
ExplorePipolin: a pipeline for identification 
and exploration of pipolins, novel mobile genetic 
elements widespread among bacteria 

 

Liubov Chuprikova

Máster en Bioinformática y Biología Computacional

MÁSTERES 
DE LA UAM

2019 - 2020
Facultad de Ciencias



Universidad Autónoma de Madrid
Escuela politécnica superior

Master’s Degree in Bioinformatics and
Computational Biology

Master’s Degree Final Project

ExplorePipolin: a pipeline for identification
and exploration of pipolins, novel mobile

genetic elements widespread among bacteria

Author: Liubov Chuprikova
Tutor: Modesto Redrejo Rodríguez

Tutor: María de Toro Hernando

JUNE 2020



ExplorePipolin: a pipeline for identification and exploration of pipolins, novel mobile genetic
elements widespread among bacteria

2



ExplorePipolin: a pipeline for identification
and exploration of pipolins, novel mobile

genetic elements widespread among bacteria

Author: Liubov Chuprikova
Tutor: Modesto Redrejo Rodríguez

Tutor: María de Toro Hernando

Departamento de Bioquímica, Universidad Autónoma de Madrid

Plataforma de Genómica y Bioinformática, Centro de Investigación
Biomédica de La Rioja, Fundación Rioja Salud

Escuela Politécnica Superior, Universidad Autónoma de Madrid

JUNE 2020

i





Abstract

Introduction. Pipolins constitute a new group of self-synthesizing or self-replicating mobile
genetic elements (MGEs), encoding for their own replicative DNA polymerase B. These elements
have been found to be mostly integrated into the genomes of bacteria from diverse phyla and
also present as circular plasmids in mitochondria. Since a reduced number of pipolins has
been identified and described so far, their origin and role remains unknown as well as there
is little evidence of their horizontal transfer. A bioinformatics software capable of automatic
identification and analysis of pipolins from bacterial genomes might ensure the progress in the
accumulation of knowledge about these mobile genetic elements. Therefore, the main goal of the
current project was to design and implement a pilot version of a pipeline for the identification
and analysis of pipolins from Escherichia coli genomes. The pipeline should be flexible enough
to easily extend it to other bacteria in the future. As a sub-goal, it was decided to perform a
detailed analysis of pipolins of E. coli strains and isolates, available from the NCBI database
and from the Spanish E. coli Reference Laboratory (LREC) collection.

Results. We have identified and characterised pipolin elements from 92 E. coli genomes, 25
of which were selected from the LREC collection and 67 – retrieved from the NCBI database.
Pipolins from the E. coli genomes have been shown to present in a wide range of strains from
different phylogroups, serotypes and clonotypes and to be highly diverse in their genetic structure
and composition. Despite their great variability, the pipolin elements are flanked by conserved
att-like terminal direct repeats and integrated into the same tRNA gene. Cophylogeny analysis
showed a lack of congruence between phylogenies of some groups of the pipolins and their host
strains, which is in agreement with the hypothesis of pipolins horizontal transfer.

Based on the predefined hallmark features of E. coli pipolins, we have designed and implemented
a pilot version of the ExplorePipolin pipeline, which is intended to identify, scaffold, extract
and annotate pipolin elements from bacterial genome sequences. The source code of the Ex-
plorePipolin pipeline is available on GitHub: https://github.com/liubovch/ExplorePipolin.
It is a command-line software that can be installed and run on any Unix-like system. Further-
more, we have created a Docker image and a Conda recipe to ease the pipeline installation and
running on different systems.

Conclusions. The ExplorePipolin pipeline can be useful for microbiologists that are interested
in pipolins. It can be also an example of a comprehensive pipeline that not only looks for
pipolin markers within a genome sequence but reconstruct the whole element structure when
it is possible, making further analysis more precise and straightforward. The current pipeline
version is mainly tested on E. coli genomes, therefore, we will focus on extending it to other
bacterial species in the future.

Key words

Mobile genetic elements, pipolins, primer-independent DNA polymerase B, Escherichia coli,
pipeline, Python.
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1
Introduction

1.1 Motivation of the Project

Pipolins constitute a new group of self-synthesizing or self-replicating mobile genetic elements
(MGEs), along with eukaryotic Polintons and archaeal Casposons, encoding for their own replica-
tive DNA polymerase from family B [1]. Similar to other self-replicating MGEs, most pipolins
are integrated within bacterial chromosomes, although they have been also identified as circular
plasmids both in bacteria and mitochondria. Pipolins encode for a distinct group of PolBs capa-
ble of de novo DNA synthesis and named primer-independent PolBs (piPolBs) [2]. Apart from
that, one or more integrases of the tyrosine recombinase superfamily (Y-Rec) usually present in
pipolins, suggesting that they might be responsible for pipolins excision and/or integration.

Despite the limited number of pipolins identified so far, they are widespread among diverse
bacterial phyla and mitochondria [2]. Their distribution suggests of the ancient origin of these
MGEs, and that they might have been horizontally transferred between bacteria. Horizontally
transferred DNA elements are known to contribute to bacterial evolution and adaptation by pro-
viding useful functions or properties [3]. Therefore, analysis of pipolin prevalence and dynamics
among different bacteria may help to understand their origin, evolution and role, as well as the
details of their replication and excision/integration mechanisms.

Due to the novelty of pipolin elements, there are no tools or databases that might help
researchers in their study of pipolins. Thus, creating such software is important to ensure the
progress in the accumulation of knowledge about these elements, and also broaden the interest in
pipolins for scientists in the field of microbial genomics or microbiology in general. The process
of mining sequencing data for the presence of pipolins and their subsequent detailed analysis can
be logically divided into steps like, 1) looking for pipolin-specific markers, 2) element structure
reconstruction, 3) composition analysis of elements, 4) comparative analysis of elements. The
easiest way to automate these steps is to organise them into a pipeline.

On the other hand, the pipeline implementation itself assumes that we have prior knowledge
about the expected structure and composition of at least some pipolin elements. Therefore,
we have decided to perform a preliminary analysis of pipolins from Escherichia coli, because:
1) there is a great interest in E. coli as a model and a pathogenic organism, which made it
the best-known bacteria, 2) there is plenty of already sequenced and assembled genomes from
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different E. coli strains and isolates in public databases, 3) a big collection of pathogenic E. coli
from the Spanish E. coli Reference Laboratory (LREC) was previously surveyed for the presence
of isolates encoding the piPolB gene, and their genome assemblies were also available for our
analysis. The conclusions made from the preliminary analysis of E. coli pipolins would help us
in the subsequent pipeline design and implementation.

1.2 The Main Goal and Objectives

The main goal of the current work was to create a pipeline for identification, extraction and
annotation of pipolins from E. coli strains, that would be flexible enough to easily extend it to
other bacterial species in the future. As a sub-goal, the detailed analysis of pipolins from E. coli
had to be performed.

Based on the above, the following objectives were undertaken:

1. Identify pipolin-harboring E. coli genomes and perform detailed analysis of their pipolin
elements:

(a) Identify potential pipolin-harboring E. coli genomes as those encoding for the piPolB
gene.

(b) Analyse genomes for the presence of known terminal direct repeats (att sites) that
would define pipolin element boundaries.

(c) Extract pipolin elements from the genomes in such a manner as to make their further
analysis pipolin-oriented.

(d) Perform accurate and homogeneous annotation of pipolin genes.

(e) Determine other potential hallmark features of pipolins with the help of pan-genome,
functional and comparative analysis methods.

(f) Analyse diversity of pipolin-harboring strains in terms of phylogroups, serotypes,
sequence types and clonotypes to define whether the presence of pipolins can be
associated with certain groups within E. coli .

(g) Perform comparative phylogenetic analysis of pipolins and pipolin-harboring (host)
bacteria to check the hypothesis of their horizontal transfer.

2. Based on the predefined hallmark features of E. coli pipolins, develop a pilot version of a
pipeline for automatic identification, extraction and annotation of pipolins from bacterial
genomes.

2 CHAPTER 1. INTRODUCTION



2
Challenges in Identification and Analysis of MGEs

MGEs are one of the key players in bacterial genomes involved in genome reorganization and
evolution, often responsible for acquisition by the organism of valuable adaptive traits like an-
timicrobial resistance (AMR), virulence factors, enzymes of secondary metabolism, etc. that can
change organism’s fitness, pathogenicity and diversity. It is also disputed that MGEs play an
important role in social behaviour within microbial populations because a wide range of secreted
proteins are found linked with mobile elements [4].

The collection of MGEs itself in a given genome is called mobilome and can comprise of
plasmids, bacteriophages, transposon (Tn), insertion sequences (ISs), gene cassettes, integrons,
integrative conjugative elements (ICEs) and genomic islands (GIs). All these elements vary
highly in their genetic structure, length and mechanisms of transfer which makes difficult their
simultaneous in silico analysis. Predictions are also challenged by modular nature (Figure 2.1)
and rapid evolution of elements through gene acquisition and gene loss, and historical divid-
ing of MGEs on different classes is becoming less clear these days. On the other hand, the
increasing large-scale sequencing of microbial genomes places an urgent demand for such novel
computational tools.

Nowadays, most of the software and databases for identification and analysis of MGEs
are specialised on a certain type of elements, for example, for plasmids – PlasmidFinder [7],
PLSDB [8]; prophages – PHASTER [9], Phigaro [10]; integrons – Integron Finder [11], INTE-
GRALL [12]; ISs – ISFinder [13]; ICEs – ICEberg [14]; GIs – IslandViewer 4 [15], Islander [16],
etc. For prediction, the most commonly used are sequence composition-based approaches
that are looking for specific signatures of horizontally transferred sequences to distinguish them
from the rest of the genome [17]. Typical features of MGEs that are inspected by the programs
include:

• local nucleotide composition bias (GC content, GC skew, k-mer frequencies, codon and
amino acid usage)

• presence of MGE-specific mobility genes

• high prevalence of prophage-related genes

• presence of other hallmark genes, as AMR or virulence genes

3
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tnpRPassenger genes tnpA

Passenger genes

Tpase Tpase

Tpase

Tpase

Passenger genes

Passenger genes

Tn3 family transposon

Tpase

Unitary transposon (“IS-like”)

Composite transposon

IS

tIS (transporter IS)

MIC (minimal insertion cassette)

Minimal transposition module

Figure 2.1: Modular structure of MGEs on the example of classic organization Tn3 family
transposon, IS and their derivatives (the figure is adapted from [5, 6]). Blue triangles, terminal
inverted repeats; Tpase, transposase gene; tnpA, Tn3 Tpase; tnpR, Tn3 resolvase gene; light
green box, res recombination site. Unitary transposons are solely constituted by the minimal
transposition module. Unitary elements can associate to form composite transposons. tISs
include passenger genes. MICs are non-autonomous elements that rely on the presence of a
cognate Tpase in the cell.

• high prevalence of hypothetical proteins

• presence of direct or inverted terminal repeats

To define nucleotide composition bias, window-based methods are used: they slide the
genome with a window of a chosen size and determine atypical composition with the help of
scoring schemes. In order to find mobility, prophage or other marker genes, the pre-defined
non-redundant databases are made to search against them using BLAST [18], HMMER [19]
or INFERNAL [20] (when nucleotide secondary structure is important). This search is often
combined with the window-based approaches to pinpoint clusters of genes with a high probabil-
ity of being a MGE. Filtering by the presence of nearby integrase or transposase genes is used
very often, as well as the presence of flanking direct or inverted repeats may serve as additional
confirmation of the element’s foreign origin. While most of the tools start their analysis by
looking for MGE markers, some tools with totally different approaches can be encountered. For
example, authors of the Islander database look first for tRNA/tmRNA genes and their fragments
to identify the sequence caused this fragment displacement. Though the method allows precise
prediction of mobile element boundaries, it only finds those mobile elements that use tRNA or
tmRNA genes as an integration site [16].

4 CHAPTER 2. CHALLENGES IN IDENTIFICATION AND ANALYSIS OF MGES
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Machine learning (ML) methods, although seem very promising, are not very common.
A clear advantage of these methods is their ability to use all the known features of MGEs
available from multiple resources and databases to train their models. Though the improved
accuracy was declared for such tools years ago [21, 22, 23], they are rarely developed. On the
wave of the global popularity of ML, it is tending to suspect that there are some challenges to
create a flexible and highly accurate model (still not enough data, not enough computational
resources, high error susceptibility).

Comparative approaches also could be used to predict MGEs, however, they became
less popular or they are predominantly used in combination with sequence composition-based
approaches [15, 24, 25]. A serious disadvantage of comparative methods is that they require a
considerable set of closely related genomes for comparison, and results may vary depending on
the chosen reference genomes.

The aforementioned or similar tools are generally powerful and highly accurate in their
predictions [17]. However, when talking about the discovery of novel classes of MGEs, these
tools are obviously not in help as they filter out all extraordinary or peculiar elements found,
in order to decrease false positives rate. That is also the main reason why pipolins cannot
be defined by these tools. Comparative and evolutionary methods that are designed to
detect horizontal gene transfer (HGT) events, disregarding of sequence composition, might be
suitable [26, 27]. However, in order to predict novel classes of MGEs, they should accurately
filter out not only known types of MGEs, but recognize and filter out common intra-chromosome
rearrangements as duplications, deletions and inversions. So, the first discovery of novel types
and classes of MGEs occurring from time to time [2, 28, 6] is believed to happen mostly as a result
of researchers curiosity and serendipity – with the help of computers, but not by self-sufficient
computer programs.

CHAPTER 2. CHALLENGES IN IDENTIFICATION AND ANALYSIS OF MGES 5
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3
Analysis of Pipolins from E. coli Strains

3.1 Identification of Pipolin-Harboring E. coli Strains

A survey of pipolin distribution among 2238 strains from the LREC collection had been per-
formed previously, using a 587 nt fragment of the piPolB coding sequence from E. coli 3-373-
03_S1_C2 strain as a marker. 25 pipolin-harboring isolates were detected, indicating that
pipolins are not particularly abundant (1.1%) among pathogenic E. coli . Their genomes were
sequenced and assembled to the level of contigs, as well as plasmids were pulled out using the
methodology of PLAsmid Constellation NETwork (PLACNETw) [29, 30].

To increase the number of samples, we performed a TBLASTN search against the NCBI
nucleotide database, restricted to the E. coli taxon (taxid:562), using piPolB amino acid sequence
from E. coli 3-373-03_S1_C2 strain as a query. This search yielded 76 hits, corresponding to
piPolB-encoding ORFs or their fragments (identity above 85%) from 67 strains (Oct 16, 2019).
The corresponding genome sequences were downloaded in the form of contigs or a complete
chromosome in FASTA format.

In total, 92 E. coli genomes (25 from LREC collection and 67 from NCBI) were employed
in the subsequent analysis.

3.2 Prediction of Terminal Direct Repeats

The pipolin from E. coli 3-373-03_S1_C2 strain have been characterised earlier [2], and it
has been shown to contain att-like terminal direct repeats, one of which is overlapping with a
tRNA gene. tRNA genes frequently serve as an integration site for prokaryotic genetic elements,
while terminal direct repeats or att sites, formed at the time of integration event, further define
genetic element boundaries. Based on that, in the preliminary analysis, we used the known att
site (about 113-118 nt long) to check whether it is present in other piPolB-containing genomes.
For that, the nucleotide BLAST was performed against each of the genomes.

We were able to find at least two att sites in all genomes, except for the strain LREC243,
which had only one att. In cases, when atts were located on the same contig or on a complete
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chromosome, the piPolB gene was always sitting within the repeats, in agreement with the
expected structure of pipolin elements (Figure 3.1).
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Figure 3.1: Analysis of att motifs from E. coli pipolins. All found att sequences were extended
by around 20 nt from both sides, extracted from the genomes and aligned. Sequence logo was
created for the derived conserved att motif (133 nt). Error bars indicate an approximate Bayesian
95% confidence interval.

The conservancy of the found att sites have been further investigated by extracting att
sequences and aligning them, using MAFFT [31]:
$ mafft --auto att_sequences.fa > mafft_aln.fa

Not conserved regions from both sides of att motif were clipped using Jalview alignment edi-
tor [32], and a sequence logo was created using WebLogo 3 [33]. The found motif has appeared
to be even longer (≈ 130-135 nt) than the original att sequence used for the BLAST. This is
happening because the repetitions itself are not perfect, and, as a consequence, automatic repeat
detection methods are not capable to find them in a precise way. Nevertheless, the presence
of the same conservative att sites within the analysed E. coli strains may point to a universal
integration mechanism of pipolins in E. coli genomes.

8 CHAPTER 3. ANALYSIS OF PIPOLINS FROM E. COLI STRAINS
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3.3 Scaffolding and Extraction of Pipolin Elements

After identification of piPolBs and terminal att repeats, we were able to extract pipolin elements
out of the genomes. In the majority of cases, a whole pipolin flanked by atts was located on the
chromosome or on a single contig. Those pipolins were extracted by cutting the sequence around
atts, so that the tRNA gene used for element’s integration was also included. For consistency,
we referred to the att, overlapping with a tRNA gene, as attR and expected it always to be the
rightmost att.

In some cases, att repeats and piPolB were located on different contigs, posing a challenge
for us to analyse the structure of the elements. Therefore, we scaffolded the disrupted pipolin
elements into a continuous sequence using a Python script, which was later included in our
pipeline as a separate task (Subsection 4.2.2). Unfortunately, there were two ambiguous cases
(for the strains LREC242 and LREC244) for which the scaffolding algorithm did not work.
Those cases were resolved manually by visual comparison with other pipolins (Section 3.6).

3.4 Annotation of Pipolins

Scaffolded and extracted pipolin sequences were re-annotated by Prokka pipeline [34]. This
pipeline allows using different databases for protein annotation, among those we have chosen
Bacteria-specific UniProt (updated 16.10.2019), HAMAP (updated 16.10.2019) and Pfam-A (up-
dated 08.2018). After the first try, 50% of pipolin open reading frames (ORFs) left unannotated
and were classified as “hypothetical proteins”.

We attempted to improve the annotation using HHpred [35] for the most common pipolin
ORFs, determined after the pan-genome analysis (Section 3.5). The found HHpred hits were
considered as homologous to the gene of interest if 1) the estimated probability was > 90%,
2) the E-value was < 0.01, 3) the secondary structure similarity was along the whole protein
length, 4) there was a relationship among top hits, 5) only Bacteria, Archea, and Viruses were
allowed as the sources of found hits. As a result, functions have been assigned to 6 more proteins
(Table 3.1):

1) Uracil-DNA glycosylase (group_1)

2) Type I restriction modification system methyltransferase hsdM (hisF)

3) Metallohydrolase (group_16)

4) Type I site-specific deoxyribonuclease hsdR (group_5)

5) Excisionase (group_52)

6) Type I restriction modification enzyme hsdS (group_27)

A list of these proteins was provided to Prokka as a trusted set of pre-annotated proteins. After
the second re-annotation, only ≈ 25% of proteins left unclassified.

CHAPTER 3. ANALYSIS OF PIPOLINS FROM E. COLI STRAINS 9
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3.5 Pan-genome and Functional Analysis

Pan-genome analysis of pipolins gene content was carried out using Roary [36], resulting in a
total of 392 genes. Remarkably, the core- and soft-core genomes are made up of a single gene
cluster, the piPolB, and a XerC-like tyrosine-recombinase, respectively. In line with this, the
shell genome contains only 40 genes, whereas 350 genes (89%) are cloud-genes, present in less
than 15% of pipolins. Despite the great variety of different genes, some groups of pipolins share
a similar gene composition and, as about 60% of genes are provided by about one-third of the
pipolins (Figure 3.2a).
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Figure 3.2: Accumulation of conserved vs. total genes per genome in (a) pipolins pan-genome
and (b) the whole pan-genome.

Shell-core genes present in more than 15% of pipolins have been analyzed by eggNog [37]
and Blast KOALA [38] from KEGG orthology database. A detailed functional analysis of shell
core genes is shown in Table 3.1. As mentioned above, besides piPolB, pipolins often include
one or more XerC and IntS (bacteriophage-type) tyrosine recombinases. When two complete
recombinase genes are present, one of them is always located next to an excisionase-like protein.
A type-4 Uracil DNA glycosylase is also frequent. Other proteins with DNA binding domains
like mobilization proteins as well as components of restriction-modification systems are also
common.

In summary, a pipolin basic unit is composed of direct terminal repeats encompassing a
piPolB gene and a variety of genes, with many of them related to the metabolism of nucleic
acids.

10 CHAPTER 3. ANALYSIS OF PIPOLINS FROM E. COLI STRAINS
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Table 3.1: Functional characterization of the most common E. coli pipolin genes. Searches in eggNOG and KEGG databases, as well as HHPred
search of remote homologs were performed. Genes related to nucleic acid metabolism, transposase and integrase activity are highlighted.

Gene #Pipolins Annotations HHpred UniProt best hit eggNOG Description KEGG Description
pipolB 92 (100%) Primer-independent DNA polymerase PolB DNA polymerase (P03680)
xerC_2 90 (98%) Tyrosine recombinase XerC/XerD; Prophage

integrase IntS; Arm DNA-binding domain
Tyrosine recombinase XerD
(P0A8P8)

Belongs to the ’phage’ integrase
family

group_1 87 (95%) Uracil-DNA glycosylase Type-4 uracil-DNA glycosylase
(Q96YD0)

group_6 86 (93%) hypothetical protein
xerC_1 84 (85%) Tyrosine recombinase XerC Integrase (P03700) Belongs to the ’phage’ integrase

family
hisF 78 (83%) Type I restriction modification system methyl-

transferase (hsdM); Imidazole glycerol phos-
phate synthase subunit HisF

hsdM1 (Q5M500) HsdM N-terminal domain type I restriction enzyme
M protein(K03427)

group_16 76 (82%) metallohydrolase Uncharacterized protein
(Q57587)

Metal-dependent hydrolase uncharacterized protein
(K07043)

group_18 75 (82%) hypothetical protein
group_5 75 (82%) Type I site-specific deoxyribonuclease (hsdR) hsdR (P10486) Type I restriction enzyme R

protein N terminus (HSDR_N)
type I restriction enzyme,
R subunit (K01153)

group_10 75 (82%) Protein of unknown function (DUF2787) Protein of unknown function
(DUF2787)

group_13 74 (80%) hypothetical protein Protein of unknown function
(DUF726)

group_11 73 (79%) hypothetical protein
group_24 73 (79%) hypothetical protein
group_52 73 (79%) Excisionase Putative excisionase (A6T888)
group_3 64 (70%) hypothetical protein
group_8 59 (64%) hypothetical protein
group_19 56 (61%) WYL domain Uncharacterized protein

(A0A4Y3NDN0)
transcriptional regulator

group_58 53 (58%) hypothetical protein
Continued on next page
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Table 3.1 Continued from previous page
Gene #Pipolins Annotations HHpred UniProt best hit eggNOG Description KEGG Description

group_28 41 (45%) Uncharacterized protein family (UPF0149) Protein translocase subunit
SecA (P28366)

Uncharacterised protein family
(UPF0149)

uncharacterized protein
(K07039)

group_17 38 (41%) IS1 family transposase IS1A/IS1D
group_23 31 (34%) PD-(D/E)XK nuclease superfamily PD-(D/E)XK nuclease super-

family
group_31 30 (33%) Restriction endonuclease Restriction endonuclease

(A0A0J9X157)
Restriction endonuclease

group_15 30 (33%) IS1 family transposase IS1X2/IS1R insertion element IS1 pro-
tein InsB (K07480)

group_9 29 (32%) Protein of unknown function (DUF4011) Protein of unknown function
(DUF4011)

group_34 24 (26%) hypothetical protein type I restriction enzyme, R
group_53 23 (25%) Protein of unknown function

DUF262/DUF1524
Protein of unknown function
(DUF1524)

group_14 22 (24%) Uncharacterized protein family (UPF0149)
group_20 22 (24%) WYL-domain containing protein
group_39 22 (24%) Protein of unknown function DUF262 Protein of unknown function

(DUF1524)
group_40 22 (24%) hypothetical protein
group_25 22 (24%) Protein of unknown function

DUF262/DUF1524
Protein of unknown function
(DUF1524)

group_55 21 (23%) Protein of unknown function DUF262 Protein of unknown function
DUF262

group_32 19 (21%) hypothetical protein
group_27 16 (17%) Type I restriction modification enzyme HsdS (Q8R9Q6) Type I restriction modification

DNA specificity domain
type I restriction enzyme,
S subunit (K01154)

group_29 16 (17%) IS3 family transposase ISEam1 Transposase transposase (K07483)
insK 16 (16%) IS3 family transposase ISEc14; Putative trans-

posase InsK
Concluded
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ExplorePipolin: a pipeline for identification and exploration of pipolins, novel mobile genetic
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3.6 Comparative Analysis

Comparative representation of the genetic structure of pipolins was generated by Easyfig [39]
(Figure 3.3).

All E. coli pipolins are integrated into the same point, at the Leu-tRNA gene, except for
the pipolin from LREC252 strain that looks inconsistent with other pipolins. In some genomes,
three att sequences were detected, as those pipolins seem to share the integration site and mech-
anism with some prophage, as was previously detected for the enterotoxigenic Escherichia coli
H10407 strain [2]. Indeed, the genetic structure comparison of all pipolins confirmed that a sim-
ilar Myovirus enterophage is present next to pipolins from eight strains, spanning phylogroups
A (H10407, 2014EL1346-6 and 99-3165), C (LREC239 and LREC246) and D (112648, 122715,
2015C3125 and FWSEC0002) (Section 3.7). In addition, the presence of transposases and asso-
ciated genes indicates that genetic islands and insertion sequences can as well contribute to the
variability of pipolins, particularly in the case of the stains LREC248 and LREC252, expanding
also the pipolin gene repertoire (Section 3.5).

Although a certain level of synteny and modular organization can be detected, genetic rear-
rangements, including inversions, duplications, and deletions, which often lead to gene exchange,
are also frequent, as well as truncations and disruptions. Even truncated forms of piPolBs or
XerC-like recombinases can be detected, which might lead to the impairment of replication or
mobilization of pipolins.

Overall, the genetic repertoire and structure of analyzed pipolins suggest that they can
exchange genetic information among E. coli strains.
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Figure 3.3: Genetic structure of E. coli pipolins. Protein-coding genes are represented by arrows,
indicating the direction of transcription, and colored as shown on the legend. Re-annotated
pipolins sorted according to the hierarchical clustering of the gene presence/absence matrix.
The greyscale on the right reflects the percent of amino acid identity between pairs of sequences.
Names of pipolin-carrying strains are colored based on the phylogroups.
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3.7 Diversity of the Selected Strains

Coding DNA sequences (CDSs) predicted by Prokka were analyzed using ABRicate [40] for
the presence of antibiotic resistance (ResFinder V2.1.) and virulence genes (VirulenceFinder
v1.5), and identification of clonotypes (CHTyper 1.0), sequence types (MLST 2.0) and serotypes
(SerotypeFinder 2.0). Phylogroups were predicted using the ClermonTyping online tool [41].

We found that pipolins were present in strains of phylogroup A (57 strains), but also in B1
(12 strains), C (8 strains) and D (15 strains), with similar distribution patterns within NCBI
and LREC collections (Figure 3.4). The common presence of E. coli strains from phylogroup A
in the dataset was somewhat expected, as this phylogroup is the most common among human
isolates and thus very abundant in most collections [42, 43]. However, we were surprised by the
absence of pipolins among B2 strains, despite the fact that this phylogroup is also very common
in the LREC collection and, along with group D, it is responsible for most extraintestinal E. coli
in human and animals [44]. Nevertheless, phylogroups A, B1, C and D have been proposed to
belong to different ancient lineages [45], downplaying a strict vertical transmission of pipolins
throughout the evolutionary diversification of E. coli .

Regarding multilocus sequence typing (MLST), clonotyping and serotyping, we have also
observed their great variety among analysed strains (Figure 3.4). In general, strains from phy-
logroups A and B1 are more diverse than strains from phylogroups C and D, with clear clonality
between some strains.

This diversity is even more evident when the pan-genome is analyzed, with a total of 16,675
genes, only 934 genes comprise a core-genome and more than two-thirds of the genes in the
cloud-genome (11,175, 67%). As such, the number of total genes associated with the cloud gene
set increased consistently with the number of genomes (Figure 3.2b).

In conclusion, notwithstanding the clonality of several strains, the analysis indicates that
pipolins are present in a wide variety of E. coli strains.
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Figure 3.4: Phylogeny of pipolin-harboring E. coli strains along with the associated data: strain
phylogroup, dataset origin, serotype (O- and H-types), clonotype (CC) and sequence type (ST).
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3.8 Cophylogeny of Pipolins and Host Strains

The alignment of concatenated genes from the core-genome was used for the phylogeny of
host strains. Phylogeny of piPolB gene was generated independently. The best-fit maximum
likelihood-phylogenetic tree was built using IQ-TREE [46] upon PRANK codon aware align-
ment [47]. The obtained trees were then used for the comparative phylogenetic analyses with
RStudio [48]. Briefly, phylogenetic trees were handled and visualized using ggtree [49] and tan-
glegrams for visual tree comparison were generated with Phytools [50]. We used the Dendextend
package [51] to calculate the cophenetic correlation coefficient (CCC) between trees.

Since the presence of the piPolB gene is the hallmark of pipolins and it constitutes the only
core gene (Section 3.5), we performed a phylogenetic analysis of the piPolB sequences from the
pipolin-harboring E. coli strains. Although some of the annotated piPolB genes are partially
truncated, particularly those from pipolins in phylogroup D strains, they have a high degree
of identity, above 98.8% in the aligned regions. Phylogeny of the piPolBs underlined again the
similarity among pipolins in clonal strains that belong to phylogroups C and D, but sequences
from phylogroups B1 and A were mixed together (Figure 3.5).

The tanglegram in Figure 3.5 allows us to visualize the cophylogeny between piPolBs and
E. coli strains carrying pipolins. This plot reveals a complex association pattern, with numerous
crisscrossing lines that suggest incongruence between the two phylogenies. We have calculated
the CCC among trees as indicative of phylogenies clustering congruence, and, in line with the
figure, the CCC value is quite low, 0.21.

Overall, we can conclude that the pipolins diversity is poorly congruent with the strains
phylogeny and their distribution is rather indicative of a patchy distribution amongst a wide
variety of pathogenic E. coli strains, as expected for horizontally transferred MGEs. This pattern
may reflect the wide distribution of pipolins beyond E. coli , dispersed among major bacterial
phyla, namely Actinobacteria, Firmicutes, and Proteobacteria, as well as in mitochondria [2].
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Figure 3.5: Tanglegram representation of maximum-likelihood phylogenies, constructed from
the host strains core genome alignment and piPolB gene alignment. Links between pipolins and
E. coli strains are colored based on the phylogroup.
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4
Pipeline Design and Implementation

4.1 Pipeline Design

4.1.1 The Main Functionality of the Pipeline

ExplorePipolin pipeline is intended to check automatically whether a given bacterial genome
assembly contains pipolins, although the current version (v.0.0.a1) is designed and tested for
E. coli pipolins. When a pipolin is detected within the analysed genome, the pipeline auto-
matically extracts the pipolin sequence, annotates its genes, as well as searches for terminal
direct repeats (att sites) and includes them into the annotation. The pipeline outputs results
in the most common formats, like Genbank and GFF, ready for downstream analysis and/or
visualization.

During the prior analysis of pipolins from E. coli genomes (Chapter 3), the following impor-
tant steps were highlighted:

1. The presence of pipolin hallmark features need to be identified:

(a) The presence of piPolB gene need to be predicted carefully.
(b) The presence of att direct repeats can be predicted in two ways: first, it is possible

to check whether repeats with similarity to the known att sites are present; second,
de novo search of att direct repeats could be performed.

(c) tRNAs and tmRNAs provide a valuable information for identification of att sites, so
they need to be predicted before/during the step of de novo search of atts.

2. Pipolin features sometimes spread among several contigs, and in this case, we need to
analyse whether the pipolin could be scaffolded into one continuous fragment. Scaffolding
may ease pipolins structure visualization, as well as a comparison of pipolins from different
strains.

3. After the detection of hallmark features, the pipolin element boundaries need to be defined
and the sequence(s) corresponding to the pipolin, need to be extracted.

4. Pipolin genes need to be thoroughly and homogeneously annotated.
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5. The information about found att repeats need to be included in the annotation separately,
as gene prediction and annotation tools usually do not handle any repeats.

6. To ease subsequent visualization of pipolins using Easyfig, colouring scheme for some
pipolin genes, att repeats and assembly gaps can be added.

It is worth noting here that we intend to use the pipeline for a broader range of bacteria
in the future, therefore it is important the pipeline maintain flexibility so that its functionality
could be easily modified and extended (see Subsection 4.1.4).

4.1.2 Functionality Provided by Existing Software

Some steps in the pipeline can be delegated to existing programs. First, prediction of the piPolB
gene can be done by BLAST search, using a "reference" piPolB sequence as a query. During the
prior analysis, we found that piPolB sequences from E. coli genomes are highly conservative,
and at first glance, the nucleotide BLAST might seem a sufficient choice to predict piPolBs. But
definitely, our sampling is not representative: according to the previous study, we should expect
a greater variability of piPolB genes when screening genomes from other bacterial species [2]. As
such, protein-protein BLAST should be preferred as more accurate and more sensitive, for the
reason that protein sequences are evolutionary more conserved than nucleotide ones. Another
solution would be to use HMMER, which respects protein domain structure and therefore allows
more accurate identification of remote homologs. However, a multiple sequence alignment of the
protein sequence family is required to build the Hidden Markov Model (HMM) profile, while the
quality of the alignment and the number and diversity of the sequences it contains are crucial
for the subsequent search. Thus, this method can be used in the future, when a big set of piPolB
genes from different bacterial phyla is accumulated.

As for att terminal direct repeats, they have been shown to be highly conservative in E. coli
pipolins (Section 3.2), so that the nucleotide BLAST can be used for their prediction. However,
att sites from other bacterial species might totally unrelated to the att motif present in E. coli
pipolins. In this case, models based on generalized or HMM profiles can be used, as well as other
tools for detection of integration sites, like MGEfinder [24] or Mauve [52]. But again, at the
current moment, we do not have enough information about the variability of att sites to apply
other approaches.

As was already mentioned (Chapter 2 and Section 3.2), the knowledge of tRNAs/tmRNAs
locations in the genome can help to predict some of the att sites. The most commonly used pro-
grams to detect tRNAs/tmRNAs are ARAGORN [53] and tRNAscan-SE [54]. Both are effective
in tRNA/tmRNA search, but ARAGORN has been shown to work faster, while tRNAscan-SE
– to be more sensitive. For our pipeline, we have decided first to implement the search with
ARAGORN, which is more appropriate because it is already included in the dependencies list
of Prokka (see below).

For the prediction and annotation of pipolin genes, we have chosen Prokka pipeline [34],
which is a comprehensive tool annotating many prokaryotic genome features: protein-coding
genes, tRNAs, rRNAs, non-coding RNAs and others. Prokka has other advantages compared to
the frequently used tools like NCBI’s PGAP [55] and RAST [56]: 1) it is a command-line tool,
which facilitates its integration into other software; 2) it uses prokaryotic specific databases,
which drastically reduces the amount of the required disk space; 3) it is possible to provide to
Prokka your own additional/modified databases or just a set of pre-annotated proteins of good
quality, which helps to improve annotation and makes gene naming consistent. Adding a custom
list of proteins focused on pipolin products was used by us to refine the annotations and reduce
the number of hypothetical proteins (Section 3.4).
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4.1.3 Functionality That Needs to Be Programmed

There are steps in the pipeline that need to be programmed "from scratch" as there are no
tools that provide the required functionality and, at the same time, do not overburden the
pipeline with unnecessary complexity. Some of these steps might be considered as straightfor-
ward, like extraction of pipolin sequences into separate FASTA files, introducing of att sites
features into the annotation files (GenBank and GFF), and others, not mentioned directly,
like parsing BLAST, ARAGORN, HMMER output files, introducing of assembly gap features,
various sequence manipulations. These steps usually do not require serious reflection, while
the presence of convenient task-specific libraries inside the programming language might help
considerably.

A couple of complex steps need to be programmed from the ground up: 1) de novo search
of att direct repeats, and 2) scaffolding of pipolin fragments into a single continuous sequence.

De novo search of att sites Though att sites from the analysed E. coli strains are appeared to
be conserved (Section 3.2), we have very little information about atts from pipolins of other bac-
teria. Theoretically, they may possess different atts, depending on the type of encoded integrase
gene(s). Even in some E. coli pipolins, more than one XerC-like recombinases and sometimes
IntS recombinase were detected (Section 3.4), suggesting that pipolins may use different inte-
gration sites within bacterial chromosome. Knowing the att repeats location helps to precisely
define pipolin boundaries, though there are always no guaranties that element boundaries have
remained intact. In addition, there are few examples of circular, plasmid-like pipolins in En-
terobacter, Staphylococcus and Lactobacillus, which do not have att sites. Characterization of
plasmid-like pipolins poses additional challenges that might be considered in future versions of
the pipeline. Nevertheless, de novo search of att direct repeats should be implemented in order
to catch not-known atts.

It was discussed in Chapter 2 that many tools for identification of MGEs include the step
of flanking repeats analysis. For most of the tools, we do not know how exactly they perform
this task since this step is usually purely documented or not documented at all. At first glance,
we have a problem of finding identical non-overlapping substrings (sequences) in a long string
(genome) and this problem can be easily solved. However, the overlapping region of recombining
sites with strict homology might be as short as 6 bp for some of the integrases. Moreover, it was
shown previously that, for some tyrosine-recombinase family proteins, strict homology between
integration sites is not required [57]. So, even if we scan a short sequence of 100 kb in length for
the presence of 6-bp repeats, we would likely find many of them, not to mention the situation
when we would allow not strict identity.

Several tools are available for the identification of different types of repeated sequences. We
were not paying attention to "knowledge-based" tools that use consensus sequence databases to
search for repeats, particularly since most of them are eukaryote-specific [58]. Then, there are
also "signature-based" tool that are restricted to certain types of elements, like for CRISPRs
(Clustered Regularly Interspaced Palindromic Repeats) in prokaryotes [59], LTR-RTs (Long
Terminal Repeat retrotransposons) in plants [60] and so on. Though, at the current moment,
we should accept the fact that we do not know in detail signatures of pipolin-specific terminal
repeats, apart from those found in E. coli genomes.

As an example of more general approaches, we might look at PHASTER web tool [9], which
performs a search of att sites the following way. For each integrase in a cluster of prophage genes,
the cluster boundaries are scanned for potential att sites that are identified as short nucleotide
repeats (12-80 bases). At the same time, tRNA and tmRNAs are found, and repeats that do
not overlap with tRNA or tmRNA gene are filtered out. We have chosen first to implement a
similar approach in our pipeline, with the only difference that we will look for repeats in regions,
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surrounding piPolB gene, the only hallmark of pipolins.

To find repeats, two kinds of methods are commonly used: based on the suffix tree or
alignment matrix [59]. When using alignment matrices, the programs usually start by comparing
a genome against itself and identifying local alignments between different regions of the genome
(which can be also visualised by genomic dot plots). After that, they classify the found repeats
using different approaches. With this in mind, it seems reasonable to try using the BLAST tool
for the purpose of searching for local alignments (repeat candidates).

BLAST algorithm starts with so-called word matching, and the minimum word size allowed
for nucleotide BLAST is 4, which would allow us to find such short repeats. One way would be
to extract a region of some length that surrounds a piPolB gene and align it to itself. Though
another more meaningful approach would be to extract a region of some length upstream of
the piPolB and a region of the same length downstream it, and create a pairwise alignment.
However, we are only interested in direct repeats, and fortunately, this can be specified by
-strand parameter. The minimum percent identity can be regulated as well to allow non-perfect
matches. The exact BLAST command for finding repeats is shown in Subsection 4.2.2.

Repeats found in this way can be further filtered by some criteria or saved into a file for
future analysis.

Scaffolding of pipolins. While analysing the E. coli pipolins, we have encountered a prob-
lem when different pipolin features (piPolB and atts) were located on different contigs. This
disconnection makes further analysis of the pipolins problematic. Taking in mind the expected
pipolin structure (Figure 3.1), we have decided to scaffold pipolin fragment into a single contin-
uous sequence by introducing the “assembly_gap” features of unknown length between contigs
(DDBJ/ENA/GenBank Feature Table Definition, Version 10.9 November 2019). The term scaf-
folding is referred to the process when two contiguous sequences are linked together by gaps,
while evidence of their adjacency comes from paired-end or mate-pair sequencing, long reads,
linkage data, etc [61]. In our case, we know that atts are headed in the same direction as
they are direct repeats and that one of them could overlap with a tRNA gene on the opposite
strand. In addition, we might expect piPolB to have a certain direction related to the tRNA
gene (Figure 3.3). The details about this step implementation can be found in Subsection 4.2.2).

4.1.4 Programming Language and Libraries Choice

We decided to use Python [62] to program the pipeline, as it is a simple but powerful pro-
gramming language, with a comprehensive standard library, rich IDE (integrated development
environment) support, and very active community. Moreover, we made an extensive use of the
Biopython [63] library that comes with many useful tools for computational biology. Since GFF
files parsing is not integrated into Biopython, bcbio-gff [64] library was used for this purpose.
For creating a convenient command-line interface, Click [65] library has been chosen.

The resulting pipeline is a multi-step procedure, and, as such, it should have the following
properties: 1) each step can be easily modified, as well as new steps can be easily added;
2) logging facilities to see the progress of the pipeline and to have a record of events for every
pipeline run; 3) seamless support for data-parallel computation (for multiple genomes to be
analysed at once); 4) automated step dependency tracking; 5) caching of step outputs to avoid
unnecessary recomputing when possible.

To fulfill the above requirements we decided to use a workflow system that can simplify
pipeline design and execution by providing convenient abstractions. Among a range of available
libraries (Apache Airflow [66], Metaflow [67], Luigi [68], etc.), we have chosen Prefect [69] as it
is well documented, lightweight, and has few dependencies.
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4.2 Pipeline Implementation

4.2.1 Project Structure Overview (v.0.0.a1)

ExplorePipolin pipeline repository is available on GitHub: https://github.com/liubovch/
ExplorePipolin. At the root of the repository the following file and folders can be found:

./README.md – user’s project description (it can be found also in Appendix A)

./LICENSE – a full license text will be placed here;

./setup.py – a script describing how to build and install the package (Subsection 4.2.4);

./docker/ – contains Dockerfile to build pipeline-containing Docker image (Subsec-
tion 4.2.5);

./conda/ – contains two files to build Conda package and to create package-specific Conda
environment (Subsection 4.2.6);

./explore_pipolin/ – the package source code directory;

./tests/ – the package unit tests directory.

The package source code directory explore_pipolin – the actual Python package – consists
of several modules and sub-modules which divide the code by its functionality (Figure 4.1). For
example, the module explore_pipolin.flow defines pipeline flow using Prefect library conven-
tions (Subsection 4.2.3). The module explore_pipolin.utilities combines several general-
purpose sub-modules: io sub-module contains functions to perform regular file operations,
external-tools works with non-Python processes, and logging generates genome-specific log
messages. The module explore_pipolin.tasks_related includes tasks-specific sub-modules,
while the tasks themselves defined in the module explore_pipolin.tasks (Subsection 4.2.3).
The pipeline entry-point script is defined in the module explore_pipolin.main.

4.2.2 Implementation Details

Package classes. For many purposes in the pipeline, we are using the Biopython library, but
summing up, almost all these usages are related to reading and writing files of different formats
common in bioinformatics. Even though, Biopython SeqRecord and SeqFeature classes allow to
create and modify sequence annotation objects, it was not convenient to operate them for several
reasons: 1) they are overwhelmed with attributes and methods, not required in our analysis, and
2) what is more important, they lack attributes and methods, not only specific for our analysis
but even those that we were expecting to see. For example, to get features of a certain type
from a SeqRecord object (features are stored in a list), we need to infer feature indices first
(usually in a for loop), and to use them to get the features. Unfortunately, the SeqRecord class
does not have a method to get all features of a certain type at once. Another example is the
FeatureLocation class which stores feature’s start and end positions and feature’s strand. We
were expecting to see in this class a method that checks if two features are overlapping but had
not found any. For all those reasons, we have decided to code our own classes with the required
attributes and methods.
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Figure 4.1: A diagram showing dependencies between package modules and classes. The package
explore_pipolin consists of modules (light grey) and sub-modules (dark-grey). Dependencies
between modules are indicated by dashed arrows, for example, the module main depends on the
module flow. Dependencies between sub-modules are skipped for a clearer picture. Classes are
shown as white rectangles inside modules and sub-modules. The first compartment of a rectangle
shows the class name, the second – class attributes, the third – class methods (the only method
is shown for the Scaffolder class). We have only aggregation ("has a") relationships between
classes, indicated by a line with a diamond on its end. The relationships multiplicity and name
are indicated as well. For example, class Contig is a part of class Genome, identified by the
name contigs; a Genome instance might contain one or more Contig instances.

The main classes we have created to perform pipolin analysis are defined in the module
explore_pipolin.common (Figure 4.1). Those are:

• Orientation – enumerates two possible orientations of a nucleotide sequence: FORWARD
and REVERSE and implements methods to convert between different strand notations (for
example, +1/-1 in BLAST XML or +/- in GFF3).

• Contig – represents a genome sequence. When we think of a bacterial genome, it is usually
a single chromosome. However, when working with incomplete or not finished genomes,
we would operate with contigs.

• Feature – an abstraction of basically any meaningful subsequence within a genome con-
tig (or a chromosome). It also implements a method to check whether two features are
overlapping.

• FeaturesContainer – the core class, which not only stores all features of our interest, but
implements methods to query features by type, location and so on.

• Pipolin – is basically a container of features with type PIPOLIN_FRAGMENT. Compared to
FeaturesContainer, in Pipolin object, fragments is immutable: once we have inferred
the order of pipolin fragments (this is done by Scaffolder object), we store them in this
order within Pipolin object.

26 CHAPTER 4. PIPELINE DESIGN AND IMPLEMENTATION



ExplorePipolin: a pipeline for identification and exploration of pipolins, novel mobile genetic
elements widespread among bacteria

• RepeatPair – stores two features of type REPEAT which constitute a pair of direct repeats
or att repeat candidates.

• Genome – an abstraction of a genome file, provided to the pipeline as input. It aggregates
almost all the aforementioned classes, directly or indirectly, to provide easy access to their
attributes and methods.

Running external tools. To execute non-Python software within Python code, we used the
subprocess module from the standard library. All external processes are defined in the module
explore_pipolin.utilities.external_tools. Here we briefly discuss the processes and the
additional parameters we have chosen for the pipeline (the corresponding shell commands will
be shown).

To BLAST genome against the known piPolB amino acid sequence or att nucleotide sequence,
the default -evalue of 10 was reduced to 0.01 to avoid low quality hits:
$ tblastn -query piPolB.fa -subject genome.fa -evalue 0.01 -outfmt 5

$ blastn -query att.fa -subject genome.fa -evalue 0.01 -outfmt 5

The command to find exact direct repeats of minimal length 6 is:
$ blastn -query upstream_piPolB_100000.fa -subject downstream_piPolB_100000.fa\

-outfmt 5 -perc_identity 100 -word_size 6 -strand plus

, where upstream_piPolB_100000.fa and downstream_piPolB_100000.fa are subsequences
that are upstream and downstream of piPolB gene. We have decided to align the subsequences
of length 100 kb, as most of E. coli pipolins were shorter than that (Section 3.6), so it is unlikely
to find att repeat outside of ±100 kb region around piPolB.

In all BLAST runs, the search results are stored in BLAST XML format (-outfmt 5), which
is supported by Bio.SearchIO.BlastIO module from Biopython. Though BLAST XML format
is harder to read by eye compared to tabular or plain text BLAST formats, it is more stable
and complete and easier to parse automatically.

The command to define tRNAs/tmRNAs in a genome using ARAGORN is:
$ aragorn -w -o aragorn.batch genome.fa

By default, ARAGORN outputs not only positions and types of found tRNAs/tmRNAs, but
also their two-dimensional structure. Here we used an option -w to have the results in a more
convenient batch format. Since this format is a custom ARAGORN way to represent results,
we wrote a function to parse it (can be found in explore_pipolin.utilities.io module).

The command to annotate pipolin sequences using Prokka is:
$ prokka --outdir outdir --prefix genome --locustag genome --rawproduct\

--cdsrnaolap --rfam --proteins proteins.fa --force genome.fa

, where --prefix is output files prefix, which is set to the genome file name (to distinguish be-
tween different genomes), --locustag is a Locus tag prefix used inside annotation files, --force
– allows annotations from different genomes to be saved in the same directory, and --proteins –
allows to provide a list of pre-annotated genes, such as we used in Section 3.4. Other parameters
are not mandatory for the pipeline and do not affect results significantly.

De novo search of att repeats. At the current moment, we implemented this step only for
complete genomes, although, it might be extended to incomplete genomes without changing the
algorithm. In brief, we start this step by searching for direct repeats around piPolB gene. Then,
we filter the found repeats to discard those that are overlapping with the known att site. In the
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end, we filter the remaining repeats to leave those that are overlapping with a tRNA or tmRNA
gene.

When we analysed piPolB-containing E. coli genomes in this way, we had not found any
other att repeats apart from those that were overlapping with the known ones. This result is
somewhat expected as it is unusual for a MGE to have two different integration sites. In most
cases, this found de novo att repeats were only around 20-25 nt long, representing short regions
of the perfect identity. Nevertheless, the approach might be helpful in the identification of other
kinds of att repeats that might present in genomes of other bacterial species.

Scaffolding of pipolins. This step is done within a Scaffolder class object (Figure 4.1) in
case when pipolin hallmark features (piPolB gene and att sites are localized on more than one
contig. The Scaffolder object takes a Genome instance as its main attribute and invokes the
scaffold() method, which in turn returns an instance of Pipolin class (ordered sequence of
pipolin fragments).

Figure 4.2: Combinations of pipolin fragments that can be scaffolded. Assembly gap is shown
as a black triangle. tRNA feature with dashed border line indicates that its presence or absence
is not required to infer pipolin fragments order. YES/NO on the right states whether the
following combination is present among analysed pipolins and, when YES, the corresponding
E. coli strains are also listed. The combination 9 (which actually comes from case 1) is a non-
consistent case because the tRNA is appeared to be on the left side. The detailed structure of
the following pipolins is shown on Figure 2.1.

There are eight unambiguous combinations of pipolin fragments that can be scaffolded by
our algorithm (Figure 4.2). Those are coming from the following assumptions: 1) att repeats are
headed in the same direction (on the scheme they are located on the plus strand as well as piPolB
gene); 2) piPolB is sitting within att sites; 3) if one of att sites overlaps with tRNA/tmRNA gene
on the opposite strand, this att site should be on the right side; 4) if piPolB gene is sitting alone
on the contig, the contig direction is set so that piPolB is on the plus strand. It is worth to note
that these assumptions do not guarantee the correct pipolin scaffolding, but for sure they will
facilitate the subsequent analysis of putative pipolins. The scaffolding algorithm pseudocode is
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shown as well (Algorithm 1), where CreateFragment function cuts a contig and rotates the
obtained fragment, so that piPolB and atts are on the plus strand, and OrderFragments is
concerned that piPolB sits within att sites.

Algorithm 1: Scaffolding of pipolin fragments into a single pipolin
Input: Genome class instance
Output: Pipolin class instance

1 begin
2 PipolbAttContigs ← GetPipolbAttContigs()
3 PipolbOnlyContigs ← GetPipolbOnlyContigs()
4 AttOnlyContigs ← GetAttOnlyContigs()
5 if Length(PipolbAttContigs) = 1 then
6 if Length(AttOnlyContigs) = 1 then
7 fragmentRight ← CreateFragment(PipolbAttContigs [0])
8 fragmentLeft ← CreateFragment(AttOnlyContigs [0])
9 Pipolin ← OrderFragments(fragmentRight, fragmentLeft)

10 return Pipolin
11 else
12 error Cannot assemble!
13 end
14 else if Length(PipolbAttContigs) = 0 then
15 if Length(PipolbOnlyContigs) = 1 then
16 if Length(AttOnlyContigs) = 2 then
17 fragmentRight ← CreateFragment(AttOnlyContigs [w/ tRNA])
18 fragmentLeft ← CreateFragment(AttOnlyContigs [w/o tRNA])
19 fragmentMiddle ← CreateFragment(PipolbOnlyContigs [0])
20 Pipolin ← fragmentLeft, fragmentMiddle, fragmentRight
21 return Pipolin
22 else
23 error Cannot assemble!
24 end
25 else
26 error Cannot assemble!
27 end
28 else
29 error Cannot assemble!
30 end
31 end

After scaffolding of disrupted E. coli pipolins with this algorithm, we got only one case (for
strain LREC252) looking totally inconsistent with the expected structure (Figure 4.2). Then, we
also had two ambiguous cases (for strains LREC242 and LREC244), with two contigs containing
piPolB gene (one of which was actually a short fragment less than 100 amino acids). We have
resolved their order manually by visual comparison with other pipolins using Easyfig software
(Figure 3.3).

Testing the code. To automatically test different components of the pipeline, we are using the
unittest testing framework available from the standard Python library. Each package module
tests are organized in a separate script, for example, test_common.py includes tests for the
module explore_pipolin.common. In the current version of the pipeline, we do not have tests
for all the modules, though, we are planning to extend the test coverage in the future.
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4.2.3 Workflow Overview

The Prefect workflow management library that we used refers to each step in a pipeline as
a Task. Tasks are basically Python functions that can receive inputs and produce outputs.
However, apart from that, a task also produces metadata about its state which are then passed
to downstream tasks. In the pipeline, we created tasks by decorating Python functions with the
provided @task decorator:

# inside ./ explore_pipolin/tasks.py
from prefect import task

@task
def create_genome_from_file(genome_file) -> Genome:

... # function body

@task()
def find_pipolbs(genome: Genome , out_dir):

... # function body

A task also can take arguments allowing its customization, for example, indicating whether
it should run or not depending on the upstream task state, or whether it should cache its input-
s/outputs, and so on. In most of the cases, we had no need to change task default parameters.
Individual tasks have been combined into a Flow which is basically a script that illustrates the
dependencies between tasks. Once a flow has been defined, it can be executed by calling run()
method on it. To pass arguments (inputs) to a flow, special tasks called Parameters had to be
defined:

# inside ./ explore_pipolin/flow.py
from prefect import Flow , Parameter , unmapped
from explore_pipolin import tasks

def get_flow ():
with Flow(’MAIN’) as flow:

genome_file = Parameter(’genome_file ’)
out_dir = Parameter(’out_dir ’)

genome = tasks.create_genome_from_file.map(genome_file)

genome = tasks.find_pipolbs.map(genome=genome , out_dir=unmapped(
out_dir))

... # other downstream tasks

return flow

# inside ./ explore_pipolin/main.py
get_flow ().run(genome_file= ... , out_dir= ... ) # where genome_file
# can be an iterable object including several files

Data-parallel computation was achieved through the use of Mapping concept: when an iter-
able input is provided, a mapped task is copied for each element in input. This concept allowed us
to specify several genome sequence files as input and to have independent parallel flows running
for each genome sequence file. In the example above, the task create_genome_from_file was
mapped through the genome_file argument, while the next task run_blast_against_pipolb
was mapped through the results of the previous task. At the same time, we did not need to
iterate over ref_pipolb and out_dir arguments, that is why they were passed to unmapped
function from Prefect.

When running a flow, we can monitor the progress of pipeline execution by leveraging logging
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mechanisms that are built in Prefect. There is also a possibility to extend Prefect’s default logs
by accessing the logger from the execution context:

# inside ./ explore_pipolin/tasks.py
from prefect import task
from prefect import context

@task
def are_pipolbs_present(genome: Genome):

logger = context.get(’logger ’)

if len(genome.pipolbs) == 0:
logger.warning(’No piPolBs were found!’) # it will be logged!
return False

return True

By the default, Prefect logs are streamed to standard output and, for our pipeline, analysing
two genome files, the standard output will look similar to this:
$ explore_pipolin --out -dir outdir genome_wo_pipolin.fa genome_w_pipolin.fa
[timestamp] INFO - prefect.FlowRunner | Beginning Flow run for ’MAIN ’
[timestamp] INFO - prefect.FlowRunner | Starting flow run.

... # logs of upstream tasks

[timestamp] INFO - prefect.TaskRunner | Task ’are_pipolbs_present [0]’: Starting
task run...

[timestamp] WARNING - prefect.are_pipolbs_present [0] | No piPolBs were found!
[timestamp] INFO - prefect.TaskRunner | Task ’are_pipolbs_present [0]’: finished

task run for task with final state: ’Success ’
[timestamp] INFO - prefect.TaskRunner | Task ’are_pipolbs_present [1]’: Starting

task run...
[timestamp] INFO - prefect.TaskRunner | Task ’are_pipolbs_present [1]’: finished

task run for task with final state: ’Success ’

... # logs of downstream tasks

[timestamp] INFO - prefect.FlowRunner | Flow run SUCCESS: all reference tasks
succeeded

From the log above we could see the warning message that was thrown for the first genome,
not containing piPolB gene. Although Prefect default logging is quite useful, when running for
several genomes, it starts to be too long. Not to mention that it is problematic to discriminate
log messages thrown for a certain genome file from this output. For that reason, we have
decided to implement genome-specific logging using the Python standard library. Details of its
implementation can be found in the module explore_pipolin.utilities.logging. Below is
an example of a log file for one of the strains:
$ cat outdir/LREC241.log
[timestamp] INFO: prefect.find_pipolbs [1] ( LREC241 ) starting ...
[timestamp] INFO: prefect.find_pipolbs [1] ( LREC241 ) done
[timestamp] INFO: prefect.are_pipolbs_present [1] ( LREC241 ) starting ...
[timestamp] INFO: prefect.are_pipolbs_present [1] ( LREC241 ) done
[timestamp] INFO: prefect.find_atts [0] ( LREC241 ) starting ...
[timestamp] INFO: prefect.find_atts [0] ( LREC241 ) done
[timestamp] INFO: prefect.find_trnas [0] ( LREC241 ) starting ...
[timestamp] INFO: prefect.find_trnas [0] ( LREC241 ) done
[timestamp] INFO: prefect.find_atts_denovo [0] ( LREC241 ) starting ...
[timestamp] WARNING: prefect.find_atts_denovo [0] ( LREC241 ) This step is only

for complete genomes. Skip ...
[timestamp] INFO: prefect.are_atts_present [0] ( LREC241 ) starting ...
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[timestamp] INFO: prefect.are_atts_present [0] ( LREC241 ) done
[timestamp] INFO: prefect.analyse_pipolin_orientation [0] ( LREC241 ) starting

...
[timestamp] INFO: prefect.analyse_pipolin_orientation [0] ( LREC241 ) done
[timestamp] INFO: prefect.scaffold_pipolins [0] ( LREC241 ) starting ...
[timestamp] WARNING: prefect.scaffold_pipolins [0] ( LREC241 ) >>> Scaffolding

is required!
[timestamp] INFO: prefect.scaffold_pipolins [0] ( LREC241 ) done
[timestamp] INFO: prefect.extract_pipolin_regions [0] ( LREC241 ) starting ...
[timestamp] INFO: prefect.extract_pipolin_regions [0] ( LREC241 ) @pipolin

fragment length 365 from NODE_38
[timestamp] INFO: prefect.extract_pipolin_regions [0] ( LREC241 ) @pipolin

fragment length 49199 from NODE_42
[timestamp] INFO: prefect.extract_pipolin_regions [0] ( LREC241 ) @pipolin

fragment length 2708 from NODE_18
[timestamp] INFO: prefect.extract_pipolin_regions [0] ( LREC241 ) @@@pipolin

record total length 52472
[timestamp] INFO: prefect.extract_pipolin_regions [0] ( LREC241 ) done
[timestamp] INFO: prefect.annotate_pipolins [0] ( LREC241 ) starting ...
[timestamp] INFO: prefect.annotate_pipolins [0] ( LREC241 ) done
[timestamp] INFO: prefect.include_atts [0] ( LREC241 ) starting ...
[timestamp] INFO: prefect.include_atts [0] ( LREC241 ) done

The aforementioned are the main Prefect concepts we have been using in our pipeline. A
static representation of the pipeline’s flow graph can be seen in Figure 4.3. Caching of pipeline
outputs and parallel tasks execution are not implemented at the current moment. It requires
around 30 minutes to analyse 92 E. coli genomes on a standard laptop with 4 GB of memory
and 4 CPUs (when all CPUs are leveraged at the annotation step by Prokka).

4.2.4 Installation From Source

Since there are only Python libraries among the package build dependencies (Click, Biopython,
bcbio-gff and Prefect), it can be easily built and installed using pip Python package installer
(https://github.com/liubovch/ExplorePipolin#install-from-source). For this purpose,
setup.py script is used, listing build dependencies, entry points, package data files and other
package metadata.

Though, apart from build dependencies, the package needs additional run dependencies:
command-line BLAST (BLAST+), ARAGORN and Prokka, – which might be difficult to install
depending on the operating system you are using. We can note, however, that the pipeline will
only work on Unix-like systems because Prokka run dependency has such a restriction.

To make the pipeline installation and running reproducible, Docker image and installation
via Conda are provided (see below).

4.2.5 Deployment Using Docker

Docker is a tool that allows creating a so-called Docker image of the application. While creating
an image, Docker is guided by instructions or commands written in a Dockerfile. Once an
image is created, it is ready to be used by running applications installed in it.

A Dockerfile that is used to build an image with the ExplorePipolin pipeline can be found in
the GitHub repository: https://github.com/liubovch/ExplorePipolin/blob/master/docker/
Dockerfile. It is a simple Dockerfile, containing the following instructions:

1. The parent image is defined at the beginning of the file using command FROM. The image
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extract_pipolin_regions <map>

annotate_pipolins <map>

find_pipolbs <map>
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create_genome <map>
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pipolin

Figure 4.3: Static representation of ExplorePipolin’s flow graph. The nodes with a coral back-
ground are Parameter tasks and labeled with the input name. The nodes with white background
correspond to functional tasks and labeled with task names (brown font colour denotes internal
check tasks). The nodes with a green background are special structures allowing filtering tasks
by a condition (FilterTask) or create a conditional block in a flow (case). Edges represent task
dependencies.

is based on the Debian 10 ("Buster") parent image available from Docker Hub (https:
//hub.docker.com/).

2. Several RUN instructions go after to run shell commands, the purpose of which is to install
the pipeline dependencies.

• We tried to consolidate several commands under a single RUN as it is recommended in
the Docker Documentation (https://docs.docker.com/develop/dev-best-practices/)
in order to reduce the final image size.

3. Prokka dependency is installed from the source as it is not available in Debian 10. The
ENV instruction is used to add Prokka in the PATH environmental variable.

4. ExplorePipolin source code is downloaded from the repository and installed within an
additional RUN instruction.

5. Finally, using ENTRYPOINT instruction, the container is configured to run ExplorePipolin’s
executable (explore_pipolin)
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The Dockerfile needs to be placed in an empty directory. Since we had decided to upload
the image to GitHub Packages (https://github.com/features/packages), the image was built
with the following command:
$ sudo docker build -t\

docker.pkg.github.com/OWNER/REPOSITORY/IMAGE_NAME:VERSION\
path_to_directory_with_Dockerfile

, and uploaded to the GitHub Packages:
$ docker push docker.pkg.github.com/OWNER/REPOSITORY/IMAGE_NAME:VERSION

The final image occupies around 3 GB of disk space.

4.2.6 Deployment Using Conda

Another convenient way to use software that will guarantee the reproducibility of its installation
is to use Conda environments. To build a Conda package, a build recipe need to be specified
in a meta.yaml file. The corresponding meta.yaml to build the ExplorePipolin pipeline can
be found in the GitHub repository (https://github.com/liubovch/ExplorePipolin/blob/
master/conda/meta.yaml). It contains the following sections:

• package – contains the package name and version (the only mandatory fields);

• source – specifies that the source code of the package is coming from the latest release at
GitHub;

• build – indicates that the pipeline is installed using pip Python package installer;

• requirements – lists build and run requirements;

• test – tells how the package can be tested;

• about – contains the information about the package: homepage URL pointing to the
GitHub repository, licence name and licence file location.

The package can be built and installed into a separate environment with the following com-
mands:
$ conda -build path_to_directory_with_metayaml -c bioconda -c conda -forge\

--no-anaconda -upload
$ conda create -n env_name explore -pipolin -c local -c bioconda -c conda -forge

Now we can share the project environment across operating systems by exporting the envi-
ronment specifications into a separate so-called "environment.yml" file:
$ conda env export -n env_name -f explore_pipolin -0.0.1. yml

, and providing it for a user at the GitHub repository along with the built package (see
https://github.com/liubovch/ExplorePipolin#install-using-conda).
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5
Conclusions and Future Directions

In the current work, we have identified and characterised pipolin elements from 92 E. coli
genomes, 25 of which were identified from the Spanish E. coli Reference Laboratory (LREC)
collection and 67 – retrieved from the NCBI database. Pipolins from the E. coli genomes have
been shown to present in a wide range of strains from different phylogroups, serotypes and
clonotypes and to be highly diverse in their genetic structure and composition. Despite their
great variability, the pipolin elements are flanked by conserved att-like terminal direct repeats
and integrated into the same tRNA gene. Cophylogeny analysis showed a lack of congruence
between phylogenies of some groups of the pipolins and their host strains, which is in agreement
with the hypothesis of pipolins horizontal transfer.

Based on the predefined hallmark features of E. coli pipolins, we have designed and im-
plemented a pilot version of the ExplorePipolin pipeline, which is intended to identify, scaf-
fold (when it is possible), extract and annotate pipolin elements from bacterial genome se-
quences. The source code of the ExplorePipolin pipeline is available on GitHub: https:
//github.com/liubovch/ExplorePipolin. It is command-line software that can be installed
and run on any Unix-like system. We have created a Docker image and a Conda recipe to ease
the pipeline installation and running on different systems.

The current pipeline version (v.0.0.a1) is mainly tested on E. coli genomes, therefore we will
focus on extending it to other bacterial species in the future work. We are expecting to introduce
the following upgrades:

1. Improve piPolB detection step. First, it sounds reasonable to use an HMM profile of
piPolB gene from diverse groups of bacteria. Second, we need to be sure that the given
HMM profile matches only bacterial piPolB gene and not a closely-related rPolB gene from
phages, otherwise additional restrictions should be added. Third, it is probably required
to distinguish between whole and truncated CDS of the gene because a truncated gene
could point to a defective pipolin.

2. Improve att detection step. This step is the most intricate in the pipeline, because att
sites can vary in their sequence composition and length, and MGEs are known to use
different bacterial genes as their integration site, not always tRNA/tmRNA genes. Also,
the presence of atts will confirm that particular pipolins are indeed "integrative" and help
to establish pipolin boundaries. Thus, possible upgrades would be:
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• adding a new dependency tool capable to detect integration sites, like MGEfinder or
Mauve, or implementing a similar comparative approach;

• creating a database of att sites, which can be done using the same comparative
approaches;

• an option to provide alternative att sequences;

3. Add an option for reporting possible circular pipolins. As for the analysed E. coli genomes,
we have not encountered piPolBs belonging to plasmid sequences. Though, we are expect-
ing to have circular pipolins in other bacteria. A special feature of such pipolins is the lack
of terminal direct repeats. It should be possible to recognise circular pipolins when they
are present within a bunch of contigs and to extract properly.

4. Overcome the current version limitations: 1) extend de novo search of atts to incomplete
genomes, 2) make it possible to analyse several pipolin elements per genome: although, it
is highly unlikely to have more than one pipolin per genome, it is possible to have circular
pipolin along with the one integrated into the chromosome.

5. Increase the test coverage by writing more unit tests.

6. Caching of pipeline intermediate results and parallel task execution can be implemented
to make pipeline calculations faster.

Another considerable improvement would be to create a website with a database of known
pipolins. With the help of the pipeline, other bacterial species can be searched and the database
can be easily updated. The website might in turn incorporate the pipeline as a separate online
tool, as well as other tools allowing comparative analysis of chosen pipolin elements. There-
fore, the proposed web-based resource would facilitate browsing of already discovered bacterial
pipolins and identification and analysis of new pipolins.

Finally, ExplorePipolin pipeline can be useful for microbiologist that are interested in pipolins.
It can be also an example of a comprehensive pipeline that not only looks for pipolin markers
within a genome sequence but reconstruct the whole pipolin element structure when it is possi-
ble, making further analysis more precise and straightforward. Furthermore, the pipeline can be
updated to work with other elements, similar to pipolins, particularly with archaeal Casposons.
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Acronyms

AMR antimicrobial resistance.

CCC cophenetic correlation coefficient.

CDS coding DNA sequence.

GI genomic island.

HGT horizontal gene transfer.

HMM Hidden Markov Model.

ICE integrative conjugative element.

IS insertion sequence.

LREC Spanish E. coli Reference Laboratory.

MGE mobile genetic element.

ML machine learning.

ORF open reading frame.

piPolB primer-independent PolB.

Tn transposon.
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A
Users manual

Pipolins constitute a new group of self-synthesizing or self-replicating mobile genetic elements
(MGEs). They are widespread among diverse bacterial phyla and mitochondria.

Redrejo-Rodríguez, M., et al. Primer-independent DNA synthesis by a fam-
ily B DNA polymerase from self-replicating Mobile genetic elements. Cell reports,
20171

Flament-Simon, S.C., de Toro, M., Chuprikova, L., et al. High diversity
and variability of pipolins among a wide range of pathogenic Escherichia coli strains.
bioRxiv, 20202

ExplorePipolin is a search tool that identifies and analyses pipolins within bacterial genome.

A.1 Requirements

• pip
• BLAST+3

• ARAGORN4

• Prokka5

A.2 Installation

A.2.1 Install from source

1. Install the requirements (see above).
2. wget https://github.com/liubovch/ExplorePipolin/archive/0.0.a1.zip
3. unzip 0.0.a1.zip && cd ExplorePipolin-0.0.a1
1<https://doi.org/10.1016/j.celrep.2017.10.039>
2<https://www.biorxiv.org/content/10.1101/2020.04.24.059261v1>
3<https://www.ncbi.nlm.nih.gov/books/NBK279690/>
4<https://github.com/TheSEED/aragorn>
5<https://github.com/tseemann/prokka>
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4. pip install . (install in user site-package) or sudo pip install . (requires superuser
privileges)

NOTE: before installing, it is possible to run unit tests: pytest or python setup.py test
(from the source root directory).

How to uninstall:

(sudo) pip uninstall ExplorePipolin

A.2.2 Install using Conda

• Before installing ExplorePipolin, make sure you’are running the latest version of Conda:

conda update conda

conda install wget

• Create a new environment that is specific for ExplorePipolin. You can choose whatever
name you’d like for the environment.

wget https://github.com/liubovch/ExplorePipolin/releases/download/0.0.a1/\

explore-pipolin-0.0.a1-py_0.yml

conda env create -n ExplorePipolin-0.0.a1 –file explore-pipolin-0.0.a1-py_0.yml

• Download and install ExplorePipolin into the created environment:

wget https://github.com/liubovch/ExplorePipolin/releases/download/0.0.a1/\

explore-pipolin-0.0.a1-py_0.tar.bz2

conda install -n ExplorePipolin-0.0.a1 explore-pipolin-0.0.a1-py_0.tar.bz2

• Clean up (optional):

rm explore-pipolin-0.0.a1-py_0.yml explore-pipolin-0.0.a1-py_0.tar.bz2

• Activate the environment and check the installation:

conda activate ExplorePipolin-0.0.a1

explore_pipolin -h

A.3 Quick usage

A.3.1 Test run

As input, ExplorePipolin takes FASTA file(s) with genome sequence(s). A genome sequence
can be either a single complete chromosome (preferred) or contigs (in a single multiFASTA file).

–> explore_pipolin -h

Usage: explore_pipolin [OPTIONS] GENOMES...

ExplorePipolin is a search tool that identifies and analyses pipolin elements

within bacterial genome(s).

Options:

–out-dir PATH [required]

-h, –help Show this message and exit.
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A.3.2 Output files

The output directory will contain several folders:

pipolbs_search – BLAST search results for piPolB genes

atts_search – BLAST search results for the known att sites

atts_denovo_search – Results of de novo search for att sites

trnas_search – ARAGORN search results for tRNAs/tmRNAs

pipolin_sequences – extracted pipolin sequences in FASTA format

prokka_results – Prokka annotation results (check files description here6)

results – GenBank and GFF annotation results with the atts included, log files

A.4 Running with Docker

See here7 to install Docker.

NOTE: superuser privileges are required to run the analysis and around 3GB of disk space
for the image.

sudo docker pull docker.pkg.github.com/liubovch/explorepipolin/\

explore_pipolin:0.0.a1

sudo docker tag docker.pkg.github.com/liubovch/explorepipolin/\

explore_pipolin:0.0.a1 explore_pipolin

sudo docker run –rm explore_pipolin -h

sudo docker run –rm -v $(pwd):/output -w /output explore_pipolin –out-dir output
./input_genomes/*.fa #(example run)

6<https://github.com/tseemann/prokka/blob/master/README.md#output-files>
7<https://docs.docker.com/install/>
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