscillatoria, 
Trichodesmium, etc.) that supply their own nitrogen by converting atmospheric N2 to biologically 
available ammonia (NH3) (Paerl and Otten, 2013).  
 
 Temperature plays a large role in the development of cyanoHAB as well. As there is an 
increase in atmospheric carbon dioxide from the burning of fossil fuels and deforestation, it is 
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expected that there will be a 2-5oC increase of global temperatures (Davis et al., 2009). Usually, 
cyanobacteria will dominate phytoplanktonic during the warmest times of the year, especially in 
eutrophic ecosystems in temperate climates. In particular, Microcystis has been found to have the 
highest rate of growth and photosynthesis at their optimal temperature of/or above 25oC (Davis et 
al., 2009), along with an increase of cellular toxin content of multiple other genera of cyanobacteria 
at these temperatures. Furthermore, temperature can directly (cyanobacteria can outgrow other 
algal groups at higher temperatures) and indirectly alter environmental factors such as conductivity 
and dissolved oxygen, in addition to co-occuring with prolonged thermal stratification (Huber et al., 
2011).  
 

As the water quality of an ecosystem deteriorates, cyanobacteria can use the 
aforementioned adaptations to outcompete other algae (Huber et al., 2011). The environmental 
factors that influence water quality and trophic state are listed as: conductivity (measures 
concentration of ions in the water), ChlaTotal (proxy for algal biomass), dissolved oxygen (in anoxic 
systems there will be relatively more NH4) , and pH. According to Rahman and Jewel, 2008, alkaline 
pH (around 8.8), low dissolved oxygen concentration, and comparatively higher concentration of 
nutrients (including NH4) were observed during the cyanoHABs. To a certain extent, toxin levels 
might respond to environmental conditions, meaning the toxin content per cell can vary several fold, 
with the proportion of different congeners changing with the changes in the environment (Ibelings et 
al., 2014).  
  
1.3 Risk Assessment and Legislation  
 
 As previously stated, cyanobacteria can occur in both aquatic and terrestrial environments 
with the potential to create toxins that are harmful to human and animal health. Svirčev et al., (2019) 
states that major cyanotoxins have been found in 66 countries worldwide (with 1118 recorded 
identifications in 869 freshwater systems). Of these cyanotoxins, the most common were MC, which 
accounted for 63% of the records globally, CYN: 10% of records, ANA: 9%, and saxitoxins: 8%. Due 
to the increasing awareness of the ubiquitous and dangerous nature of these cyanotoxins, countries 
are addressing cyanotoxin hazards and implementing regulatory approaches for their respective 
conditions (Ibelings et al., 2014). Regulations and guidelines up to date cover the three vehicles of 
possible oral exposure: ingestion of cyanotoxins through drinking water, recreation use, or 
consumption of seafood from freshwater bodies (only Australia, Denmark, France, and the United 
States of America). The literature on drinking water legislation is much more substantial than that of 
the other routes of exposure, especially recreation, probably owing to the fact that it is a necessity 
of life. However, in countries with water that is treated well, recreation can be the major exposure 
route (Ibelings et al., 2014).  
 
 Recreational water risk assessment is usually defined by many countries as a two or three 
tier alert level framework, although there is a discrepancy between countries in terms of legislation 
and scientific literature, specifically a lack thereof in some countries from South/Central America 
and Africa (Ibelings et al., 2014). These tiers normally are comprised of a low level ‘Surveillance 
mode’ where authorities continue monitoring, a moderate level of ‘Alert mode’ which is usually the 
presence of an indicator of cyanoHABs (such as MC or cyano-chlorophyll a, referred to ChlaCyano 
hereafter) where the public is warned, and finally the highest level of ‘Action mode’ which is based 
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on the presence of persistent scums or surpassing the last tier in the decision tree. An example of 
a decision tree for distinguishing the probability of cyanoHAB proliferation in Spain is outlined in 
Figure 2. Countries such as Australia have an additional two levels of ‘Action mode’ dealing with the 
likelihood of adverse health effects. Other countries like Canada have only a single guideline value 
of MC for recreational waters, or in Singapore which uses a single value of ChlaTotal (being >50 
μg/L) for ‘Action mode (Ibelings et al., 2014). The United States of America, for example, does not 
have a national guideline but rather depends on the state with only 21 out of the 50 states 
implementing a guidance value for recreational waters (Ibelings et al., 2014). It should be noted that 
in literature and legislation, either the general term of cyanobacteria is used, or the specific 
cyanotoxin of MC. As aforementioned, MC and CYN are the most commonly found cyanobacteria 
in lentic systems and ANA being most commonly found in lotic systems (benthic). For this reason, 
these cyanotoxins can be found in decision trees such as that for Spain.    
 

 
Figure 2 outlines the current decision-making tree for risk of proliferation of cyanoHAB in Spanish recreational waters 

(Wörmer, et al., 2011) 
 

For members of the European Union, the Bathing Water Directive 2006/7/EC (BWD) 
provides the foundation for classification guidance values of bathing sites in relation to the probability 
of cyanobacterial proliferation (low probability, medium probability, high probability). The risk-
assessment framework used calls for authorities to analyze potentially contaminating conditions in 
a timely manner (Ibelings et al., 2014). Due to the general terms of the BWD, many countries have 
adopted thresholds defined by a general framework of guidelines set by the WHO that is used 
internationally, either directly incorporated such as in Czech Republic, France, Japan, Korea, New 
Zealand, Norway, Poland, Brazil and Spain, or translated into different thresholds depending on the 
country (Australia, Canada) (Burch, 2008).  For recreational waters, three potential routes of 
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exposure are outlined: direct contact, accidental swallowing, and inhalation of water. The hazards 
of cyanotoxin uptake, specifically MC which is the cyclic peptide cyanotoxin outlined by WHO due 
to the ubiquitous nature of this cyanobacterial toxin and also because it is widely regarded as the 
most serious potential source of human injury globally (Burch, 2008), is directly related to the level 
of toxins in the water and how much of that water is ingested. Therefore a safe range needs to be 
derived for guidelines of safe use of bathing sites (Table 2), but it should be borne in mind that these 
guidelines have not been adjusted for benthic populations and therefore cannot be used for data for 
rivers (WHO, 1999). In this project, MC concentrations were adapted from the WHO guidelines for 
risk classification for lentic waters.  
 
 To assess safe water quality for recreational waters, drinking water guidelines of Tolerable 
Daily Intake (TDI) can be applied due to the unavoidable ingestion of water (approximately 100-200 
mL of water in one session, with water-sport athletes probably ingesting more).  TDI represents the 
dose level in humans that when taken daily over a lifetime will result in no adverse effects. For 
example, the most quoted guideline value globally is the threshold of 1.0 µg L-1 for drinking water 
which is much lower than the thresholds listed for recreational waters (WHO, 1999). This is due to 
the fact that drinking waters are associated with chronic injuries (from low doses being ingested 
daily) whereas recreational waters are more an acute risk (high doses with short exposure times).  
There are many variables that can lead to a higher acute risk than is outlined, such as a child with 
less body weight ingesting more water than estimated, wind sweeping scums to shorelines, or 
benthic mats breaking off after a storm.  
 
 In addition, risk assessment has commonly been performed only for these planktonic 
organisms despite benthic cyanobacteria being responsible for multiple animal deaths (Quiblier et 
al., 2013, Wood et al., 2007). Legislation and guidelines are primarily developed for planktonic 
species in reservoirs and lakes for recreational and drinking water supply use with limited 
information on sampling, monitoring and managing benthic cyanobacteria, even with dangerous 
mats being found in reservoirs and lakes (Uriza et al., 2017). According to Quiblier et al., (2013), 
only two countries have established guidelines for risk and management of these species: Cuba 
and New Zealand, although they are based on preliminary research. Both frameworks incorporate 
a percentage of coverage of potentially toxic cyanobacteria that is attached to the substrate. Data 
related to the growth of benthic species and toxin production is scarce, leaving a large knowledge 
gap that is incomplete. 
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Table 2. Range of guidelines outlined by World Health Organization, 2003 

Probability of Adverse 
Health Effects   

Health Effects  Guideline Values  Recommended Advisory 

Mild/Low Irritation or allergic 
effects  

20,000 cyanobacterial cells mL-1 

 
<10 µg L-1 chlorophyll a (with 
cyanobacterial dominance) 
 
 
2-10 µg L-1 of MC 

Provide visitors with 
information about low level 
risk  
 
Authorities are informed to 
initiate further surveillance 

Moderate Irritation, may cause 
health impact 

<100,000 cyanobacterial cells 
mL-1 

 

<50 µg L-1 chlorophyll a (with 
cyanobacterial dominance) 
 
10 - 20 µg L-1 of MC 

Intensification of 
surveillance  
 
Daily inspection for scum 
formation  
 
Intervention and restriction 
of bathing  

High  Severe health hazards  <10,000,000 cyanobacterial 
cells mL-1 

 

<5,000 µg L-1 chlorophyll a 
  
<2,000 µg L-1 of MC 
 
Appearance of cyanobacterial 
scum formation  

Possible closing of the 
bathing site/inform public 
Continued intense 
surveillance  
 
Risk Management/inform 
public  
 
Public health follow-up 
investigation 

 
 
1.3.1 Spanish Recreational Waters 
 

Legislation for recreational water and drinking water differ, with drinking water being outlined 
in the Royal Decree 140/2003 which integrates the European Directive 98/83/CE into Spanish 
legislation. Recreational waters have a national implementation of the European Union BWD for 
water quality that has been translated into the Royal Decree (RD) (1341/2007), without much 
amending. In article 6 of the RD, it is outlined that cyanobacteria risk is to be analyzed and managed, 
corresponding to Annex III 1c of the BWD which establishes a profile for bathing waters. One of the 
parameters that is analyzed in these defined profiles is the “propension to cyanobacterial 
proliferation” (BWD, 2009). For this, Universidad Autónoma de Madrid in collaboration with the 
Spanish Ministry of Environment created a decision tree (Figure 2) to qualify bathing waters’ risk of 
developing a cyanoHAB.  
 

As concentration of cyanotoxin depends on the concentration of cyanobacterial biomass, the 
formation of scum (accumulation of floating cyanobacteria metaphytically) can increase toxin levels 
by orders of magnitude. Therefore, in the Spanish risk assessment decision tree, the observation of 
scum or mats (associated with benthic populations) is the first-tier level, along with the WHO 
parameter of ChlaTotal. If there is presence of scum, or if the ChlaTotal value is over 10, then the 
bathing site is automatically labelled high risk. Although this is considered moderate by WHO, the 
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value was set with conservative measures in mind relating to the multitude of outside variables 
aforementioned. The second tier involves variables such as total Phosphorus (>100 µg/L), 
phosphate (>20 µg P/L), the molar ratio of dissolved inorganic nitrogen (DIN)/ total soluble reactive 
phosphorus (SRP) (>16), and the percentage of cyanobacterial dominance (>25%). If these 
thresholds are not reached then the risk is considered low, if any of the thresholds are reached it 
then moves to the third tier which includes the presence of toxic genera (which if not present is 
moderate risk), if present then the presence of cyanotoxins (MC, ANA, or CYN) is analyzed. 
Ultimately, if these toxins are not present the risk should be considered moderate, and if present 
then it is considered high risk (Wörmer et al, 2011). This decision-making tree is outlined in Figure 
2. 
 

As stated before, information regarding MCs primarily deals with planktonic species in lentic 
waters, as it was thought that lotic conditions would not be favorable for mass growth of 
cyanobacteria. However, studies such as Uriza et al., (2017) have found that toxic species that can 
produce MCs were found in all sampled Spanish habitats, such as creeks, streams, springs, and 
rivers, with the highest concentration being 1.87 µg/g of dry weight. Currently, there are no distinct 
protocols in Spanish literature for evaluating benthic cyanobacteria populations in lentic waters.  
 
 Most risk assessment decision systems are based on the WHO recommendations listed in 
Table 2 or on qualitative decisions that are based on literature reviews. However, it’s becoming 
increasingly common to apply a quantitative modelling approach that is rooted in data, such as 
Bayesian networks (BN) in environmental modelling, risk assessment, resource management, or 
ecosystem services. Due to the probabilistic qualities of the outputs, results can be interpreted as 
the risk of proliferation and can support risk decision making process (Moe et al., 2016). For 
instance, the EPA employs a BN for assessing large amounts of data and analyzing the relationship 
between nutrients and cyanobacterial abundance (EPA, 2015).  
 
1.3.2 Mexican Recreational Waters 
 
 Mexican legislation also quotes the WHO standards for cyanobacteria, concentrations of 
MC, and ChlaTotal in the Official Standard from 2014 (Tomasini-Ortiz, 2012). The water is governed 
by the National Water commission (CNA or Conagua) which is under the authority of the State 
Ministry of Public Works. Legislation also contains an Official Standards for Water Quality that 
regulates the conditions of the water for human consumption and utilization. To date, the office which 
oversees the distribution of cyanotoxins in water and possible poisonings is the Secretary of Health 
and Assistance which relies on the Federal Commission for the Prevention of Health Risks, 
specifically in relation to seafood. Besides this, cyanotoxins are excluded from water quality analysis 
(Diario Oficial de la Federación, 2017).  
 
1.4 Bayesian Networks Background  
   
 Probabilistic frameworks models are becoming more commonly utilized to predict future 
changes in freshwater quality, such as BN. BNs are a powerful tool for many reasons, such as the 
ability to link abiotic process based models to biological quality indicators quantitatively (Moe et al., 
2019). This can then be viewed visually and communicated easily without the need of mathematical 
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background. Along with the ability to infer cause-and-effect relationships, it can also integrate 
multiple sources of information without relying on a single deterministic outcome that does not 
encapsulate real ecosystem interdependability and variability, as well as incorporate expert 
knowledge (Moe et al., 2016). A simple example is outlined in Figure 3.   

 
Figure 3. Simple example of Bayesian Network with probabilities (Goronto, 2017) T stands for true and F stands for 
false 
 
 

BNs, also called Bayesian belief networks, are a multivariate probabilistic inference model 
which is able to demonstrate quantitatively and qualitatively conditional (in)dependencies between 
random variables (also referred to as nodes). Nodes can be continuous or discrete and has a finite 
set of states (Phan et al., 2016). Qualitatively, the BN is able to show visually through a directed 
acyclic graph (DAG) the structure of the relationships between the nodes, which carries an 
advantage of being easy to understand while avoiding the necessity of computing any numerical 
calculations to show which variables are relevant and irrelevant (Aguilera et al., 2011). This 
graphical structure can be defined as G = (V, A) where V is the node set (X1, X2, …, Xn) and A is the 
arc (or edge) that represents the probabilistic dependencies between them (known as probability 
tables i.e. takes an input and gives an output as a probability) (Scutari, 2010). In Figure 3, the nodes 
are Rain, Sprinkler, and Grass Wet, with the arrows pointing in the direction of the dependencies. 
So, Rain is the parent of Sprinkler and Grass Wet, etc. Once the structure is defined, it is important 
to understand the strength of the connections between the variables (represented by conditional 
probability tables (CPT)). A CPT is able to quantify the probability distribution of a node given the 
realized states of the parent nodes, or in other words, finding the probability of an outcome given 
known inputs. This is done by implementing Bayes’ theorem which can determine a single 
probability distribution for each variable (Equation 1):  
 

P(A|B) = 𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵)

                                       Equation 1  
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where P(A) and P(B) are the probabilities of observing A or B without any regard to one another, 
P(A|B) is the conditional probability of A given that B happens, and P(B|A) is the conditional 
probability of B given A; additionally P(B|A)/P(B) represents the likelihood ratio, or also called Bayes’ 
Factor (Phan et al., 2016). Furthermore, to find the probability of a final event given all the other 
dependent event utilizes a joint probability distribution formula: 
 

p(x1, …, xn) = ∏𝑛𝑛
𝑖𝑖 = 1 p(xi|pa(xi)) ∀x1, …, xn∈ΩX1, …, Xn       Equation 2 

where ΩXi symbolizes all possible outcomes of variable Xi, and ∀ defines all possible values of 
x. A conditional distribution is also calculated for each variable p(xi|pa(xi)) for each variable Xi i = 1, 
…, n in relation to its parents that are denoted as pa(xi). Assuming Xi is the variable of interest, and 
XE is the set of variables with known values, then Xi given XE can be predicted by computing the 
probability of each possible value of Xi given each possible configuration of XE (Aguilera et al., 2011). 
In Figure 3, the CPT are to the side of each node (Rain with only two probabilities as it does not 
have parent nodes) that outline the probability of an outcome given the predecessor is true or false. 
For example, if the question of interest is “Given the grass is wet, what is the probability that it is 
raining?”, by plugging the values from the CPTs into equation 2, it’s possible to calculate each term 
of the numerator and denominator: 
 
Pr(R=T|G=T) = ∑𝑠𝑠∈{𝑇𝑇,𝐹𝐹}𝑃𝑃(𝐺𝐺=𝑇𝑇,𝑆𝑆,𝑅𝑅=𝑇𝑇)

∑𝑆𝑆,𝑅𝑅∈{𝑇𝑇,𝐹𝐹} 𝑃𝑃(𝐺𝐺=𝑇𝑇,𝑆𝑆,𝑅𝑅)
                   Equation 3 

 
For example, the P(G=T, S=T, R=T) = P(G=T | S=T, R=T) P(S=T | R=T) P (R=T) which looks like 
0.99 x 0.01 x 0.2 = 0.00198. Now plugging in all the values would give the equation:  
 

Pr(R=T|G=T) = 0.00198𝑇𝑇𝑇𝑇𝑇𝑇+ 0.1584 𝑇𝑇𝑇𝑇𝑇𝑇
0.00198𝑇𝑇𝑇𝑇𝑇𝑇+ 0.288𝑇𝑇𝑇𝑇𝑇𝑇+0.1584𝑇𝑇𝑇𝑇𝑇𝑇+0.0𝑇𝑇𝑇𝑇𝑇𝑇

= 35.77 %         Equation 4 

 
Which gives a 35% chance that it is raining given the grass is wet (Gales, 2005, Goronto, 2017).  

 
The statistical principle called Markov property regulates the structure of the DAG, in that 

every random variable Xi directly and solely depends only on its parents and is independent of the 
other nodes. The direction of the arrows (or arc) will represent which node depends on the other, 
with the dependent being the child node and the one who influences the child node being the parent 
node (Vieira et al., 2017).  Moreover, each stochastic variable has a conditional probability table 
associated with it that identifies the conditional probability distribution that relates to the different 
value combinations of the parent nodes (Egmont-Peterson et al., 2005).  
  
 An important advantage of BN is the ability to predict the value of a target node from variables 
whose values can be more easily known. For example, if the variable of interest is Xi, and a data set 
XE is known, then the value of Xi  given XE can be calculated using the probability of each possible 
value of Xi  given each possible configuration of XE. The probability distribution can be figured out 
through the joint distribution Equation 1. Another advantage of this type of statistics is the numeric 
values are inherently tied to the relationships of the nodes in the structure, meaning the probability 
of a particular hypothesis can be calculated automatically (Aguilera et al., 2011).  
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 The first step to the creation of a BN is structure learning, which is the creation of the DAG. 
This step needs to occur before quantitative probability distributions can be computed. There are 
two main ways that the structure can be learned which are: expert knowledge where the network is 
defined by specialists, or data-based learning (Scutari, 2010). Aguilera et al., (2011) recommends 
using a combination (partly fixed) of the two for optimization of the model, especially in 
environmental modelling, which represents only 4.2% of papers that utilize BN.  Data-based learning 
can be broken down into two main categories: score-based learning (which is finding the highest 
scoring network structure) or constraint-based structure learning (finding the network that best 
explains the dependencies and independencies in the data). The latter all depend on the Inductive 
Causation algorithm (examples implementing this algorithm: Grow-Shrink Markov Blanket, 
Incremental Association Markov blanket, Max-Min Parents and Children), whereas structure-based 
learning uses various heuristic search algorithms such as hill-climbing greedy search (Scutari, 
2010). This project implemented hill-climbing score-based learning, which had several options for 
the scoring function such as log-likelihood (or entropy measure), Akaike Information Criterion, 
Bayesian Information Criterion, or K2 method.  In the end, maximum log-likelihood was used to 
model the parameters of the network, which is a common method in literature (Galanti, 2015, 
Aguilera et al., 2011, Scutari, 2010) and also is the scoring associated with the hill-climbing greedy 
search in the software applied in this thesis.  
 
 To strengthen the validity of the model, validation methods should be utilized, especially in 
models that are used to perform inference. If the model has a target node (such as in the case of 
this project), a sensitivity analysis can be carried out. This shows which variables or states of the 
variables are the most influential on the target and if small changes in the probability of the states 
will return large changes in the probability distribution of the target (Aguilera et al., 2011). 
Furthermore, a BN is learned from a set amount of data, so data can be separated into two data 
sets: one for network learning (training set), and another for validation of the model (test set). 
Multiple commercial or free software exist and are listed extensively in Korb and Nicholson, 2003. 
Due to the general advantages for quantitative relationships between random variables to predict 
unobservable effects of a system, BN are becoming more frequently studied for water management 
and risk assessment analysis.  
 
2. Objectives  
 
 The general objective of this project is to analyze risks for human health due to toxic 
cyanobacteria based on statistical evidence using Bayesian data modelling in three case studies. 
The three datasets that will be used will cover a range of representative situations including different 
geographical locations (Spain and Mexico), and different types of systems (lentic and lotic). The 
conclusions obtained after Bayesian analyses will be compared with the present decision tree in 
Spanish legislation for recreational waters in order to provide recommendations for future risk 
assessment for cyanobacterial proliferation in Spain (lentic and lotic) and Mexico (only lentic). 
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Specific objectives are as followed:  

● Assess the current decision tree for reservoirs/lakes (planktonic cyanobacteria) in Spain and 
provide recommendations for its improvement based on new assessment methodologies. 

● Provide recommendations for the creation and future elaborations of risk assessment for 
benthic cyanobacteria populations in Spanish rivers. 

● Provide recommendations for the creation and future elaborations of a low-cost risk 
assessment of cyanobacterial proliferations in Mexico. 

3. Materials and Methods  
 
3.1 Data Organization for Risk Assessment Analyses  
 
 The data that was used to develop this master’s thesis came from three distinct data sets 
from separate sources. The three groups of data described water parameters and presence of 
cyanotoxins are as follows: a large group of Spanish reservoirs used as bathing sites, a second 
group that includes benthic cyanobacteria populations from rivers, and finally another group with 
data from Mexican reservoirs with recreational usage.  
 
3.1.1 Data Organization for Spanish Lentic Bathing Sites  
 
 The first data set used included bathing sites obtained from a national study that Universidad 
Autónoma de Madrid (UAM) and a public company called Tragsatec carried out for the Spanish 
Ministerio de Medio Ambiente y Medio Rural y Marino over a 15 month period between July 2008 
to October 2009. The data contained 212 bathing sites, which were located in reservoirs, rivers, and 
one lake (Lake Sanabria), are all used recreationally during the bathing season, with each sampling 
point being tested three times (once in 2008 and twice in 2009) (Wörmer et al., 2011). However, 
due to the fact that sampling techniques used during this time were only suitable for lentic sites, the 
data containing information about rivers had to be discarded (Samuel Cirés, personal 
communication). Out of the 212 bathing sites, only 88 reservoirs/lakes sampling points were used.  
 

The 88 sampling points contained 76 individual lentic bodies of water, some of which served 
as sources for irrigation, energy, and/or drinking water for human consumption (23 of the 76 were 
used as the latter) (SNCZI-Inventario de Presas y Embalses, 2020). Figure 4 below shows the 
locations of each reservoir as well as the associated risk of cyanobacterial proliferation (red meaning 
high, yellow is moderate, and green is low) classified by the authors of the study following the 
decision tree mention before (Wörmer et al., 2011).  
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Figure 4. Location of 88 Spanish lentic bathing sites taken (Modified from Wörmer et al., 2011), each point represents a 

sampling point. Red dots mean high risk of proliferation, yellow is moderate, green is low risk.  
 
 The physicochemical variables used in this project are listed in Table 3. Nitrates and 
phosphates were tested in situ using spectrophotometry by colorimetric methods using a DREL-
2010 Portable Laboratory (portable spectrophotometer), following APHA 1992, while ChlaTotal and 
ChlaCyano concentrations were measured by fluorometry (Moldaenke BBE Algae Analyzer 
Fluorimeter). Taxonomy for the identification of potential toxic cyanobacteria genera 
(PresenceofToxic) was analyzed in water samples after 24-hour flotation using an optical 
microscope (Olympus BH2 equipped with a Leica DF300 FX camera). Species identification was 
then classified based on morphological characteristics according to Geitler (1932) and Kmareck and 
Anagnostidis (1989, 1999, 2005). For the dissolved fraction, MC was analyzed through a graphite 
carbon cartridge and then inspected by mass spectrometric analysis (Varian 500MS Ion Trap Mass 
Spectrometer), following Wörmer et al., (2010). Sestonic MC was eluted by washing the cartridge 
with methanol 90% and then concentrated under a vacuum until inspection by mass spectrometric 
analysis, following Wörmer et al., (2010) once again.  
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3.1.2 Data Organization from Mexican Lentic Sites 
 

Data from Mexico was collected using a literature review 
of papers that included physicochemical 
parameters of a reservoir and the 
corresponding MC (ug/L) concentrations. 
This was accomplished by doing an 
advanced keyword search on the Bun 
search engine of UAM using terms 
“cyanobacteria”, “physicochemical”, 
“microcystin”, and “Mexico”. A list of potential 
resources regarding MC concentrations 
were provided by UAM (Munoz et al., 2020). 
In the end, the variables used were those 
that were found consistently in the literature 
resulting in a larger dataset that produced a 
more accurate model; the academic journals 
that supplied the data are outlined in Annex 
2. The variables included (Table 3): the 
month sampled, the season, phosphates, 
nitrates, temperature, conductivity, pH, 
dissolved oxygen, and concentration of 
MCs. The MC was analyzed in each study by 
using the ELISA technique (EnviroLogix, 
USA). Conductivity was measured in mS/cm 
due to the relatively high values 
encountered. Dissolved oxygen (DO) was 
also kept in mg/L (instead of converting to 
percentage) due to that being the unit found 
ubiquitously in the literature. Compounding 
the relatively common nature of these 
variables, they were also selected for their 
parsimonious nature (highest explanatory 
power with the lowest cost). Finally, the data 
included 65 sampling sites consisting of eight 
reservoirs and lakes used for drinking water, 
irrigation, collection of seafood, recreation, or 
aquatic sports, with the emphasis of this 

project being recreational activities. These reservoirs ranged from mesotrophic to hypertrophic on 
the trophic index. Figure 5 displays the positioning of the eight reservoirs.  
 

The reservoirs included are as follows: Valle de Bravo reservoir, Los Berros reservoir, Villa 
Victoria lake, Lake Chapultepec, Lake Alameda, Pista Olímpica de Remo y Canotaje artifical lake, 
Lake Bosque de Aragón, and Lake Zumpango. Lake Zumpango comprises 52% of the 65 sampling 
sites collected due to an extensive study done by Figueroa-Sanchez et al., (2020). This lake is used 

Table 3. Parameters included in 
the Bayesian Network for each of 
the three datasets analyzed 
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for irrigation, aquaculture, and recreation. It was tested in three spots during the course of one year: 
one where partially treated wastewater enters, another in the open water, and the last at the river 
mouth (Figueroa-Sanchez et al., 2020). Valle de Bravo reservoir makes up 17% of the data. This 
reservoir contributes 38% of the water belonging to the Cutzamala Hydraulic System, and supplies 
water to Mexico City and the City of Toluca (~six million people) as well as supporting water sports. 
Four rivers feed the reservoir, meaning deterioration of the water quality due to diffuse pollution 
causing concerns over the quality of the drinking water (Alillo-Sanchez et al., 2012, Figueroa-
Sanchez et al., 2014). The remaining 31% of reservoir data used was found in Valle de Mexico in 
Arzate-Cardenas (2008).  
 

 
Figure 5. Map of eight lentic bathing sites, each point represents separate bodies of water (map found at  Mexico 

Elevation map – SpeakLounge, 2020) 
 
3.1.3 Data organization of Spanish lotic sites 
 

New data samples from ten rivers (Mediano, Manzanares, Lozoya, Eresma, Jarama, 
Escabas, Tajo, Guadiela, Caldarés, Brazato), located along a longitudinal gradient of Spain, were 
collected from 2011 to 2016 (Quesada et al., 2016). Each river had a specific sampling point, except 
Manzanares having two. Furthermore, the Manzanares and Mediano rivers were sampled in three 
different moments, obtaining different samples during different seasonal periods associated with the 
Mediterranean climate (spring, summer, and autumn). The other samples were extracted only during 
the one Mediterranean seasons. 46 specific biological samples (cyanobacterial mats) were 
considered during the compilation of data for the construction of the BN for Spanish rivers. These 
samples correspond with potentially Phormidium dominated mats located along the ten rivers 
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(Ramos, 2012, Kønig, 2013, Haya, 2016, Quesada et al., 2016 and Perona et al., 2017). All 
biological samples were used in order to obtain the largest dataset possible, which in turn will provide 
a more accurate inference diagram. Figure 6 shows the geographic location of these ten rivers as 
well as their sampling points in relation to each other. Parameters are outlined in Table 3. 

 
 Conductivity and pH were measured in situ using a specific portable probe for each 

parameter, as well as current velocity, depth, and light (measured using the quadrant technique 
outlined in Necchi et al., (1995). The size of the biofilm in percentage was estimated by using a 
quadrant to determine the percentage of surface area covered (Haya, 2016). Inorganic nutrients 
were measured using a Hach portable laboratory (following APHA, 2005 and methodology laid out 
in Perona et al., 1999). Mat morphology and composition were determined by a Leica Z7 
stereoscope, while the cyanobacteria taxonomy was identified using Komarek and Anagnostidis 
(2005). ANA (μg ANA/mg dw) (ANA) was measured using Receptor Binding Assays (described in 
Haya, 2016) and analyzed due to its being the most common cyanotoxin present in benthic 
populations with the presence of Phormidium spp. and being the cyanotoxin used in the limited 
legislation.  

 
Figure 6. Geographic distribution of the ten rivers with potential Phormidium mats 

 
3.2 Data Preprocessing for Creation of Bayesian Models  
 

Once the data was gathered, it was distributed into three individual excel sheets for each 
group of data: Spanish lentic systems, Mexican lentic systems, and Spanish lotic systems. 
Presence/absence data in Spanish systems was changed into a binary 1/0. These data sets were 
then uploaded to Rstudio (version 3.6.3) to perform statistical analyses. The candidate explanatory 
variables are outlined in Table 3. These variables were used to determine the relationships between 
abiotic and biotic data and the corresponding concentration of cyanotoxins, which was determined 
through linear correlation, and scatter plot smoothing. The function “ggpairs” was used in the R 
package “GGally” to analyze the linear correlation through a scatter plot matrix. The explanatory 
variables with a positive correlation coefficient show that as the independent variable changes, then 
the response variable changes in the same direction, and vice versa with negative correlation. The 
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highest the value of the correlation coefficient, then there is a stronger relationship between the two 
variables. If the value is low, then it indicates that the variables are hardly related. All r values will 
range between -1 to +1, where 0 symbolizes no relationship at all. A correlation matrix was carried 
out in order to decipher if any variables could be omitted from the BN, due to low correlation. 

 
To summarize and visualize trends between observations and variables, a Principal 

Component Analysis (PCA) was implemented through RStudio, utilizing packages “ggplot2” and 
the function “prcomp”. Analyzing these relationships, it’s possible to also distinguish if some 
variables are so correlated that they would duplicate information that is already being used to 
describe the system. To carry out BNs, it is important to reduce redundant variables as with the 
more variables included, the more data is needed in order to observe the conditional 
dependencies. Aguilera et al., (2011) affirms that increasing the number of variables will increase 
the complexity of the model, and more data is needed to calculate the probability distributions. A 
limitation of PCAs is the inability to analyze data rows with missing data. Mexican lentic systems 
were missing conductivity values from Los Berros reservoir (5 of the 65 data points), which were 
removed from the analysis. Spanish lotic systems were missing biofilm size, depth, and cv from 6 
of the 46 samples, which accounted for three entire rivers (Guadiela, Caldarés, and Brazato) being 
omitted from the Spanish lotic PCA. Scaling was used in all the datasets due to large 
discrepancies in the standard deviation of the variables due to the magnitude of units. Non-
numerical data such as light availability, month, and season were not included in the PCAs due to 
the inability for this analysis to handle numeric, binary, and categorical together.  
 

The excel sheets need to be converted into .txt data files in order to be uploaded to the free 
learning software: Genie 2.5.R4 (BayesFusion LLC). While BN can use continuous nodes or discrete 
nodes, there are more algorithms and scoring methods available for that of discrete. Furthermore, 
continuous BN have more limitations that are restrictive for structure learning as well as over the 
probability distributions. Due to these reasons, there are more traditional discrete BN in literature 
with continuous BN only being found in 4.4% of all papers using this type of statistics (Aguilera et 
al., 2011). In this project, a discrete BN was implemented, meaning discretization of the 14/19 
continuous variables (with only 5 variables being discrete: light, season, month, presence of toxic 
genera, and risk). Two approaches were taken for this process. Eleven of the 14  variables were 
discretized with unsupervised hierarchical k-means clustering, which calculates continuous 
distance-based similarity measures to group the data points together in relation to the calculated 
centers of the clusters into as many clusters as required (Dash et al., 2011). The remaining 3 
variables (MC concentration for both lentic systems, ANA concentration for the lotic system, and 
biofilm coverage %) were bounded by thresholds found in legislation and recommended worldwide 
guidelines suggested by WHO. MC concentration was discretized based on WHO standards for low, 
moderate, and high risk of human health problems after recreational exposure, as well as the 
guideline for drinking water. However, due to the frequency of samples in both systems under the 
standard of 1 μg/L, both systems were discretized into three more intervals for the sake of sensitivity. 
ANA was bounded by legislation for benthic populations in New Zealand drinking water, and biofilm 
% was discretized based on recreational legislation in Cuba and New Zealand (Ibelings et al., 2014).  
All ranges for continuous and discrete variables used in each of the three BN are listed in Annex 1. 
Additionally, ChlaTotal was not discretized based on literature, due to quantitatively assessing the 
cause and effect between predictors of blooms and actual concentrations. In general, the more 
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discretization bands there are, the smaller the error. In this paper, six discrete bins were used, as 
this led to the highest score of all the networks tried but was still small enough to fit the data.  

 
Originally, only 80% of the dataset was used for the creation of the BN, removing 20% in 

Rstudio through the function “sample” for a validation method called Train and Test Cross Validation 
(Rigosi et al., 2015). However, in Aguilera et al., (2011), it was stated that an estimated model should 
be learned with the complete dataset even if the Train and Test validation method is used, especially 
if the end goal is user friendly application. This is so that the model is as accurate as possible, which 
is done by using the most amount of data available. Data division was carried out at the end in order 
to validate the model.  
 
 The final step of preprocessing the data is to distinguish if any of the datasets contain missing 
values. Although there are some learning algorithms that can handle missing information 
(Expectation Maximization algorithm), most traditional statistical techniques for learning BN cannot 
deal with. In Aguilera et al., (2011), it is reported that only 9.6% of all BNs constructed in the literature 
review were able to function with missing values. The software (Genie) implemented for this project 
was not able to handle missing data, and offered three choices for correction: 1) delete the rows 
with missing data, 2) replace with a specified value, or 3) replace with the average value of the entire 
column. Out of the three datasets, two were missing data, which were Mexican lentic systems, and 
Spanish lotic systems. Due to the lack of data and the effort to retain all data available, option 3 was 
utilized. Mexican lentic systems were missing conductivity values (5 cells) for Los Berros reservoir 
in the State of Mexico, and a value of 0.91 was used to replace these cells. Spanish lotic systems 
were missing biofilm size, depth, and current velocity for six rivers: one point on Mediano river, one 
point on Manzanares river, Jarama river, Guadiela river, Caldarés river, and Brazato river. The 
values used to replace the missing information was 47%, 10.08 cm, and 0.25 m/s respectively. The 
choice to replace the data instead of deleting the rows was made due to the fact that Jarama, 
Guadiela, Caldarés, and Brazato rivers only consisted of one data row, and if this was removed then 
the BN would lose 40% of the river diversity, significantly weakening the model. Data preprocessing 
is a vital step for the success of an accurate BN.  
  
3.3 Creation of Bayesian Models and Statistical Analysis  
 
 The goal of a BN is to determine the posterior conditional probability distribution of all the 
possible unobserved outcomes given observed evidence. As mentioned before, BN can be learned 
through data-driven processes or through expert knowledge. To learn the structure there are several 
learning algorithms that can be used on discrete variables, and these are usually broken down into 
two main categories: constraint-based algorithms (such as Grow-Shrink) or score-based algorithms. 
Score-based algorithms maximize a heuristic search algorithm, which can help identify the network 
with the highest probability distribution (the best network maximizes the posterior probability). Genie 
makes use of a few learning algorithms, but this project used “Bayesian Search” which is a score-
based algorithm that uses hill climbing procedure that applies log-likelihood scores. Arcs are scored 
by using the BDe score for the prior link probability.  
 
 Of the three networks, only the Spanish lentic system was able to be derived completely 
from data. Mexican lentic systems and Spanish lotic systems both had arcs that were forced through 
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the background knowledge option. These connections were determined through analytical analysis 
and through literature reviews (Noges et al., 2010, Huber et al., 2012, Wagner and Adrian, 2009, 
Pawlik-Skowrońska and Toporowska, 2016, Rigosi et al., 2015). Ten of the 12 arcs in Mexican lentic 
system were forced out of 9 nodes.  Six out of 13 arcs in Spanish lotic systems were coerced out of 
the 11 nodes. More arcs were needed to be forced in the Mexican dataset due to having the least 
amount of different water bodies, which caused the data to be too similar to see a clear conditional 
dependency.  
 
 The final stage of the creation of a network is the evaluation of the predictive ability through 
validation, scenario analysis, and sensitivity analyses. Each network was tested for their predictive 
performance by using a random 20% of the data points to assess the Correctly Classified Instances 
or CCI. Generally, a model can be considered ‘good’ if it has a CCI of at least 0.7 (Shan et al., 2019). 
CCI is calculated by dividing true positives and true negatives by all true positives, true negatives, 
false positives, and false negatives. Next, a sensitivity analysis was carried out on the end node (or 
goal node) to determine which factors affected the concentration of cyanotoxin the most. This 
technique validates the probability parameters of the BN. It is done by analyzing the effect of small 
changes in inputs on the output parameters (or the posterior probability) (BayesFusion, 2020). This 
is done in Genie by setting “target nodes” which in this case is the cyanotoxin concentration and 
presence/absence of toxic genre. Then an algorithm proposed by Kjaerulff and Van Der Gaag 
(2000) calculates a set of derivatives of the posterior probability distribution of the target nodes over 
each of the input parameters. If the derivative is large for the parameters, then small changes can 
give rise to a large change in the posterior distribution of the target, and vice versa (BayesFusion, 
2020). This analysis then generates nodal percentages which can be compared within the same 
network to indicate which parameters have the greatest effect on the target node. As Wang, 2006 
claims, it is an elicitation process that can help rid of parameters that do not affect the target node 
and shows the most influential which will cut down on costs and increase accuracy. More accurate 
values of targeted probability parameters can be obtained by refining the BN to only contain 
influential parameters, and after performing the sensitivity analysis, more attention can be focused 
on the probabilities in which the network’s behavior exhibits highest sensitivity. The uninfluential 
variables can have fewer discretization intervals with more rudimentary estimates (Wang, 2006). 
Validation of the model is an important step, although in the literature review done by Aguilera et al., 
(2011), 37.7% of models have no validation technique. For a model to be used for inference or 
predictability, validation is crucial. Finally, potential scenarios are run to establish possible future 
events and how cyanotoxin probability changes. The pertinent steps necessary for the construction 
of a BN is shown in Figure 7. 
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Figure 7. Flowchart of steps necessary for the creation of a BN for gauging the relationship between 

predictors/indicators of cyanotoxins and cyanotoxin concentration by knowledge-based BN and Data-driven BN 
 
.  

4.  Results  
 
4.1 Physicochemical and Biological Characteristics of Water Bodies in Spain and Mexico   
 
 The physical, chemical, and biological variable ranges are outlined in Table 4. This table 
also shows the average value of each sample, as shown in the parenthesis. The only parameters 
that were present in all of the three datasets were nitrates (NO3

- mg/L) and phosphates (PO4
3- mg/L). 

Spanish lentic systems had the highest maximum value of nitrates (9.5 mg/L), and the highest mean 
value as well (0.8 mg/L). Mexican lentic systems had the highest maximum value for the phosphate 
range (14 mg/L), and highest average value (6.02 mg/L). Mexican lentic systems and Spanish lotic 
systems had two more comparable parameters: pH and conductivity. The pH in Mexican systems 
was more alkaline than in Spanish lotic systems, with also a higher minimum, maximum, and 
average values of conductivity.  
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Table 4. Maximum and minimum values of all numerical parameters used in BN for each dataset. Values in parenthesis 
are the mean value  

Variables  Spanish Reservoirs 
and Lakes 

Mexican Reservoirs 
and Lakes 

Spanish Rivers 

Nitrate (NO3- mg/L) 0.0 - 9.5 (0.8) 0.01 - 1.5 (0.59) 0.08 - 3.1 (0.36) 

Phosphate (PO43- mg/L) 0.0 - 4.04 (0.18) 0.003 - 14.00 (6.02) 0.002 - 0.08 (0.038) 

Chla Total (μg/L) 0.2 - 178.8 (9.6)   

Chla Cyano (μg/L) 0.0 - 89.7 (3.9)   

Maximum Dominance of 
Cyanobacteria (%) 

0.0 - 95 (28)   

Conductivity μS/cm  139 - 4400 (900) 105 - 1369 (106)  

pH  6.8 - 11.00 (9.05) 5.5 - 8.4 (7.0) 

Current Velocity (m/s)   0.0 - 1.52 (0.2) 

Biofilm size %   5.0 - 100 (47) 

Depth (cm)   0.0 - 34.9 (10.1) 

Temperature (oC)  14.8 - 24.4 (20.1)  

Dissolved Oxygen (mg/L)  1.4 - 18.3 (6.7)  

Microcystins (μg/L) 0.0 - 123.6 (1.4) 0.0 - 12 (1.3)  

Anatoxin-a (μg ANA/mg dw)    0.0 - 38.8 (2.9) 

 
 
 MC concentration was measured in the two lentic systems, with only ANA being measured 
in lotic systems. Between the two systems that had MCs, Spanish lentic systems had an overall 
higher maximum of 123.66 μg/L, but the two averages are comparably the same with 1.4 μg/L 
(Spanish lentic systems) and 1.3 μg/L (Mexican lentic systems). Furthermore, only 13 of the 88 
sampled sites in Spanish reservoirs and lakes tested any concentration of MC at all, and only 2 of 
those exceeding the drinking water guideline of 1.0 μg/L. Only one site tested MC levels over the 
recommended WHO recreational threshold for high risk (20 μg/L), with the rest being classified as 
low risk. Fifty of the 65 Mexican reservoirs and lakes gathered in the literature review had MC 
concentration, with 26 of those surpassing the recommended drinking water guideline. However, 
only one site surpassed the WHO recreational guidelines for low risk (10 μg/L) and would be 
classified as moderate risk. It should be kept in mind that the literature review was conducted on 
articles that records of MC concentrations, as this was the goal. ANA in Spanish lotic systems had 
a maximum value of 38.8 μg ANA/mg dw that was found in autumn in the Escabas river.  
 
 Risk of proliferation in Spanish lentic systems, classified based on Spanish legislation, 
consisted of 18 of 88 (20.5%) samples being classified as low, 46 (52.3%) being classified as 
moderate, and 24 are classified as high risk (27.3%). As stated before, neither Mexican recreational 
waters nor Spanish lotic systems have official legislation related to risk.  
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4.2 Statistical Relationships Amongst Environmental Factors, Cyanotoxin Concentration, and 
Presence of Toxic Genera 
 
 Linear regression models were carried out to determine the most significant explanatory 
variables for predicting cyanotoxin concentration, which could then be implemented in the 
knowledge-based BN (Mexican lentic and Spanish lotic). All linear correlation coefficients for the 
pairs are shown in the upper right panels of Figures 8, 11, and 14, while scatterplots with linear 
regression are displayed in the lower left-hand panels.  
 
4.2.1 Statistical Analysis of Spanish Lentic Systems  

 
 Figure 8 outlines the correlation coefficients for all pairs in the dataset referring to Spanish 
lentic systems. The explanatory variables with the highest linear correlation with concentration of 
MC were ChlaTotal (r = 0.85), and ChlaCyano (r = 0.78). The variable with the lowest correlation 
was PO4

3- (r = 0.007), with the second lowest being the other nutrient indicator of NO3
- (r = - 0.067) 

with a negative correlation. Although the two nutrients had a smaller linear correlation with MC than 
the rest of the parameters, the scatterplots showed a stronger non-linear increase in MC at low 
levels of PO4

3- and NO3
-.   

 
Figure 8. Correlation analysis of possible variables for BN, with regards to variables of interest being MC and 

presence/absence of toxic genera. Upper panel corresponds to the correlation coefficient (r) of each pair, values with the 
highest correlation are marked with three stars. The lower panel shows the linear regression curve of the scatter plot. 
Abbreviations are as follows: MC (microcystin), Maxdom (Maximum dominance of cyanobacteria), ChlaTotal (Total 
Chlorophyll a), ChlaCyano (Chlorophyll a from cyanobacteria), PO4 (Soluble reactive phosphorus), NO3 (Nitrates), 

P/AToxic (Presence or absence of toxic genus). 
 
The variables with the highest correlation with the presence or absence of toxic genus 

(another goal node) was maximum dominance of cyanobacteria (r = 0.676), and ChlaCyano (r = 
0.362). Therefore, the most predictive variables for MC concentration are ChlaTotal, and 
ChlaCyano, with a slightly higher correlation with NO3

- (r = -0.067) than PO4
3- (r = 0.007). 
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Additionally, the possible set of predictor factors for presence or absence of toxic genus would be 
maximum dominance of cyanobacteria, and ChlaCyano.  

 
The dominant environmental variables that describe each sampling point for Spanish lentic 

systems were then analyzed by a PCA (Annex 3). The groups were classified based on risk of 
cyanobacterial proliferation (classified by the Spanish decision tree outlined in Figure 2), as low, 
moderate, and high risk. About 65% of the variance of the sampling sites can be explained by Annex 
3. The First Principal Component (PC1) is associated with MC concentration, ChlaTotal, ChlaCyano, 
Maximum dominance, and Presence of toxic genus which describes the variability between the 
sampling sites the most. This can also be described as PC1 is related with the biological indicators, 
and also shows that a majority of the high risk sites are connected with these indicators. Low and 
moderate risk sites are located along PC2 which is an indicator of nutrient overloading. PC2 also 
indicates the negative correlation between nitrates and the presence of toxic genera, while 
phosphates are positively correlated. From the positioning of the loadings, it can be determined that 
all variables give information about the variability of the sampling sites and are not considered 
redundant. 
 
4.2.1.1 Spanish Lentic Bayesian Network  

 Spanish lentic BN was data-derived, solely from the data of 88 sampling points throughout 
the various lentic systems. The discrete probability distributions in the CPTs were calculated for 
each node; Table 5 outlines the CPT for the target node of MC. The CPT of each node was 
calculated by the frequency distribution of the variable across each state of the parent node. For 
example, for MC concentration to be at its lowest value of below 0.01 μg/L with a parent node of 
ChlaTotal given a state of below 5 μg/L, the probability value of 0.91 is calculated by taking the 
count of observed values of MC in the interval ChlaTotal under 5 μg/L (56), and dividing by the total 
number of observations of ChlaTotal >5 μg/L (61) which the probability can be written as 56/61 = 
0.91 (shown in the upper left-hand cell in Table 5). This also follows Equations 1 and 2 from section 
1.4. Of the data samples for Spanish lentic sites, 86.4% fell in the range of 0 - 0.01 μgMC/L, 11.4% 
in 0.01 - 1 μgMC/L, 1.14% in 1 - 10 μgMC/L, 0% in 10 - 20 μgMC/L,, and 1.14% >20 μgMC/L. 

Table 5. Conditional Probability Table for the node of interest “Microcystins”. Each column represents the probability distribution of MC 
based on the given states of the parent node ChlaTotal. ChlaTotal = Chlorophyll a Total, MC = Microcystin 

ChlaTotal (μg/L) below 5 b 5 to 10 b 10 to 20 b 20 to 44 b 44 to 100 above 100 

MC concentration (μg/L)  

below 0.01 0.91 0.90 0.65 0.62 0.39 0.083 

b 0.01 to 0.4 0.083 0.018 0.02 0.12 0.39 0.083 

b 0.4 to 1.0  0.002 0.018 0.27 0.12 0.05 0.083 

b 1.0 to 10  0.002 0.018 0.02 0.12 0.06 0.083 

b 10 to 20  0.002 0.018 0.02 0.01 0.06 0.083 

above 20  0.002 0.018 0.02 0.01 0.05 0.58 
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 The BN developed for this system is outlined in Figure 9.  The best score in 19 iterations 
was -718.544, which was increased as the intervals went from three to six. The Log Likelihood was 
at -476.906, which is better (larger) than the others (Clauset, 2011). It should be noted however, 
that the larger the number of parameters, the more flexible and complex the model will be, but also 
the likelihood assigned will be lower. However, this was the best score of all the discretization 
attempts while keeping a degree of sensitivity and of the heuristic searching for the network. In all 
possible models found, nitrates were the child node of ChlaTotal, and phosphate the child node of 
ChlaCyano. Maximum dominance was always connected to the presence of toxic genus, although 
sometimes as the parent and sometimes as the child. Risk was always the child node of MC and 
ChlaTotal. No background knowledge was used to develop the outline of the model.  

The arrows in Figure 9 show the strength of influence between the nodes. The thicker arrows 
represent a stronger influence connection, where all influences are calculated from the CPT of the 
child node, and basically shows the distance between the conditional probability distributions of the 
child node depending on the state of the parent. It’s calculated using average Euclidean distance 
(Genie, 2020). The strongest connections are between the node of interest (MC) and ChlaCyano 
(0.48) and ChlaTotal (0.43). The third highest strength of influence is between ChlaCyano and PO4

3- 
(0.41).  

 A BN is run for prediction or inference of a node of interest by changing the probability 
distribution of one or more of the nodes. This will then update all the probability distributions of all 
the nodes that are linked through their CPTs. This is normally done by setting evidence of one of 
the parent nodes, which will then show 100 % probability, as there is a 100% probability of being in 
the state if it is set accordingly. Two “what-if” scenarios were carried out to portray the combined 
effects of low-cost parameters of ChlaTotal and ChlaCyano on the concentration of MC and whether 
toxic genera are present. Two examples are outlined in Figure 9: a) using WHO low risk 
recommended thresholds for ChlaTotal <10 μg/L and the lowest interval of ChlaCyano <4.8 μg/L 
and b) using the next discrete interval higher than the previous model to analyze changes in MC.  
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Figure 9. BN model structure for MC concentrations, Risk, and presence/absence of toxic genus (PresenceofToxic) in 
88 sampling sites throughout Spain. The node states consist of the either below: meaning less than, b __ to ___ : 
meaning between a value to another value, or above: meaning more than. Decimals are replaced by underscores as 
demanded by the software (example: 4.8 is 4_8 in the model). Screenshots of scenarios a) WHO low risk thresholds for 
ChlaTotal b) WHO moderate risk thresholds for ChlaTotal 

 The WHO thresholds for low risk represented in Figure 9a give a 98% probability of having 
0 - 0.01 μg/L and a 68% probability of the absence of any toxic genera. According to the Spanish 
risk assessment decision tree, this would qualify as moderate risk which contradicts the WHO 
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guidelines. Increasing the discrete range by one bin, and therefore progressing into the WHO 
moderate risk thresholds, the MC concentration probability range increases to 0.4 - 1 μg/L with a 
probability of 88%, with a 76% probability of having toxic genera present. The MC range still falls 
within low risk parameters for MC according to WHO, although is categorized as high risk by the 
Spanish decision tree. This MC range is still considered potable under Spanish legislation. In 
addition, it can be seen that when ChlaCyano increases, phosphate concentration as well as 
Maxdom also increase.  

4.2.1.2 Validation of Spanish Lentic Bayesian Networks  
 
 Sensitivity analysis leads to the conclusion if it is pertinent to acquire more accurate 
estimates for the probabilities. The sensitivity analysis for Spanish lentic BN is shown in Figure 10.  
 

 
Figure 10. Sensitivity Analysis of Spanish Lentic system BN, darker red indicating stronger influence 

 
 The sensitivity analysis was performed on the two target nodes: presence of toxic genera 
and on concentration of MCs. Risk was overlooked due to the aim of this project to suggest new 
quantitative thresholds for risk assessment. The darker red nodes represent the more influential 
parameters and are important for the calculation of the posterior probability distribution of the target 
node (where a small change will cause a larger shift in the target node), and the lighter the color red 
gets, the less influential the node. Gray symbolizes a lack of sensitivity altogether, or that they are 
not used in the calculation of the target node.  As has been shown in each analysis, nitrates and 
phosphates were not influential on MC or the presence of toxic genera. ChlaCyano is also one of 
the least influential due to the direction of the arc between MC and ChlaCyano. The average 
sensitivity coefficient (calculated on each of the target nodes CPT) for MC was 0.02, maximum was 
0.8 which was for ChlaTotal parent state of >5 μg/L and a minimum of 0. While for presence of toxic 
genera average was 0.014, maximum was 0.35 which is for parent states of Maxdom between 7% 
to 27% and ChlaCyano under 4.8 μg/L, and the minimum of 0. Altogether, MC’s conditional 
probabilities were more sensitive to small changes in the parameters than presence of toxic genera, 
and ChlaTotal was the parameter that most affected MC concentration probability. For elicitation 
purposes, the strongest predictors of MC concentration and presence of toxic genera is ChlaTotal, 
ChlaCyano, and Maxdom. Phosphates and nitrates more strongly correlate with concentrations of 
chlorophyll. If both chlorophyll concentrations are known, nutrients can be removed from the model. 
However, to predict biological parameters they should be kept in the model.   
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 The last validation of the model for evaluation of predictive performance is CCI. Due to a 
limited data set, the model was made with the entire data set, as outlined in Aguilera et al., (2011). 
However, 20% of the dataset was used for verification of the mode. A validation scenario was 
considered “accurate” if the MC concentration, risk, and presence of toxic genera had the highest 
posterior probabilities in the correct discretization range. Seventeen of the 88 data sets were used 
for testing the model. Five of these seventeen had one of the three end nodes predicted incorrectly 
(as in it predicted a value that was different than the observed value in the dataset), but never all 
three at once. Table 6 outlines which parameters were predicted incorrectly by the model at each 
station, with the model giving a different value than was measured. The CCI for this model was 0.70, 
which corresponds to the value outlined in Shan et al., (2019) as considered a good model. In 
Embalse Encinarejo, the BN predicted a range of 1 - 10 μg/L for MC, when in reality the system had 
0.0 μg/L. However, CYN was also measured in the dataset (although not used in the BN for 
comparability with Mexican lentic systems and with WHO recommended thresholds) and measured 

3.5 μg/L CYN in this reservoir. 
Presence of toxic genera had less 
accuracy predicting when 
presence of a toxic genera when 
Maxdom was not input. Risk was 

always classified incorrectly in the 
testing dataset when the risk was 
low, but 100% correct with 
high/moderate risk.  
 
4.2.2 Statistical Analysis of Mexican 
Lentic Systems  

 
 The variables found in a literature review for Mexican lentic systems is outlined in Table 4. 
A linear correlation scatter plot (Figure 11) for the 65 data points showed that the explanatory 
variables with the highest correlation with MC (μg/L) concentration were temperature (r = 0.19), NO3

- 
(r = 0.09) and conductivity (r = 0.07). However, the scatterplots showed a strong nonlinear increase 
in MC with high levels of conductivity and with low levels of DO, despite having smaller linear 
correlation with MC than temperature, and NO3

-, and in the case of DO, smaller than PO4
3- (r = 0.06). 

Comparatively, these correlations are relatively low, as the maximum can be 1.0. Therefore, this BN 
was knowledge-based instead of data-driven, with two arcs learned from data. The correlation matrix 
was taken into account while giving background knowledge, connecting the arcs based on linear 
and nonlinear correlation as well as a literature review. For example, the highest correlation through 
the entire matrix is the linear correlation between conductivity and temperature (r = 0.4), and 
temperature with PO4

3- (r = -0.38). Therefore connecting temperature and PO4
3- with conductivity in 

the BN will allow information to be translated through CPTs to the end node of MC. Due to the low 
levels of correlation, it does not make sense to revise the possible set of predictor values and 
therefore based on this analysis all parameters were left in the dataset.  
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Figure 11. Figure 5. Correlation analysis of possible variables for Mexican Lentic BN, with regards to variables of 

interest being MC. Upper panel corresponds to the correlation coefficient (r) of each pair. The lower panel shows the 
linear regression curve of the scatter plot. Abbreviations are as follows: MC (microcystin), PO4 = phosphates, NO3 = 

nitrates, DO = dissolved oxygen, Temp. = temperature (oC), Cond. = conductivity  
 

The eight lentic systems used to create the Mexican BN are grouped in the PCA (Annex 4). 
The systems are grouped together based on which lentic system they came from, and in the case 
of Lake Zumpango which sampling site. Only 47% of the variance of the systems can be described 
by the first two PCs, which is relatively low for recognizing patterns. PC1 is most associated with 
temperature, PO4

3- , and conductivity meaning these three variables describe 28.3% of the variability 
of the systems. PC2 is related to NO3

-, and DO, meaning these two variables make up 19% of the 
total variance of the system. This analysis shows none of the variables are redundant and therefore 
all would be beneficial to include. 

 
- 

4.2.2.1 Mexican Lentic Systems BN  

   Similar to the Spanish lentic system, each node has an associated CPT table which lays out 
the discrete probability distributions across the states of the two parent nodes, DO and conductivity. 
Table 7 portrays the first 12 rows of the node of interest MC. The entire CPT contains 36 rows, due 
to having two parent nodes each with six discrete intervals. The CPT is calculated from Equations 
1 and 2 from section 1.4. 
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Table 7. Conditional Probability Table for the node of interest “Microcystins”. Each column represents the probability 
distribution of MC based on the given states of the parent nodes dissolved oxygen and conductivity. Abbreviations are 

DO = dissolved oxygen, Cond = Conductivity. 

DO below 4.3 mg/L between 4.3 to 6.4 mg/L 

Cond 
mS/cm 

<0.3 0.3 - 
0.8 

0.8 - 
1.3 

1.3 - 
2.1 

2.1 - 
3.5 

>3.5 <0.3 0.3 - 
0.8 

0.8 - 
1.3 

1.3 - 
2.1 

2.1 - 3.5 >3.5 

MC μg/L 

<1.0 0.6 0.57 0.8 0.1 0.6 0.2 0.4 0.47 0.55 0.6 0.73 0.1 

1 - 4 0.1 0.35 0.05 0.6 0.1 0.2 0.4 0.32 0.3 0.1 0.06 0.6 

4 - 6.8 0.1 0.02 0.05 0.1 0.1 0.2 0.06 0.01 0.05 0.1 0.06 0.1 

6.8 - 10 0.1 0.02 0.05 0.1 0.1 0.2 0.06 0.09 0.05 0.1 0.06 0.1 

>10 0.1 0.02 0.05 0.1 0.1 0.2 0.06 0.09 0.05 0.1 0.06 0.1 

 

The BN found for Mexican Lentic systems is displayed in Figure 12. The software ran 18 
iterations, with the best score being -992.92, with a log likelihood score of -643.9. The model was 
run on 65 samples, with a link probability of 0.1 and a prior link probability of 0.001. These scores 
are higher than Spanish lentic systems due to the increased number of parameters. The strength of 
the influence is outlined by the thickness of the arcs. This strength is important to see for modifying 
parameters and for the testing phase. It is calculated from the CPT of the child node (conditional on 
the parent node’s state) using average Euclidean distance. The strongest connection is between 
month and season (0.68), with the second strongest being between conductivity and pH (0.46). The 
strength between the parent nodes (conductivity and DO) and the end node of interest (MC) is 0.23 
and 0.22 respectively, having a maximum possible value of 1. MC was discretized into five 
categories due to the distribution of the data, and five intervals led to a better log likelihood score.  

Two “what if” scenarios were run to observe the predictive ability of the model, or the 
predicted probability distributions based on potential future events. Figure 12 illustrates the 
relationship between the concentration of MC based on the effects of stressors of cyanoHAB. 
Evidence was set by inputting the cost-effective variables that are able to be measured by a single 
probe (for example then H198199 Hanna meter). The month of July was set for each situation, as 
well as two scenarios a) temperature (19.6 - 22.4 oC) and conductivity at it;s lowest interval <0.3 
mS/cm and b) both parameters are increased to the next highest discretization bin which is 
temperature >22.4oC and conductivity 0.3 - 0.8 mS/cm. 
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Figure 12. BN model structure for predictive MC concentrations for 9 lentic systems in Mexico. The node states consist 
of the either below: meaning less than, b __ to ___ : meaning between a value to another value, or above: meaning 

more than. Decimals are replaced by underscores as demanded by the software (example: 2.2 is 2_2 in the model). The 
thicker arrows show the strength of influence between nodes.. Screenshots of dynamic scenario a) warm water temp 

with low conductivity b) highest water temp with next highest conductivity 

 The predicted probability distribution for MC in Figure 12a shows that with colder summer 
weather and lowest conductivity, there's a 54% probability of having MC concentrations within the 
WHO recommended threshold for low risk, and within the range for potability (<1 μg MC/L). When 
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temperature and conductivity increase the probability distribution of MC shifts from 54% to 45% 
probability of being <1 μg/L, while the predicted probability distribution of MC from 1 -4 μg/L (WHO 
recommended low risk) increases from 19% to 43% showing the combination of high conductivity 
and high water temperature was linked to higher levels of MC. This has been studied extensively in 
literature, with the results supporting each other. High conductivity has been said to be related to 
persistent low flow conditions, whereas DO can be an indicator of photosynthetic rates, 
eutrophication or even of past algal blooms.   

4.2.2.2 Validation of the Bayesian Network for Mexican Lentic Systems  
 
 A sensitivity analysis was performed to validate and evaluate the Mexican lentic systems BN 
by analyzing how small changes in the explanatory parameters can affect the target probability of 
interest (or the conditional probabilities). The end node of the cyanotoxin μg/L MC was identified as 
the “target node” and the parameters that most affect the CPT are highlighted in darker red. As the 
red becomes lighter, those parameters affect the posterior probabilities of MC less (Figure 13). The 
sensitivity coefficient of MC was lower than its Spanish counterpart at an average of 0.006 and a 
maximum of 0.08 (in the CPT of DO 6.4 - 9 mg/L and conductivity being 0.3 - 0.8 mS/cm). This 
indicates that the conditional probabilities of MC are not affected greatly by small changes in the 
input variables but of the parameters, MC concentration is more sensitive to small changes in DO. 
Conductivity, pH, and temperature were comparatively similar in the degree of which they affected 
MC. Lastly, nutrients PO4

3- and NO3
- and month were the last parameters to have moderate effect 

of MC, with season being the least influential. Based on these results, for elicitation from a sensitivity 
analysis, season could be removed from the BN.  

 
Figure 13. Mexican Lentic BN sensitivity analysis. Dark red implies greater sensitivity on the target node, with lighter 

colors meaning less.  
 
 To verify the predictive qualities of the model, and to ensure optimal structure, a CCI was 
performed on 20% of the 65 data points from Mexican lentic systems (13 samples). Input evidence 
was set for each node, with the only parameter being inferred being MC μg/L. Twelve of the 13 
testing sites were predicted accurately. The misclassified site, Lake Zumpango in October, had the 
highest concentration of MC out of the entire data set with 12 μg/L, which was misclassified to the 
interval 1.0 - 4.0 μg/L (48% probability). The network was relatively better at predicting lower 
amounts of MC rather than high concentrations. The CCI was calculated at 0.92, which would be 
considered a good model according to Shan et al., (2019).  
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4.2.3 Statistical Analysis of Spanish Lotic Systems  
 
 Due to a limited amount of data to yield a data-based BN for Spanish lotic systems, a 
correlation matrix was implemented on the key explanatory variables for cyanobacteria (Figure 14) 
to determine diagnostic relationships between the variables. The parameters with the highest linear 
correlation with concentration of ANA were DIN (r = 0.63) and conductivity (r = 0.45). 
Presence/absence of the biosynthetic gene cluster for ANA-producing cyanobacteria known as ANA 
also considered as an end node, as this can tell the potential of ANA production. The variables most 
correlated with the presence of the gene were biofilm size (r = 0.35), depth (r = - 0.27) and DIN (r = 
0.21). There were no non-linear relationships found. All variables appear to have relatively strong 
correlation with other variables, or the variables of interest, and therefore the revised variable set of 
predictive parameters for the lotic BN included all.  

 
Figure 14. Correlation matrix for exploratory analysis of variables for the BN for Spanish lotic systems, with emphasis on 
variables of interest being P/A ANAF, and concentration of ANA. Upper panel corresponds to the correlation coefficient 

(r) of each pair. The lower panel shows the linear regression curve of the scatter plot. Abbreviations are as follows: Cond 
= conductivity, P-PO43- = Soluble reactive phosphorus, DIN = dissolved inorganic nitrogen, Film % = Biofilm %, CV = 

Current velocity, P/A ANAF = Presence/absence of ANA 
 

 A PCA was carried out to look for redundancy in the data, to decrease the number of 
variables in the BN due to the lower quantity of data. The first two PCs accounted for 48.75% of the 
variance of the seven rivers. The first PC was dominated by DIN, conductivity, and concentration of 
ANA. The second PC was most associated with depth, presence/absence of ANAF, and biofilm 
size.  According to the PCA, depth and CV overlap in describing the variance of the data, with depth 
being moderately more significant due to a longer arrow, and therefore one could be removed from 
the dataset without losing too much data. Furthermore, pH was not important in the first two PC 
structure creations describing the systems, and therefore removing this parameter could be 
considered for elicitation sake. 
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4.2.3.1 Bayesian Network for Spanish Lotic Systems  

 Spanish lotic system was a hybrid network, created by using background knowledge for six 
arcs, and the remaining eight arcs were determined through data. The CPT of the final end node 
ANA µgANA/mg dw is outlined in Table 8. This outlines the first 12 columns (out of 36) of the 
probabilistic dependencies between the child node and the two parent nodes: conductivity and DIN. 
This table is needed to run the model, and will calculate the probability distribution, given the states 
of the parents.  

Table 8. Examples of Conditional Probability Table for end node Anatoxin-a µgANA/mg dw. Each column 
expresses the probability distribution of the child node given certain states of the parent nodes. The table contains the 

first 12 columns / out of 36 

Cond. <105 μS/cm between 105 - 273 μS/cm 

DIN 
(mg/L) 

<0.14 1.4 - 
0.22 

0.22 - 
0.35 

0.35 - 
0.63 

0.63 - 
1.9 

>1,9 ,<0.14 1.4 - 
0.22 

0.22 - 
0.35 

0.35 - 
0.63 

0.63 - 
1.9 

>1.9 

[ANAF] µgANA/mg dw 

<1.0 0.74 0.17 0.94 0.07 0.16 0.16 0.69 0.08 0.93 0.82 0.16 0.16 

1 - 3 0.16 0.4 0.01 0.01 0.16 0.16 0.19 0.08 0.01 0.01 0.16 0.16 

3 - 6 0.02 0.02 0.02 0.82 0.16 0.16 0.02 0.08 0.01 0.07 0.16 0.16 

6 - 17 0.02 0.02 0.01 0.01 0.17 0.17 0.02 0.58 0.01 0.01 0.17 0.17 

17 - 27 0.02 0.35 0.01 0.01 0.17 0.17 0.02 0.09 0.01 0.01 0.17 0.17 

>27 0.02 0.02 0.01 0.07 0.16 0.16 0.02 0.08 0.01 0.07 0.16 0.16 

  

The Spanish lotic system BN (Figure 15) had a score of -706.66 which was the best score 
out of 18 iterations performed. The log likelihood was -391.6. The link probability between nodes is 
0.1, with the prior link probability being 0.001. The strongest connection of influence is between the 
node season and DIN with a value of 0.47, and the second strongest being season with SRP (0.46), 
and pH with DIN (0.43).The strength of influence on the end nodes ANA µgANA/mg dw were lower 
than the previous BN target nodes with a value of 0.19 (conductivity with ANA), and 0.17 (DIN with 
ANA). The presence of ANA had a slightly stronger influence with 0.25.  

  Two “what-if” scenarios were run to test the predictive ability of the BN for evaluation. 
Evidence was set (100% probability of seeing the value because set) based on the parameters with 
the most influence, and parameters that increase as eutrophication increases. DIN and conductivity 
were both placed at the a) lowest intervals to represent pristine waters and b) highest intervals 
representing pollution to gauge the effect on the remaining variables. 
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Figure 15. BN model structure for predictive ANA concentrations for 10 rivers in Spain. The node states consist of the 
either below: meaning less than, b __ to ___ : meaning between a value to another value, or above: meaning more than. 
The thicker arrows show the strength of influence between nodes. Screenshots of what-if scenarios eutrophication 
predictors conductivity and DIN evidence being set a) lowest intervals b) The highest discretization levels were set 
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Figure 15a shows the posterior probability of ANA being 74% of having a concentration <1 
µgANA/mg dw, with a 38% probability of having biofilm size  <50%, and a 52% probability of 
having CV between 0.2 - 0.5 m/s. Figure 15b portrayed more eutrophicated waters where the 
posterior probability of ANA increased from <1  µgANA/mg dw to a 58% probability of being >27  
µgANA/mg dw. CV also decreased in speed to a probability of 64% being <0.2 m/s, and the 
highest biofilm probability being between 50 - 57% in size.  Although there is no proposed 
legislation for recreational waters for ANAF concentration, this value can be considered high due 
to being substantially over the recommended drinking water threshold of 6 µg/L. Moreover, the 
benthic recommended guidelines for biofilm state that above 50% is high risk for recreational 
waters, in conjunction with river flow. In addition, if the evidence is reset as only the CV node in 
the fastest interval (>1.2 m/s), the posterior probability of ANA decreases from 27 µgANA/mg dw 
(58%) to below 1.0 µgANA/mg dw (32%). 

4.2.3.2 Validation of Spanish Lotic System Bayesian Network  

 To perform the sensitivity analysis, the presence of ANA and ANA µgANA/mg dw were 
selected as target nodes. The sensitivity coefficients were 0.08, and 0.005 respectively. Based on 
the CPT of ANA µgANA/mg dw, the node is most sensitive to changes in conductivity, specifically 
in the ranges of 9.8 - 170 µS/cm and DIN below 0.63 mg/L. The analysis is outlined in Figure 16. 
The darker red nodes represent parameters that affect the target nodes more intensely (small 
changes leading to different posterior probabilities), which are season, CV, and conductivity in terms 
of Spanish lotic systems. DIN is the second, along with SRP and pH. Biofilm size and depth are the 
least sensitive, although this could be due to the structure of the BN, as usually biofilm is quoted for 
risk of benthic populations. Based on these results, the only parameter that could be removed for 
elicitation is light, however since this is an easy variable to measure, it was kept as a part of the BN.   

 
Figure 16. Sensitivity analysis of Spanish lotic systems BN: darker red indicates more influence of node of interest, 

lighter is less 
 
 Lastly, 10 sites out of the 46 data points were used to calculate CCI (20% of the data). Two 
parameters were used in order to classify the site as “correct” which were ANAF µgANA/mg dw and 
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presence of ANA. Eight of the 10 sites were completely categorized correctly. Of the two incorrectly 
identified sites, neither were completely incorrect. The first site in the Mediano river correctly 
predicted the presence of ANA while incorrectly placing the concentration as 1 - 3 µgANA/mg dw, 
when it was 3.8 µgANA/mg dw. The second site also in the Mediano river correctly predicted the 
concentration of ANAF as 0 µgANA/mg dw, but incorrectly classified the system as having ANA 
present. The Spanish lotic system was moderately better at correctly predicting the presence of ANA 
in place of absence. Overall, this led to a CCI of 0.8, which would be associated with a ‘good model’.  
 
5. Discussion  
 
 5.1 Risk Assessment Recommendations for Spanish Lentic Systems  
  
 Understanding country-specific (or even site-specific) mechanisms that can cause 
cyanoHABs or MC threshold concentration violations are important for determining water quality, 
risk assessment, and ultimately water management processes. Moe et al., (2019) outlines the 
expectation of more frequently occurring cyanoHABs, and how the development of these site-
specific management plans can help thwart and adapt to future predicted changes. Due to variable 
response of MC and casual relationships between environmental factors and MC concentration, a 
pragmatic approach based on probability and predictive models with uncertainty analysis can give 
insight into potentially important predictor variables and the related cyanotoxin. To determine this, 
the final node’s (MC) evidence was set for each of the corresponding risk thresholds outlined by 
WHO (2003) (low 2-10 μgMC/L; 10-20 μgMC/L moderate; and >20 μgMC/L high), then observing 
the environmental predictor approximate thresholds for each risk level. Values were only considered 
if they had over 50% probability in each predicting node. The potentially predictive factors are 
outlined in Table 9. Of the 88 sampling sites studied in this project, there were no locations with MC 
concentrations ranging from 10 - 20 μg/L, meaning the BN could not give a probability distribution 
of more than 50% for any of the predicting factors. This moderate risk range was therefore 
determined by interpolating between the values calculated for low risk and high risk.  
 

Table 9. Recommended thresholds for environmental factors that drive risk levels recommended by WHO (2003) for 
safe recreational waters when applied to Spanish lentic systems. Color coding: blue is low risk for recreational waters 

but falls within the WHO guideline for drinking water, green is low risk, yellow is moderate, and red is high risk. 
Respective probability distributions in parentheses 

Guideline 
values for Risk  

NO3- mg/L PO43- mg/L ChlaTotal μg/L ChlaCyano μg/L Maxdom of 
Cyanobacteria 

0.0 - 0.01 μg/L <0.9 (67%) <0.1 (78%) <5 (86%) <4 (92%) <27% (66%) 

0.01 - 1 μg/L <0.9 (50%) 0.1 - 0.4 (50%) 10 - 20 (65%) 4 - 15 (84%) <27% (58%) 

1 - 10 μg/L 0.9 - 1.6 (54%) <0.1 (65%) 20 - 44 (71%) 15 - 39 (61%)  >84% (59%) 

10 - 20 μg/L <0.9  <0.4  44 - 100  39 - 67  >84  

>20 μg/L <0.9 (54%) 0.1 - 0.4 (58%) >100 (55%) >67 (61%) 70 - 84 (62%) 

 
 By inputting the values (Table 9) into the BN, the corresponding observed probability 
distribution for MC is as follows: 95% probability the input variables for the guideline values of 0.0 - 
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0.1 μg/L will be in this range, 91% probability the input variables for the guideline values of 0.01 - 1 
μg/L will be in this MC interval, 85% probability the input factors for the guidelines values of 1 - 10 
μg/L will be in this MC range, 30 - 34% probability the input values of the guideline thresholds of 10 
- 20 μg/L will be in this MC bin, 93% probability the input variables of the guideline thresholds of >20 
μg/L will be in this MC range. The lowest probability is associated with the bin that had zero 
corresponding data in the dataset, with the range being for different intervals of ChlaTotal (44 - 56 
μg/L is 30%, while 56 - 100 μg/L is 34%). Using the Bayesian model to identify the critical levels of  
predictor variables that will exceed the threshold of MC low risk, the results indicate that ChlaTotal 
concentrations ≥ 44 μg/L , ChlaCyano concentrations ≥39 μg/L, Maxdom ≥70% will significantly 
increase the probability of reaching moderate levels of MC. NO3

-  and PO4
3-  concentrations by 

themselves failed to accurately predict the surpassing of the different levels of risk, which coincides 
with Kelly et al., (2019) and Shimoda et al., (2016).  
 

The core parameters that are most accurate at predicting MC risk concentrations are 
therefore ChlaTotal, ChlaCyano and maximum dominance of cyanobacteria. It’s long been 
established that ChlaTotal concentration is a strong predictor of MC concentrations, as it is used as 
an indicator of phytoplankton biomass (Kelly et al., 2019). The exceedance of low risk thresholds 
found for ChlaTotal concentrations closely resemble concentrations found in other research. 
Hollister and Kreakie 2016 found that when ChlaTotal concentration reached 68 and 104 μg/L then 
there was a 50% chance of surpassing the health advisory levels of 1 and 2 μg/L respectively. Yuan 
et al., (2014) concluded that when TIN levels were low (around 570 μg/L) then a ChlaTotal 
concentration of 37 μg/L caused a 10% chance of finding a MC concentration about 1 μg/L.  

 
 Maximum dominance had a significant increase from interval 0.01 - 1.0 μgMC/L and then to 
1.0 - 10 μgMC/L (<27% to >84% respectively), then decreased to 70 - 84% for the interval >20 
μgMC/L. There is a degree of uncertainty in the prediction statistically due to the observed frequency 
in the data set of sampled with MC concentrations (13). Of the four sites that observed Maxdom 
level of >84%, only two of the samples consisted of any concentration of MC. Alternatively, 
ecologically there is uncertainty as well as outlined in Agha et al. (2012), which describes the 
variability of toxicity (chemotypes) intra-bloom. Blooms are composed of both toxic and non-toxic 
strains in variables concentrations. Furthermore, the amount of toxin per dry weight of a cell is highly 
variable even within the same strain in response to biotic and abiotic factors.  
 
 Levels of PO4

3- and NO3
- do not vary in between levels of risk of proliferation with a probability 

distribution that remained almost the same. The sensitivity analysis for Spanish lentic waters 
showed the same results. It has been a continuous debate about the link between MC production 
and nutrient enrichment (Scott et al., 2013). However, it's been highly researched that phosphorus 
and nitrogen are normally dominated by feedback processes (Guignard et al., 2017) which are 
impossible to include in a traditional BN, as they cannot handle loops due to the acyclic nature of 
the graphical structure. This could be a disadvantage to using a BN in the application to analyze 
and predict potential harmful cyanobacteria in lentic systems in addition to the uncertainty 
surrounding nutrient loading and the relationship to MC.  
 
 The thresholds outlined by the BN for moderate risk (exceedance of 10 μg MC/L) differs from 
the values outlined in the current Spanish decision tree (ChlaTotal concentrations ≥10 μg/L, 



Application of Bayesian networks on risk assessment of cyanobacteria proliferations 
 

 

43 

maximum dominance ≥20%), but are more closely related to the values found by conditional 
probability approaches outlined in literature (Shimoda et al., 2016, Hollister and Kreakie, 2016, Yuan 
et al., 2014). Furthermore, Kelly et al., (2019) states that Chla is used as an indicator of remediation 
in the Bay of Quinte, with a target concentration of 10 - 12 μg/L which indicators that the water has 
been restored. These values contrast with the value in the Spanish decision tree which at these 
values would indicate moderate risk.  
 
 Furthermore, moderate risk for ChlaTotal is considerably higher than the thresholds laid out 
by WHO (2003), which is <50 μg/L with cyanobacterial dominance. This BN defined moderate risk 
as 44 - 100 μg/L due to the lack of data in the moderate threshold range which limits the confidence 
interval of the probability distribution. Therefore, it cannot be said whether the range is definitively 
between 44 - 56 μg/L or 56 - 100 μg/L and was therefore left at 44 - 100 μg/L. The BN was able to 
validate the risk level of the current Spanish decision tree for cyanobacterial proliferation for only 
moderate and high risk levels. The BN was unable to classify 90% of the sites as low risk although 
this level accounted for 21% of the total samples. The discrepancy was probably due to 
inadequacies of connecting the causal relationships between environmental factors and risk, in that 
in the current Spanish decision tree, if one parameter exceeds the threshold, the entire system is 
considered at a moderate risk of proliferation. The BN considers all factors interconnected and views 
the system’s variability as a whole, and can have a difficult time creating the relationships without 
consistency, for example in Embalse Palmaces all predicting factors are well below low risk level, 
but however contains 0.024 μgMC/L which would classify it as high risk level in the current risk 
assessment decision tree. Nevertheless, the BN takes into account all nodes to construct a final risk 
node CPT without giving a single importance to only one node, leading to a mismatch between 
prediction and observation.  
 
 While ChlaTotal, ChlaCyano and maximum dominance are the best predictors for this sites-
specific BN, which is shown through the BN and through the correlation matrix, other research done 
on conditional probability models indicate temperature as a driving factor for the promotion of MC 
concentrations (Kelly et al., 2019, Shan et al, 2019, Davis et al., 2009).This Low-cost parameter can 
be easily detected. As climate change increases the temperatures globally, there is a growing need 
to incorporate this variable into decision trees, as it can be representative of stratification and water 
column stability.  
 
5.2 Risk Assessment Recommendations for Mexican Lentic Systems  
 
 Through Bayesian conditional probability techniques, the critical levels of the 
physicochemical parameters of the Mexican lentic systems in the State of Mexico that increase the 
probability of exceeding low levels of risk were identified to be NO3

- concentrations 0.8 - 1.15 mg/L, 
PO4

3-concentrations 7.5 - 9,5 mg/L, DO concentrations 4.3 - 6.4 mg/L, temperature 19 - 22oC, 
conductivity ≥3.5 μS/cm, with a 55% probability of taking place in October. These thresholds reflect 
warmer weather with low flushing out rates, most likely during the decomposition of algal blooms. 
Arazate-Cardenas et al., (2010) corroborate the pH and temperature intervals being most 
associated with the presence of Microcystis genus. Of these low-cost parameters, the core 
predictors that will have the highest likelihood of prediction for water management are conductivity, 
DO, and temperature. With values of conductivity ≥3.5 μS/cm, DO between 4.3 - 6.4 mg/L, and 
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temperature between 19 - 22oC there is a 60% chance of having a MC concentration over 6.8 μg/L. 
Apart from having a direct effect on MC production, temperature plays a part in causation of 
concentration of DO and conductivity. Shan et al., (2019) determines that ammonium in place of 
nitrate has a more important role in the prediction of MC. In the nitrogen cycle, it is known that the 
lower amount of DO generally increases the concentration of ammonium. Thus, DO can act as a 
proxy for the reduced form of nitrate. Conductivity is seen as an indicator of low flushing out rates 
of water bodies (Moe et al., 2016, Elliot, 2010), which low flushing out rates and higher temperatures 
lead to an increase of pronounced cyanoHAB for prolonged periods of time (Kelly et al.,2019).  
 

39 of the 65 samples were within the range <1 μg MC/L, quantifying this as the largest 
frequency of observed data (60% of the data). The frequency of observed MC concentration >10  
μg/L included only one sample at 12  μg/L (making up 1.5% of the data), as well as only one sampling 
site between concentrations 6.8 – 10 μg MC/L (1.5% of the data), both in Lake Zumpango. This 
implies that the CPT for higher concentrations of MC are related to high levels of uncertainty. As a 
result, the probabilities of the physicochemical states did not greatly vary, therefore, 20 - 40% 
probability for predicting node values when the final end node of MC was set to the corresponding 
ranges were considered the most valid. There were no values over the designated high risk 
associated with the WHO recommendations and is therefore not included in Table 10, which outlines 
the recommended predicting physicochemical predicting factors for MC risk assessment in Mexico. 
Table 10 also includes the interval 0.0 - 0.01 μg MC/L as an indicator of no MC for comparison.  
 

Table 10. Thresholds for environmental factors that drive risk levels recommended by WHO (2003) in Mexican lentic 
systems. Color coding: blue is low risk for recreational waters that’s acceptable concentration for drinking water, green is 

low risk, yellow is moderate 
Guideline Values 
for Risk 

NO3- mg/L PO43- mg/L Temp (oC) pH Cond. μS/cm DO mg/L 

0 - 0.01 μg/L 0.85 - 1.15 (89%) <2.2 (52%) 19.6 - 22.4 (89%) >9.7 (50%) 0.8 - 1 (32%) 4.3 - 6.4 (45%) 

< 1 μg/L 0.85 - 1.15  (32%) <2.2 (32%) 19.6 - 22.4 (57%) 8.3 - 9.7 (37%) 0.3 - 0.8 (32%) 4.3 - 6.4 (30%) 

1 - 4 μg/L 0.15 - 0.4 (31%) <2.2 (30%) 19.6 - 22.4 (54%) 8.3- 9.7 (46%) 0.3 - 0.8 (40%) 6.4 - 9 (30%) 

4 - 6.8 μg/L 0.15 - 0.4 (40%) <2.2 (35%) 19.6 - 22.4 (44%) 8.3 - 9.7 (32%) 1.3 - 2.1 (30%) 6.4 - 9 (26%) 

6.8 - 10 μg/L 0.85 - 1.15 (32%) 9.5 - 11.5 (32%) 19.6- 22.4 (43%) 9.7 - 10.4 (30%) >3.5 (21%) 4.3 - 6.4 (22%) 

10 - 12 μg/L 0.85 - 1.15 (32%) 7.5 - 9.5 (30%) 19.6 -22.4 (43%) 9.7 - 10.4 (30%) >3.5 (21%) 4.3 - 6.4 (22%) 

 
 By inputting the values found in Table 10 into the Mexican Lentic BN, the corresponding 
probability of concentration of MC are as follows: a 47% probability of MC <1 μg MC/L with the 
recommended values of predicting nodes, 60% probability of MC being between 1 - 4 μg MC/L with 
the recommended thresholds, 22% probability of MC being between 4 - 6.8 μg MC/L with the 
recommended values, 30% probability of being between 6.8 - 10 μg MC/L with the recommended 
values, and a 30% probability of having between 10 - 12 μg MC/L with the corresponding values. 
The predicting variables showed weak changes in between ranges above 4 μg MC/L, as did the MC 
ranges showing weak response to changes in thresholds due to the limited amount of data, and the 
low frequency of samples above this value. Furthermore, all data found for Mexican recreational 
waters was found in the State of Mexico which lead to all samples having the same water 
temperature for each risk level, and generally, weak correlation between the environmental factors. 
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The Mexican dataset had the least number of water bodies, which is reflected in the low correlation 
due to less variability and the lowest certainty in probability. A larger monitoring program with 
sampling campaigns around Mexico would lead to a better performing model and more accurate 
statistical analysis, which in turn leads to more adequate risk assessment procedures. Arazarte-
Cardenas et al., (2010), Mercado-Borrayo (2008), and Figueroa-Sanchez et al., (2020) all suggest 
that the same three core parameters for predicting MC recommended by this project are also the 
most correlated with phytoplanktonic growth and MC production.  
 
5.2.1 Economic Analysis of Implementation in Mexico  
 
 CyanoHABs can affect not only human health and ecological integrity, but also economic 
opportunities for a country as well as economic losses such as: rendering a body of water unsuitable 
for swimming, fishing, and aquatic sports. These all affect tourism which can lead to long term costs. 
Monitoring recreational waters can have a high immediate cost but can mitigate the larger costs 
from restoration and the cost of closing down access to the water body. Cell counts of cyanobacteria 
can be used for monitoring but are time consuming and unsuitable for a large number of samples. 
Instrumental analysis through mass spectrometry can be expensive and not suitable for routine 
testing. A BN uses free software to investigate the conditional probabilities between 
physicochemical parameters such as conductivity, temperature, pH, and DO with concentrations of 
MC which would lead to risks which could be costly to the country or lead to dangers for human 
health.  
 
 The BN works more efficiently with more data from lentic bodies of water from all over the 
country. Using a YSI 556 probe (as was used in Figueroa-Sanchez et al., 2020), which measures 
pH, DO, conductivity, temperature, and oxidation-reduction potential and has a single cost of around 
1,000 euros, a BN can be created that would allow the prioritization of recreational waters with the 
highest probability of having moderate to high risk of MC to be tested using ELISA immunoassays, 
which is considered moderate cost. With this, water managers can focus on probable moderate to 
high risk water bodies using parsimonious variables.  
 
5.3 Risk Assessment Recommendations for Spanish Lotic Systems  
 
 The Spanish Lotic BN was run by setting the evidence of the node of interest (μg ANA/mg 
dw of Phormidium mats) to the six discrete intervals. The intervals were determined by a literature 
review and translation of legislation in New Zealand for drinking water thresholds (provisional 
maximum acceptable values: Anatoxin-a 6 μg/L and Anatoxin-a(s) as 1 μg/L) as well as recreational 
water guidelines (three risk levels outlined by biofilm coverage <20%, 20-50%, and >50%) (Section 
3. The guidelines | Ministry for the Environment, 2020). The predictive environmental nodes were 
considered valid if the probability ranged over 30%. The lower probability is due to the fact that the 
lotic dataset had the least amount of data (46 samples from benthic mats), with 78% of the samples 
being below 1 μg ANA/mg dw. As with the Mexican BN, this suggests that the CPT for ANA is linked 
with higher levels of uncertainty, especially with ranges 17 - 27 μg ANA/mg dw, as it only has an 
observed frequency of 2% (1 sample) in the dataset. Therefore, the probabilities of the predictive 
nodes do not differ immensely in between different states, and as a result 30% probability was 
sufficient for calculating the observed thresholds for each risk level in Table 11. Furthermore, ranges 
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3 to 6 μg ANA/mg dw, 6 to 17 μg ANA/mg dw, and >27 μg ANA/mg dw all only had two samples 
with observed corresponding concentrations. As a result, the BN had less certainty about the 
probabilities of the predictive environmental variables. Ranges were chosen based on which of the 
two probabilities was founded in literature in order to create the risk assessment.  
 

Table 11. Recommended thresholds for environmental factors that drive risk levels recommended by provisional 
legislation outlined by New Zealand for Spanish lotic systems. color coding: blue is low risk and also acceptable for 

drinking water, red is high risk based on biofilm size 

Guideline Values for 
Risk 

DIN mg/L SRP mg/L pH CV m/s Cond. 
mS/cm 

Biofilm Size 

<1 μg ANA/mg dw 0.2 - 0.3 (36%) 0.6 - 0.7 (38%) 6.3 - 7 (41%) <0.2 (64%) <105 (91%) 20 - 50 (31%) 

1 - 3 μg ANA/mg dw 0.1 - 0.2 (42%) <0.01 (50%) <5.7 (41%) <0.2(35%) <105 (70%) 20 - 50 (32%) 

3 - 6 μg ANA/mg dw 0.3 - 0.6 (80%) 0.01 - 0.03 (42%) 6.3 - 7 (43%) <0.2 (65%) <105 (83%) 50 - 57 (31%) 

6 - 17 μg ANA/mg dw 0.1 - 0.2 (33%) 0.01- 0.03 (54%) 5.7 - 6.3 (40%) 0.2 - 0.3 (32%) 105 - 237 
(40%) 

50 - 57 (36%) 

17 - 27 μg ANA/mg 
dw 

0.1 - 0.2 (51%) <0.01 (49%) <5.7 (41%) <0.2 (35%) <105 (60%) 50-57 (58%) 

>27 μg ANA/mg dw 0.3 - 0.6 (37%) <0.01 (27%) 7.5 - 8 (30%) <0.2 (43%) >1158 (42%) 75-92 (42%) 

 
Depth and Light were not included in Table 11 as a consequence of not being necessarily 

predictive but more advantageous for cyanoHAB growth. There was no direct correlation between 
the end node of ANA and these two variables, so when ANA was set to the different intervals, depth 
and light did not alter their probabilities. Possibly, doubling depth with temperature to portray 
stratification could lead to more insights, as stated in Rigosi et al., (2015). Everything above 3 μg 
ANA/mg dw was considered high risk for a more conservative risk assessment, although the 
provisional value in New Zealand states 6 μg ANA/mg dw (Ibelings et al., 2014). This was decided 
based on the biofilm size of the Phormidium mat, with anything over 50% being considered likely to 
contain cyanotoxin and a proliferation of cyanobacteria. Inserting the corresponding probabilities 
from Table 11 into the BN, the predicted probability distribution of the end node of ANA went as 
follows: a 93% probability of inputting the values outlined for <1 μg ANA/mg dw will be in this range, 
a 40% probability of the associated values for 1 -3 μg ANA/mg dw will be in this range of ANA, an 
82% probability that the values for 3 - 6 μg ANA/mg dw will be in this range of ANA, a 58% probability 
that the values for 6 - 17 μg ANA/mg dw will end up in this range of ANA, a 36% probability that the 
values for 17 - 27 μg ANA/mg dw will fall in this range, and a 58% probability that the values for >27  
μg ANA/mg dw will be in this range of ANA.  

 
Most of the environmental factors do not follow a clear pattern for increasing levels of ANA. 

DIN maintained around 0.1 to 0.6 mg/L for most ranges of ANA, but skyrocketed in the last range, 
as did conductivity; a possible reason explaining this could be most of the data from the Phormidium 
mats were obtained in oligio-mesotrophic systems. Data from other eutrophic rivers is highly 
recommended for a more comprehensive analysis in the future.  Electrical conductivity has been 
shown to have significant influence on Phormidium cover in the river due to the fact that EC is 
influenced by flow rate variations, can represent persistent low flow conditions, or is a reflection 
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macro and micro nutrients that possibly influence cyanobacterial growth (McAllister et al.,2017, 
Wood et al., 2017). In this case, the highest concentrations of ANA were found in Tajo River which 
overlays a geological calcareous part of the river, accounting for the high levels of conductivity in 
this area. Based on the correlation matrix and sensitivity analysis as well as Bayesian predictive 
techniques, the critical parameters that affect the concentration of ANA surpassing the 
recommended threshold for low risk are DIN (0.1 - 0.6 mg/L), SRP (0.01 - 0.03 mg/L),  pH (5 - 9), 
and conductivity (35 - 1158 mS/cm). These predictor concentrations corroborate closely with those 
identified McAllister et al., (2017), including the negative effect of observed Phormidium cover at 
higher concentrations of SRP, known as subsidy-stress concept. Furthermore, biofilm size coincided 
with results found in Wood et al., (2017) where a positive relationship was found between ANA 
concentrations and cover %.  However, these are related to a high degree of uncertainty, as the 46 
samples were insufficient statistically with the number of parameters to identify any clear correlation 
between ANA concentration and environmental variables. This is reflected in the large discrepancies 
between the risk levels, due to some levels being defined by only two samples, i.e. a 50% probability 
between two discrete bins for environmental factors.  

 
With this insufficient data, the only clear trend is that higher concentrations of ANA occur at 

more extreme levels of the environmental variables, for example, ANA levels 17 - 27 μg ANA/mg 
dw has a 41% probability of occurring with pH <5.7 with a 60% probability of being below 105 μS/cm. 
According to McAllister et al., (2017), this is possibly due to competition with other benthic algae 
and that Phormidium can outcompete at these extreme levels. In the same paper, water temperature 
was determined to have an integral part in predicting Phormidium cover and ANA production. This 
variable would be beneficial to add to the lotic BN. The environmental variables had an interactive 
relationship as opposed to an additive effect, where if one node’s evidence is set it will change the 
probabilities of all other nodes and could more adequately predict the concentration of ANA given 
the evidence of the other nodes, due to the combination of effects to reach a specific outcome.  
 
5.4 Bayesian Network Applicability and Future Improvements 
 
 BNs offer a flexible system that can be applied to risk assessment tailored to each use of 
water. In the present project, recreational uses were mostly focused on due to a higher availability 
of risk data. However, within our dataset some of the lentic water bodies in both Spain and Mexico 
are used not just for recreational activities but also for drinking water supply. Our BN could easily 
be adapted to drinking waters by setting a different risk threshold, for instance based on the WHO 
guidelines for drinking water. The WHO outlines a guideline level of 1 μg/L of MC, which each of the 
lentic BNs contain in the node of interest MC discrete interval. The Lotic BN can also be adapted to 
drinking water levels, as it contains the provisional values for ANA levels that evaluate the quality of 
the system for parallel uses of the river (such as fishing).  Therefore, each BN can adapt to drinking 
water by concentrating on the discrete interval of interest. For future analyses for risk assessment 
using BNs for drinking water, it is necessary to include official water treatment techniques applied 
to water supply locations, and how efficient these are at removal of cyanotoxins.  
  
 There are a few disadvantages related to BNs, which directly affect environmental 
application, such as the inability to incorporate feedback loops. Although BNs are able to handle a 
large amount of variables, the more variables there are, the more data is required to build the 
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structure of the network and estimate the parameters (ie, as the variables increase, the data must 
as well). In terms of this project, it directly hindered the structure learning of the network from Mexico, 
whose data is scarce due to a lack of raw data that was able to be found. Another drawback is that 
BNs have a more difficult time managing hybrid (discrete and continuous variables) or continuous 
variables. Even if it is possible to find an algorithm that can handle this type of data, the limitations 
are very restrictive. The solution to this, as was done in this project, is to discretize the variables 
(modifying continuous values into discrete ones) (Aguilera et al., 2011). There are several ways in 
which to do this which include equal width or equal frequency binning, k-means, entropy 
minimization and hierarchical. This project focuses on hierarchical unsupervised discretization that 
involves clustering the number of data into the number of desired discrete variables (Vieira et al., 
2017). The discretization is made by using the maximums and minimum values of the data set, 
calculating the cluster centers and the midpoints between the clusters to produce the output 
(BayesFusion, 2020). An important point to emphasize is that the narrower the discretization band 
is, the less error will be added to the model, although it can make the model less organized, and 
have a much larger CPT. 
 

However, Bayesian methods have gained momentum currently due to present trends of big 
data and artificial intelligence/machine learning. This modeling can be useful as it can handle large 
and heterogeneous data (from various sources of information including handling missing data), 
predict cause and effect relationships, infer linear and non-linear relationships between variables, 
and account for uncertainty. In addition to the many advantages, the model can also learn parameter 
values and avoid any reliance on a single node or deterministic outcome, as this is more 
representative of a natural environment. Because of this, BN models aid water managers to make 
realistic decisions of the probability of desired outcomes based on water quality strategies (Shan et 
al., 2020).  
 

Finally, future recommendations for risk assessment using BN, extensive data is needed in 
order to calculate clear correlation and trends for each level of risk. Large uncertainty was associated 
with the higher concentrations of cyanotoxins due to the low frequency of observed values in those 
ranges. To create a more successful model, optimal data collection would include multiple lentic 
bodies of water (for lentic BN) and multiple points along lotic systems (for lotic BN) with data 
spanning an entire year. Rigosi et al., (2015) suggested physical chemical and biological variables 
being tested at least bimonthly, ideally for several years of observations. Multiple lakes would ensure 
the causal relationships between cyanotoxin concentration and environmental factors are not site-
specific. In the case of the lotic systems BN, each sample in this project was associated with mats 
with potential for toxic cyanobacteria, with many of the samples being taken from the same place. 
Similar to the recommendations for lentic systems, increasing the lotic systems would create more 
effective BN modeling.  
 
 Secondly, discretization of variables in a model can lead to a loss of information. Algorithms 
to maintain continuous variables as that should be studied and researched to increase precision 
and efficiency.  
 
 Lastly, according to Moe et al., (2019) the Water Framework Directive requires links between 
abiotic and biotic factors of an ecological system, which can be demonstrated in BN through cause 
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and effect arcs. In the next cycle of this directive (2021- 2026) it is required that potential impacts of 
climate change be incorporated into the river basin management plans. BN statistics and models 
can combine the expert knowledge of water managers with the probabilistic manner of BN models 
into predictive models given different climatic what-ifs. Incorporating biological variables with their 
physicochemical counterparts, determining through sensitivity analyses which variables affect the 
system most significantly, can give clear management decisions for achieving ‘good status’.   
 
 
6. Conclusion  
 
 This study found that in Spanish lentic systems, the critical variables for predicting MC were 
ChlaTotal and ChlaCyano, which were able to accurately predict observed concentrations in a 
majority of the 88 sampling sites. Mexican lentic systems core parameters that will help water 
managers predict MC levels were temperature, pH, DO, and conductivity in the absence of biological 
variables. Further investigation of the relationship between abiotic and biotic factors are required to 
identify stronger correlation to MC concentrations. Spanish lotic systems’ ANA concentrations were 
influenced by time of year, DIN, conductivity, SRP, and pH, although further investigation and 
sampling is needed to produce a more robust model.  The creation and organization of probabilistic 
water quality criteria for water quality management can be an effective way to cope with the levels 
of uncertainty about synergistic relationships in natural ecosystems. With the outlined biological and 
physical conditions examined in the BNs, more realistic (and statistically supported) water quality 
standards can be developed to decrease chances of false conclusions while still effectively 
monitoring risk. 
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8. Annexes  
Annex 1 Discretization Intervals for all BN  

Overview of discrete intervals of the nodes used in each BN. Spain res stands for Spanish lentic systems, 
Mexico res stands for Mexican lentic systems, and Spain river is the Spanish lotic systems *Month not included 

for Mexican reservoirs due to all months being present, 12 months. 
Country BN  Node name Units Node States 

 1 2 3 4 5 6 

Spain res. Nitrates (NO3
-) mg/L <0.9 0.9-1.6 1.6-3.5 3.5-4.9 4.9-7.4 >7.4 

Mexico res <0.15 0.15-0.47 0.47-0.65 0.65-0.85 0.85-1.15 >1.15 

Spain river <0.14 0.14-0.22 0.22-0.35 0.35-0.63 0.63-1.9 >1.9 

Spain res Phosphates (PO4
3-

) 
mg/L <0.1 0.1-0.4 0.4-0.6 0.6-1.3 1.3-2.9 >2.9 

Mexico res <2.2 2.2-4.7 4.7-7.5 7.5-9.5 9.5-11.5 >11.5 

Spain river <0.01 0.01-0.03 0.03-0.04 0.04-0.06 0.06-0.07 >0.07 

Spain res ChlaTotal μg/L <5 5-10 10-20 20-44 44-100 >100 

Spain res ChlaCyano μg/L <4.8 4.8-15 15-25 25-39 39-67 >67 

Spain res Maxdom % <7 7-27 27-50 50-70 70-84 >84 

Mexico res Conductivity mS/cm <0.3 0.4-0.8 0.8-1.3 1.3-2.1 2.1-3.5 >3.5 

Spain river μS/cm <105 105 - 237 237 - 472 472 - 811 811- 1158 >1158 

Mexico res pH  <7.5 7.5-8.3 8.3-9.7 9.7-10.4 >10.4  

Spain river <5.7 5.7-6.3 6.3-7 7-7.5 7.5 - 8 >8 

Spain river CV m/s <0.2 0.2-0.3 0.3-0.57 0.57-0.85 0.85-1.2 >1.2 

Spain river Biofilm size % <20 20-50 50-57.5 57.5-75 75-92 >92 

Spain river Depth cm <5.7 5.7-11.6 11.6-15.7 15.7-22.5 22.5-29.8 >29.8 

Spain river Light  Direct 
sun 

Almost 
shadow 

Shadow  Lateral sun   

Mexico res Season  Spring Summer Autumn Winter   

Spain river Spring Summer Autumn    

Mexico res Temperature oC <16 16.5-17.8 17.8-19.6 19.6-22.4 >22.4  

Mexico res Dissolved Oxygen mg/L <4.3 4.3-6.4 6.4-9 9-11.2 11.2-14.6 >14.6 

Spain res Microcystins (μg/L) <0.01 0.01 - 0.4 0.4-1.0 1.0-10 10-20 >20 

Mexico res <1 1.0-4.0 4.0 - 6.8 6.8-10 10-12  

Spain res Presence of Toxic 
Genus  

 pres. absence     

Spain river pres. absence     

Spain river Anatoxin-a  μg ANA/mg dw >1 1.0-3.0 3.0-6.0 6.0-17.0 17.0-27.8 >27.8 

Spain res Risk  High Moderate Low    
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Annex 2 Papers where data was found for Mexican BN  
 

Lentic bodies of water and papers where raw data can be found 

Lentic Water Body Reference 

Los Berros Mercado-Borrayo, 2007 

Villa Victoria Arzate-Cardenas, 2008 

Valle de Bravo 

Chapultepec 

Alameda Oriente 

Pista Olimpica de Remo y Canotaje 

Bosque de Aragon 

Lake Zumpango Figueroa-Sánchez, Nandini and Sarma, 2020 
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Annex 3 Spanish Lentic Systems PCA  

 

PC1 vs PC2 loadings and scores for Spanish lentic systems. Numbers represent the corresponding sampling site. 
Percentages on axes represent the amount of variance explained by each principal component.   
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Annex 4 Mexican Lentic Systems PCA 

 
PC1 vs PC2 loadings and scores for Mexican lentic systems. Percentages on axes represent the amount of variance 

explained by each principal component. Abbreviations are as follows: Temp. = temperature, Cond. = conductivity, MC = 
microcystin, NO3 = NO3

-, and PO4 = PO4
3- 
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Annex 5 Spanish Lotic Systems PCA 

 

PC1 vs PC2 loadings and scores for Spanish lotic systems. Percentages on axes represent the amount of 
variance explained by each principal component. Abbreviations are as follows: SRP = Soluble reactive phosphorus, DIN 

= Dissolved inorganic nitrogen, CV = Current velocity  

 




