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Introduction

This thesis aims to serve as an introduction to the theory of quasitilings for
amenable groups. In order to showcase the power of this theory, we focus on
the study of the Sofic Liick Approximation Conjecture, which can be proven
for amenable groups by making use of quasitilings. The first four chapters
of the thesis are an exposition of the aforementioned topics, collected from
the literature. After that, we present some new results in the fifth and final
chapter.

Amenable groups originated in 1929 from J. von Neumann’s work on
the Banach-Tarski Paradox in [23]. This so-called paradox, proved in 1924
by S. Banach and A. Tarski [1], states that a ball in the euclidean three-
dimensional space can be decomposed into a finite number of pieces that can
then be rearranged to form two new balls of the same size as the original ball,
using only translations and rotations. The key to this result lies on the fact
that the group of isometries of R? contains a copy of the free group of rank
two. This led to von Neumann introducing amenable groups as those with
a finitely-additive probability measure that is invariant under the action of
the group on itself. These are precisely the groups that cannot cause a
paradoxical decomposition akin to the one in the Banach-Tarski Paradox.
It was then conjectured that a group is amenable if and only it contains a
free subgroup of rank two. This came to be known as the von Neumann
Conjecture, and was disproved in 1980 by A. Y. Ol’shanskii [19].

The term amenable was later coined by M. M. Day [3] as a pun on the
word mean, after he showed that amenable groups are those on which an
invariant mean can be defined. Another equivalent definition was found by
E. Fglner [7], characterising amenable groups as those with almost-invariant
finite subsets. Subsequently, amenable groups have been extensively studied,
and a plethora of different characterisations of amenability has been found,
making amenable groups ubiquitous across many seemingly distant areas of
mathematics.

The theory of quasitilings for amenable groups was first developed by
D. S. Ornstein and B. Weiss [20], when they proved that any sufficiently
invariant finite subset of an amenable group can be covered almost entirely
by almost-disjoint translates of a finite collection of tiles with good invariance
properties. The existence of these quasitilings, obtained by using Fglner
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sets, has far-reaching applications in the study of many problems concerning
amenable groups. A more general version of this theory, valid not only for
finite subsets of the group but also for finite labelled graphs, was introduced
by G. Elek [4].

Amenable groups are in a way groups of a finite-like nature, in the sense
that they can be approximated by finite Fglner sets. Residually finite groups,
in which elements can be distinguished in finite quotients, are of a similar
nature in that they can be approximated by finite groups. As a joint gen-
eralisation of both amenable and residually finite groups arise sofic groups,
first introduced by M. Gromov [9] in 1999 as groups whose Cayley graphs
can be approximated by finite graphs. Soon after in 2000, B. Weiss [25] gave
these groups the name sofic, a term that comes from the Hebrew word for
finite. Both amenable and residually finite groups are sofic, and there are
currently no known examples of non-sofic groups. In [6], using the theory
of quasitilings applied to the sofic approximations of an amenable group, G.
Elek and E. Szab6 were able to characterise amenable groups amongst sofic
groups as those whose sofic approximations are all conjugate.

In this same spirit of using finite approximations to obtain information
about infinite objects, we have the Sofic Liick Approximation Conjecture, a
version of a conjecture that has its origin in a work of W. Liick on approx-
imations of L?-Betti numbers of compact manifolds. Given an element of
the group algebra of a sofic group over some field, we can naturally define
an operator for each element in the sofic approximation of our group. The
Sofic Liick Approximation Conjecture then asks whether the normalised di-
mensions of the kernels of these associated operators converge, and whether
this convergence is independent of the chosen sofic approximation.

In the case that we are working in a field of characteristic zero, this
conjecture has been extensively studied, and was eventually shown to be true
for any sofic group by A. Jaikin-Zapirain [12]. The proof of this fact relies
heavily on techniques from functional analysis, in particular the spectral
theory of self-adjoint operators, which cannot be readily exported to the
case of positive characteristic. As such, the positive characteristic case of
the conjecture remains open.

Nonetheless, the conjecture can be shown to hold for amenable groups,
independent of the characteristic of the field, by making use of the previously
mentioned result by Elek and Szabé from [6] that says that any two sofic
approximations of an amenable group are conjugate.

The proof of the conjecture in characteristic zero relies on the construc-
tion of a sequence of measures, each associated to an element of the sofic
approximation of the group. Proving the conjecture is then reduced to the
problem of showing that these measures converge pointwise at zero, inde-
pendent of the approximation.

Suppose now that we are working over the field of fractions of some
discrete valuation ring, e.g. the ring of p-adic integers Z, with its field of
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fractions Q. Using the Smith normal form of a matrix over a principal
ideal domain, we can define a measure on the space of ideals of our discrete
valuation ring for each element of the sofic approximation. For amenable
groups, these measures can be shown to converge at each ideal, independent
of the sofic approximation.

This construction can be generalised to the case of number fields, whose
rings of integers are Dedekind domains. This time, the construction of
the associated measures on the space of ideals is done not by using the
Smith normal form, but the decomposition of finitely generated modules
over Dedekind domain. In this case, we are able to prove the strong con-
vergence of the measures for amenable groups, independent of the sofic ap-
proximation.

Chapter 1 serves as a standard introduction to the theory of amenable
groups and their basic properties. Throughout the chapter, a number of
the many different characterisations of amenability are discussed, before
eventually proving in the last section the equivalences between them. We
also make some room in the middle of the chapter for the proof of the
Banach-Tarski Paradox.

In Chapter 2, we develop the theory of quasitilings of graphs for amenable
groups, starting with by defining what an approximation of a Cayley graph
before going on to prove that quasitilings always exist for amenable groups.
We then present a different version of this result using linear combinations
of graphs.

Chapter 3 begins with a brief discussion of residually finite groups, after
which we introduce the concept of sofic groups via sofic approximations. We
also discuss a characterisation of sofic groups making use of ultraproducts
of finite symmetric groups.

In Chapter 4, we discuss the Sofic Liick Approximation Conjecture and
we prove it for amenable groups and over the field Q.

In Chapter 5, we construct a sequence of measures associated to the
operators that appear in the Sofic Liick Approximation Conjecture, first
over discrete valuation rings, and then over number fields, and study the
convergence of these measures for amenable groups.






Chapter 1

Amenable Groups

In this chapter we will study amenable groups and some of their many char-
acterisations. Our introduction to the concept of amenability will be through
the original definition in terms of invariant finitely additive probability mea-
sures. We will also discuss its relation to means and the closure properties
of the class of amenable groups. Afterwards, we will study the characteri-
sation of amenable groups in terms of the Fglner condition, and the related
concepts of Fglner nets and sequences. We will then discuss paradoxical
decompositions, after which we will make a slight digression to prove the
Banach-Tarski Paradox. Then, we will introduce the concepts of ultrafilters
and the Stone-Cech compactification, in order to later prove some charac-
terisations of amenability in terms of fixed points and measures of certain
actions. We will conclude the chapter by finally proving the equivalences
between all of the characterisations of amenability that we have discussed.
This chapter is mainly based on [2, §4], [15, §4.1] and [8].

1.1 Finitely Additive Measures and Means

In 1924, S. Banach and A. Tarski [1] proved that the unit ball in R3 can
be partitioned into five pieces which can then be used to form two disjoint
copies of the original ball using only translations and rotations. This result,
known as the Banach-Tarski Paradox, can be reformulated as saying that
there is no finitely additive measure on R? that is invariant under transla-
tions and rotations. Amenable groups were originally defined in 1929 by J.
von Neumann [23] whilst studying the Banach-Tarski Paradox. We will now
present his original definition in terms of invariant finitely additive proba-
bility measures.

Definition 1.1.1. A finitely additive probability measure on a group G is a
map

p: P(G) — [0,1]

satisfying the following properties:
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(i) n(@) = 1.

(i) p(X UY) = pu(X)+ pY) for all disjoint X,Y C G, where J denotes
disjoint union.

Furthermore, we say that p is right-invariant if it satisfies the following
additional property:

(iii) u(Xg) = p(X) for all X C G and g € G.
We can now give our first definition of amenable groups.

Definition 1.1.2. A group G is said to be amenable if there exists a right-
invariant finitely additive probability measure on G.

Examples 1.1.3. (i) Let G be a finite group. Then, we can define a
right-invariant finitely additive probability measure p on GG by setting

_ X]
G

for any X C G, and so G is amenable.

w(X)

(ii) Let F(a,b) be the free group on two generators. Then, F(a,b) is not
amenable. Indeed, for each s € {a™!,b*!} denote by W (s) the set of
reduced words ending with s. Then, we can write

F(a,b) = {1} UW(a) UW(a ) U W () U W (b™1)
=W(a)UuW(a Ha
=W ()UYW (b Hb.

Assume by contradiction that there is a right-invariant finitely additive
probability measure p on F'(a,b). Then, on the one hand we have that

1= p(F(a,b))
— (W (@) + p(W(a™)
= p(W () +p(WE™)).
On the other hand,

p(E(a,b)) = p(W(a)) +u(W(a™)) +u(W) +p(WE)
=2,

so we have a contradiction. Therefore, F'(a,b) is not amenable.

Remarks 1.1.4. (i) It is not difficult to see that the existence of a right-
invariant finitely additive probability measure on G is equivalent to
the existence of a left-invariant finitely additive probability measure
on G, i.e. a finitely additive probability measure p on G such that
pu(gX) = pu(X) for all X C G and g € G.
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(ii) We are dealing exclusively with discrete groups. Nonetheless, a more
general theory of amenability can be developed for locally compact
groups.

If we denote by PM(G) the set of finitely additive probability measures
on the group G, then we can define a right action of G on PM(G) by setting

pf(X) = u(Xg™)

for p € PM(G) and X C G. Observe that PM(G)%, the subset of G-
invariant elements in PM(G), is precisely the set of right-invariant finitely
additive probability measures on G. Thus, G is amenable if and only if
PM(G)E # 0.

The definition of amenability that we have given suffers from the fact
that, in general, finitely additive measures are not o-additive and, as a
consequence, we cannot make full use of the theory of Lebesgue integration.
For this reason, M. Day gave in [3] a new characterisation of amenability
that allows us to use techniques from Functional Analysis.

Recall that for a set 2 the space £3°(£2) of bounded functions z: 2 — R
is a Banach space with the supremum norm

[2]loo = sup|a(w)].
we

Given A € R, we denote by A the constant map in /3°(F) taking the constant
value A on all Q. We can order (g (F) by setting « < y if and only if
z(w) < y(w) for all w € Q.

If G is a group, then we can consider the action of G on (g°(G) given by

w9(h) = z(hg™")

for x € {g°(G) and h € G.
Let us now introduce the concept of a mean.

Definition 1.1.5. A mean on a group G is a linear map
m: g (G) — R
satisfying the following properties:
(i) m(1) =1.
(i) m(x) > 0 for all x € £x°(G) such that x > 0.

Furthermore, we say that m is right-invariant if it satisfies the following
additional property:

(iii) m(z9) = m(x) for all x € I (G) and g € G.
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Denoting by M(G) the set of means on the group GG, we have that the
action of G on £°(G) restricts to an action of G on M(G). Then, M(G)C,
the subset of G-invariant elements in M(G), is precisely the set of right-
invariant means on G.

Let m be a mean on G. Given any X C G, we can consider its character-
istic function xx € {g°(G). We can then define a finitely additive probability
measure f,,, on G by setting

:um(X) = m(XX)

and, if m is right-invariant, then so is .

Conversely, given a right-invariant finitely additive probability measure
1 on GG, we can construct an integral in a manner analogous to the con-
struction of the Lebesgue integral of a o-additive measure, although some
of the properties of the Lebesgue integral fail in our case due to the lack of
o-additivity. First, we consider R[G] the space of functions in ¢g°(G) with
finite support. Then, given = € R[G] we can define

/ x dp = Z Az (V).
G rex(G)
It is easy to see that this integral satisfies the following properties:

(i) It is linear, i.e.

/G(Oé:r—l-ﬂy) d,u—oz/Gxdu—i-ﬁ/Gyd,u

for any z,y € R[G] and «, 5 € R.
(ii) It is bounded, i.e.
[ = ] <l
G
for any = € R[G].

(iii) It is right-invariant, i.e.

/wgdu:/xdu
G G

for any = € R[G] and g € G.

As a consequence, this integral defines a right-invariant bounded functional
on R[G]. Now, R[G] forms a dense subspace of /2°(G), and so the integral
can be extended to a right-invariant bounded functional on the whole /5°(G).
Therefore, the map m,,: {g°(G) — R defined by

my () = /Glf dp
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for x € /g (G) is a right-invariant mean on G. A more detailed version of
this construction can be found in [2].

The previous discussion shows that there is a bijection between the sets
M(G)% and PM(G)%, which leads us to the following characterisation of
amenability.

Theorem 1.1.6. Let G be a group. Then, G is amenable if and only if
there exists a right-invariant mean on G.

1.2 Closure Properties

We will now study some closure properties of the class of amenable groups.
Specifically, we will show that amenability is closed under taking subgroups,
extensions and direct limits. But first, let us quickly recall the notion of
direct limit of groups.

Definition 1.2.1. Let I be a directed set, i.e. a partially ordered set such
that for any ¢,j € I there is some k € I with i,7 < k. A direct system
of groups consists of a collection of groups (G;);c; and homomorphisms
¢ Aj — Aj for all ¢ < j such that the following hold:

(i) ¢4 =idg, for all ¢ € I.
The direct limit of the direct system (G;);cs is then defined as the group
lim G = (UQ‘)/ ~,
el iel

with the equivalence relation ~ given by setting g; ~ g; for g; € G; and
g; € Gj if and only if there exists some k£ € I with 7,5 < k such that

Dik(9i) = djk(95)-

Example 1.2.2. Given any group G, we can order the family I of finitely
generated subgroups of G by inclusion, which is thus turned into a direct
system of groups. We can then easily see that

G = th
HeT

Consequently, every group can be written as the direct limit of its finitely
generated subgroups.

Proposition 1.2.3. Let G be a group. Then, the following properties hold:
(i) If G is amenable and H < G, then H is amenable.
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(ii) If N < G, then G is amenable if and only if both N and G/N are

amenable.

(iil) If (Gi)ier is a direct system of amenable groups and
= hﬂ Giv
el

then G is amenable.

Proof. (i) Let p be a right-invariant finitely additive probability measure

on GG, and T be a left transversal of H in GG, i.e. a set of representatives
of the left cosets of H in G. Then, we define

i(X) = p(TX)

for any X C H. We can easily check that fi: P(H) — R is a right-
invariant finitely additive probability measure on H. Indeed, we have
that

A(H) = p(TH) = p(G) = 1.
Furthermore, if X,Y C H are disjoint, then so are TX and TY, and
as a consequence

AXUY) =p(T(XUY))

w(TX UTY)
w(TX) + p(TY)
(X)) + f(Y).

Finally, given any X C H and h € H we have that
A(Xh) = w(TXh) = p(TX) = (X).

Therefore, H is amenable.

Assume first that G is amenable. Then, item (i) implies that N is also
amenable. Now, let u be a right-invariant finitely additive probability
measure on GG. Then, we define

A(X/N) = p(X)
for any X/N C G/N. We have that
A(G/N) = u(G) = 1.

Furthermore, if X/N,Y/N C G/N are disjoint, then so are X and Y,
and as a consequence

[i(X/N UY/N)

(X UY)/N)
(XUY)
(
fi(

I
tttl

X) p(Y)
X/N) + i(Y/N).
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Finally, given any X/N C G/N and gN € G/N we have that

A((X/N)(gN)) (Xg)/N)

X)

Il
= T T =
~~ /N /N~

P

s

Lol
2

Therefore, G/N is amenable.

Conversely, assume that both N and G/N are amenable. Let uy and
pa/n be right-invariant, finitely additive probability measures on N
and G/N, respectively. Then, for any gN € G/N the map p%; defines
a finitely additive probability measure on g/N. Note that this measure
does not depend on the representative of g/N chosen, for if gN = hN,
then »
pe = pf =t
because gh~! € N and puy is N-invariant.

Now, given X C G we set

Yx(gN) = pf (X NgN)

for gN € G/N. Then, it is clear that yx € ¢g°(G/N). Furthermore,
if X,Y C G are disjoint, then so are X NgN and Y N gN for all
gN € G/N, and hence,

xuy (gN) = p (X UY)NgN)
PN (X N gN) + pf (Y N gN)
=7x(gN) + 7y (gN)

g
N
g
N

for any gN € G/N. Moreover, given g € G, we have that

% (hN) = vx (hNg™")

=1 (X Nhg'N)

— 1(Xg N AN)

= Vxg(hN)
for any hN € G/N.
Then, we define

wX) = / vx dpg/n
G/N

for X C G. It is now clear from the aforementioned properties of vx

that p is a right-invariant finitely additive probability measure on G.
Therefore, G is amenable.
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(iii)

For each ¢ € I, let p;: G; — G be the canonical homomorphism and
H; = p(G;), which is amenable by item (ii), and so it has a right-
invariant finitely additive probability measure ;.

Consider the set PM; of all p € PM(G) such that u(Xh) = pu(X) for
all X C G and h € H;. For every i € I, we can set

pi(X) = pi(X N H;)

for X C G, and so fi; € PM;. The set [0,1]7() is compact by
Tychonoff’s Theorem, and PM,; is a closed subset of [0, 1]7(%) because
it can be written as the intersection of preimages of closed sets by
continuous functions.

Furthermore, given any ¢,j € I there exists some k € I such that
H;,H; < Hy, and thus PM; C PM; N PM;, which implies that
PM; N PM; # 0. Hence, {PM;}ics is a collection of non-empty
closed subsets of the compact space [0, 1]7(%) with the finite intersec-
tion property, and so their intersection is non-empty, i.e. there exists
some 1 € (,c; PM;. Therefore, p is a right-invariant finitely additive
probability measure on GG, and so G is amenable.

O

Remarks 1.2.4. (i) As mentioned in Example 1.2.2, every group can be

1.3

written as the direct limit of its finitely generated subgroups. In light
of Proposition 1.2.3, this implies that a group is amenable if and only
if all of its finitely generated subgroups are amenable.

As we saw in Example 1.1.3, the free group of rank 2 is not amenable.
As such, no group with a free non-abelian subgroup can be amenable.
It was conjectured for some time that the converse of this result
was true as well. This conjecture, which came to be known as the
von Neumann Conjecture, was eventually shown to be false by A. Y.
Ol’shanskii in [19].

The Fglner Condition

We will now present a characterisation of amenability given by E. Fglner

in [7].

The so-called Fglner condition is satisfied when a group has arbi-

trarily invariant finite subsets. This will give us another characterisation of
amenable groups as those that satisfy the Fglner condition.

Definition 1.3.1. A group G is said to satisfy the Falner condition if for
every finite X C G and every £ > 0 there exists a finite non-empty subset
F C @G such that

[\ Fg|

<e
||
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for all g € X.

The Fglner condition can be restated in terms of nets of almost invariant
subsets. Let us now briefly recall the notion of net and some of its basic
properties.

Definition 1.3.2. Let X be a topological space. A net in X is a family
(z)ier of points of X indexed by some directed set I.

We say that the net (x;);er converges to the point x € X if, for every
neighbourhood V' C X of z, there is some ig € I such that x; € V for all
i > 19. If the limit is unique, we write

r = limx;.
el
Proposition 1.3.3. Let X be a topological space. Then, the following hold:

(i) The space X is Hausdorff if and only if every convergent net has a
unique limit point.

(ii) The space X is compact of and only if every net has a convergent
subnet.

The Fglner condition can then be stated in terms of the existence of a
net of finite subsets that grow more and more invariant.

Definition 1.3.4. A net (F});c; of finite non-empty subsets of a group G
is said to be a Folner net if
.| F\ Fgl
lim ———— =10

il |Fj
for every g € G. When I = N, we refer to a sequence (F},)nen satisfying the
above property as a Fglner sequence.

Examples 1.3.5. (i) If G is a finite group, then the constant sequence
(Fy)nen with F,, = G for all n € N is clearly a Fglner sequence.

(ii) Consider the group of integers Z. For each n € N, consider the finite
set
F, =[-n,n|NZ.

Then, for each k € Z we have that

B\ (B R _ Ik
|l T 2n+1

for all n € N, and so (F},)nen is a Fglner sequence in Z.
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Remark 1.3.6. A group G satisfies the Fglner condition if and only if for
every finite X C G and every £ > 0 there exists a finite non-empty subset

F C @G such that
[FAFy|
— < £

|F
for all g € X. Similarly, the net (F});cr is Folner if and only if

lim [FiAFig| 0
el |Fz|

for every g € G. We will use these characterisations when convenient.

Theorem 1.3.7. Let G be a group. Then, G satisfies the Folner condition
if and only if there is a Folner net in G.

Proof. Assume first that there is a Fglner net (F;);c; in G. Then, given
€ > 0 and a finite subset X C G, there exists some 7 € I such that

[F3 \ Fig|
| F]
for all g € X. Hence, G satisfies the Fglner condition.

Conversely, assume that G satisfies the Fglner condition. Let I be the
set of pairs (X,e) with X C G finite and € > 0. We can define a partial
order < on I by setting (X,e) < (X’,&’) if and only if X C X' and € > ¢’
Given (X, ¢), (X', &) € I, we have that

(X,e), (X', ') 2 (X UX',min{e,'}),

and so [ is a directed set. By the Fglner condition, for every ¢ € I there
exists some finite non-empty subset F; C G such that

|Fi \ Fig|
| 3|

for all g € X. Hence, (F;);cs is a Folner net in G. O

We will now show that every group satisfying the Fglner condition is
amenable. Later on, we will be able to prove that the converse also holds,
as part of Theorem 1.7.1.

Theorem 1.3.8. Let G be a group. If G satisfies the Folner condition, then
G is amenable.

Proof. Given any finite subset X C G and € > 0, denote by PM x . the set
of finitely additive probability measures p on G such that

n(Y) —u(Yg)| <e
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for all g € X and ¥ C G. We have that PMx . is a closed subset of
[0,1]P(@) for it can be written as the intersection of zero sets of continuous
functions.

Moreover, |0, I]P(G) is compact as a consequence of Tychonoff’s Theorem,
and so PM x . is compact. By the Fglner condition, there exists some finite
non-empty subset F' C G such that

[\ Fy|
— < £
||
for all g € X, so we can set
Y NF|
Y =
/’LX@( ) |F|

for Y C G. Then, pux. € PMx . and the set PMx . is non-empty. We also
have that
PMxnx: minfeery © PMx,e NPMx o,

and the intersection is non-empty. Hence, {PMx .} is a collection of closed
non-empty subsets of [0,1]7(¢) with the finite intersection property and,
because [0, 1]P(G) is compact, there must exist some p € (\PMx . This p
is a right-invariant finitely additive probability measure on G, and so G is
amenable. O

We can now show, with the help of Fglner sequences, that a number of
different classes of groups are amenable.

Examples 1.3.9. (i) The group Z is amenable, for as we saw in Exam-
ple 1.3.5, the sequence (F},)nen with

F,=[-nnNZ
for each n € N is a Fglner sequence in Z.

(ii) Abelian groups are amenable. Indeed, every finitely generated abelian
group is of the form G = Z" x H with » > 0 and H finite. Since
both Z and H are amenable, and extensions of amenable groups are
amenable, we have that G is amenable. Finally, because amenabil-
ity is closed under taking direct limits, we reach the conclusion that
arbitrary abelian groups are amenable.

(iii) Solvable groups are amenable. Recall that a group G is solvable if it
has a subnormal series

1=GodG14---4G, =G

such that the quotient Gy/Gj_1 is abelian for all k = 1,...,n. If n
is the minimum length of any such series, we say that G is solvable
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of class n. By induction on the solvability class n of G, assume that
every solvable group of class less than n is amenable. Then, G,,_1 <G
is solvable of class less than n, so it is amenable by induction. Further-
more, G/G,_1 is also amenable by virtue of being abelian. Therefore,
G is an extension of amenable groups, and so it is itself amenable.

When our group is countable, and in particular when it is finitely gener-
ated, the existence of Fglner sequences is equivalent to satisfying the Fglner
condition.

Theorem 1.3.10. A group G has a Folner sequence if and only if G satisfies
the Folner condition and is countable.

Proof. Suppose that G satisfies the Fglner condition and is countable. Be-
cause (G is countable, we can write

G:UXn

neN

with X, C G finite and X,, C X,,41 for all n € N. Now, because G satisfies
the Fglner condition, for each n € N there exists a finite subset F,, C G such

that
[0\ Fryl 1

<
| F, | n
for every g € X,,. From this, we deduce that

|Fo \ Frg|

lim =0

for every g € G, and so (F,)nen is a Folner sequence in G.
Suppose now that G has a Fglner sequence (F),),en. Then, G satisfies
the Fglner condition by Theorem 1.3.7. Now, for each n € N define

X, ={zy™' | z,y € F,}.

Given g € GG, there is some N € N such that

[\ Fagl _ 1

| Pl 2

for all n > N, implying that F,, N F,,g # (), and so g € X,,. Therefore,
G=|JXn
neN

and, because every X, is finite, G is countable. O
Let us now see some alternative characterisations of Fglner sequences.

For that, we will need to introduce some concepts related to invariance of
subsets of a group.
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Definition 1.3.11. Let G be a group, F, X C G be non-empty finite subsets
of G and € > 0. We say that X is (F,e)-invariant if

{g e X |gF € X}| > (1-¢)X].

Definition 1.3.12. Let G be a group and F, X C G be non-empty finite
subsets of G. The F-boundary of X is the set

OpX ={geG|gFNX #0and gFN(G\X) #0}.
We can now prove the following characterisations of Fglner sequences.

Proposition 1.3.13. Let G be a countable group and (Fy,)n,en be a sequence
of non-empty finite subsets of G. Then, the following are equivalent:

(i) The sequence (Fy)nen is Folner, i.e. for every g € G we have that

. |FRAF.g|
hm —_— = 0

(ii) For any finite subset F C G and any € > 0, there exists some N € N
such that F, is (F,e)-invariant for every n > N.

(iii) For any finite subset F C G and any € > 0, there exists some N € N
such that |0pF,| < €|F,| for everyn > N.

Proof. First, let us see that (i) implies (iii). Given a finite subset ' C G
and € > 0, there exists some N € N such that

|FnAF,g| €
<R
|l ||

for all g € FF~!. Observe that we can write

OpF, = ( U Fnsl> \ ( N Fnsl>

seF SEF

= |J (FusT'ARTY,
s,teF

and so

0pFn| = | | (Fns ' ARt

s,teF

< ) |FWAF s
s, teF

< e|Fy|
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for every n > N.

Let us now prove that (iii) implies (ii). Given a finite subset F' C G
and € > 0, if we take the set F' = F U {1}, there exists some N € N such
that |0p F,,| < €|F,| for every n > N. Assume by contradiction that F), is
not (F’,e)-invariant, i.e.

[{s€ F, | sF' CF,}| < (1—¢)|F,l
Because 1 € I/, we can write

{se€F|sF CF}=((FanFus)= () Fas™,

sEF sEF’
and so
laF’Fn’ = U Fns_l — ﬂ FnS_l
SEF’ seF’
> |Fn| - (1 - 5)|Fn|
= ¢|F,|.

Therefore, F,, must be (F’, €)-invariant for every n > N and, because F' C F’
and
{seF,|sF CF,}C{seF,|sFCEF,},

this implies that F,, is (F,¢)-invariant for every n > N.

Finally, let us show that (ii) implies (i). Given g € G and € > 0, there
exists some N € N such that F, is ({g~'}, §)-invariant for every n > N.
Now, we have that

2|5, N Frgl = (1Fa] = [Fn \ Fugl) + (|Fngl — |Fag \ Fal)
= 2|F,| — |F,AF,g|.

Thus,
g _
(1 - 5)|Fny <|{s€F,|sg™t € B}
= |anan|
1
= ’Fn| - §|FnAan‘7

from where we obtain that

|F,AF,g|
| Fol

for every n > N. Therefore, (F},)nen is a Folner sequence. O
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A particular type of Fglner sequence is what we will call Falner exhaus-
tion, i.e. a Fglner sequence (F),),en in the group G such that

leRC---CF,C---

and

G = UFn

neN

We will now see that the existence of Fglner sequences is equivalent to the
existence of Fglner exhaustions.

Proposition 1.3.14. Let G be a countable group. Then, G has a Folner
sequence if and only if it has a Folner exhaustion.

Proof. Every Fglner exhaustion is by definition a Fglner sequence. Thus, we
only need to show that whenever we have a Fglner sequence we can obtain
a Fglner exhaustion.

Let (Fy)neny be a Folner sequence in G. First, we will see that we
can obtain from (F),),en a nested Fgolner sequence, i.e. a Fglner sequence
(F})ken such that

IEF{Q---QFIQQ---.

Without loss of generality, assume that 1 € F, and take F| = Fj. Suppose
by induction that we have constructed finite subsets F| C --- C F, ,271 of G.
Because (Fj,)nen is a Folner sequence, by Proposition 1.3.13 there is some
ny € N such that F,, is (F}_,, 1)-invariant, i.e.

{9 € Fu, | 9Fi_1 C Fn}| >0,

and so there exists some gy € F,, such that g F,_, C F,, . If we define
F, = ggank, then F}_, C F}. Furthermore, given any g € G we have that

1Fi\ Frgl = |gk(Fnp \ Fr9)| = [Fup \ Fuygl,

and so the sequence (F})ren that we have constructed is a nested Fglner
sequence.
Assume now that (F),),en is a nested Folner sequence in G. Because G
is countable, we can write
G=|JXn

neN

with X, C G finite and X}, C Xy for all £ € N. Define now F} = F,, X, for
each n,r € N. Observe that F,, C F}, and so |F,| < |F}| for any n,r € N.
Then, for any finite subset F' C G we have that

0rFy) < Y |0r(Fag)| < |X0]|0pFl,
QGXr
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and so BT OuF
|Frn‘§|Xr|’F n‘
|E5 | | Pl
for every n,r € N. Now, for each r € N take n, € N such that
|OF Fp, | 1
| P, | | X

and n, > n,_1 for r > 1. Thus, if we set F] = F, for each r € N, we have
that

‘aFF;’ < |Xr||6FFnr|

< |Fnr’
r

151
, .

<

Therefore,
. |OrF]]
lim

r—00 |F7{‘

=0

for any finite subset F' C G, meaning that (F)),cn is a Folner sequence in
G. Furthermore, it is a nested sequence because (F),),cn is nested. Finally,
we have that X, C F! for every r € N, and so

G¢=JF,

reN

which implies that (F)),en is a Folner exhaustion. O

1.4 Paradoxical Decompositions

The characterisation of amenability that we will study in this section is also
intimately related to the Banach-Tarski Paradox. Essentially, we will char-
acterise amenable groups as those for which a Banach-Tarski-like paradox
cannot happen, i.e. the pieces of any finite decomposition of an amenable
group cannot be rearranged in such a way that we obtain two copies of the

group.

Definition 1.4.1. Let G be a group acting on a set 2. Then, the action of
G on () is said to be paradozical, and € is said to be G-paradozical, if there
exist pairwise disjoint subsets X1,..., X, and Y7, ...,Y,, of 2, and elements
gi,---,9n and hy,..., Ay in G such that

0= (UXl) Y <UY]> =) Xigi = | vy
i—1 j=1 i=1 J=1
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In that case, we also say that 2 has a G-paradozical decomposition. The
group G is said to be paradozical if the action of G on itself by right multi-
plication is paradoxical.

Using the terminology we have just introduced, amenable groups can be
characterised as those that are non-paradoxical, as we will show later.

We will now see that the requirements in the definition of paradoxical
decompositions can be relaxed.

Proposition 1.4.2. Let G be a group acting on a set . Then, the following
are equivalent:

(i) There exist pairwise disjoint subsets Xi,..., Xy, and Y1,..., Yy of Q,
and elements gi,...,9n and hi,..., hy in G such that

0= (UX,)U(UE) =) Xigi = ) V.
i1 i=1 J=1

Jj=1

(ii) There exist pairwise disjoint subsets Xi,..., X, and Y1,..., Yy, of Q,
and elements gi,...,gn and hi,... hy, in G such that

n m
=1 J=1

(iii) There exist pairwise disjoint subsets X1, ..., X, and Y1,...,Y,, of Q,
and elements g1,...,9n and hi,..., hy in G such that

n m
i=1 j=1

Proof. The fact that (i) implies (iii) is trivial.

Let us show that (iii) implies (ii). Assume that there exist pair-
wise subsets Xi,...,X,, and Y7,...,Y,, of Q, and elements ¢1,...,¢9, and
hi,...,hp in G such that

n m
i=1 J=1

Without loss of generality, we may assume that gy = h; = 1. Take X| = X;
and define inductively

k-1
Xp, = Xi \ ( U ngz)gk_l

i=1
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for k =2,...,n. Similarly, take Y{ = Y7 and define inductively
k—1
Y=Y\ < U Yj'hj> h !
j=1

for k =2,...,m. We can check that the sets X],..., X, and Y{,..., Y, are
pairwise disjoint, and

n m
Q=) X/gi = | v/n;.
i=1 j=1

Finally, let us see that (ii) implies (i). Assume that there exist pairwise
disjoint subsets X1,..., X, and Y1,..., Y, of ), and elements g1, ..., g, and
hi,...,hp in G such that

n m
=1 j=1

Without loss of generality, we may assume that hy = 1. Write

n m
X = U X, Y= U Y;.
i=1 Jj=1

Observe that X NY = (. Now, given any a € € there exist a unique
Jj €{l,...,m} and some f(a) € Y, such that & = f(a)h;. This defines a
map f: Q@ — Y. Let

z=xu(UFw). =G\ X\/2),

keN

Then, we have that
XNfZ)y=0, XUf2) =2

Moreover, if we put Z; =Y, N2 hj_l, since h1 = 1, we obtain that

O=XU ((Z[)UZl)U <OZJ>>
=2
::tJ)QQi
=1

= (ZoW Z1)h1 U < J Zjhj>.
2

Jj=



Chapter 1. Amenable Groups 19

Remark 1.4.3. As we can see in the proof of Proposition 1.4.2, the number
of pieces is preserved when we go from one type of decomposition to another.
This allows us to define the Tarski number of a G-set ) as the smallest
number of pieces of any G-paradoxical decomposition of (2.

Example 1.4.4. Consider the free F'(a,b) on two generators. As we saw in
Examples 1.1.3 (ii), we can write
F(a,b) = {1} UW(a) UW(a ) UW () U W (b~ 1)

=W(a)WW(a Ha

=W () UW (b~ b,
where W (s) is the set of reduced words ending with s € {a*!,b*'}. There-
fore, F'(a,b) is paradoxical. Furthermore, it is clear that any paradoxical
decomposition must have at least 4 pieces, and so the Tarski number of
F(a,b) is 4. It can actually be shown that a group has Tarski number 4 if

and only if it contains a subgroup isomorphic to F'(a,b), see [21, Theorem
5.8.38].

We will now show that whether a group is paradoxical is entirely depen-
dent on whether it has paradoxical actions.

Theorem 1.4.5. Let G be a group. Then, the following are equivalent:
(i) The group G is paradoxical.
(ii) Ewery free action of G is paradoxical.

(iii) There exists a paradozical action of G.

Proof. First, let us show that (i) implies (ii). Assume that there ex-
ist pairwise disjoint subsets Xi,..., X, and Y1,...,Y,, of G, and elements
Ji,---,9n and hy,..., hy;, in G such that

n m
1=1 7j=1

Let © be a set on which G acts freely. Using the Axiom of Choice, we can
select a set T' C ) of representatives of the orbits of €2 under the action of
G. Then, we can write

Q= U Tg,

geG

for if ag = ph for some «, 8 € T and g, h € G, then a = 8 by the definition
of T, and the action being free implies that g = h. Now, define

Xi=|J 19, V=) 1Ty
geX; geyY;
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fori=1,...,nand j =1,...,m. Then, the X;,...,X,, and Y1,...,Y,, are
pairwise disjoint, and

L m.
=1 J=1

Therefore, the action of G on 2 is paradoxical.

It is clear that (ii) implies (iii), for the action of G on itself by right
multiplication is free.

Finally, let us prove that (iii) implies (i). Assume that there is a
paradoxical action of G on some set 2. Then, if we fix an element a €
Q, the action of G on the orbit oG must also be paradoxical. By the
Orbit-Stabiliser Theorem, this action is equivalent to the action of G by
right multiplication on the right coset space G/G,, where G, denotes the
stabiliser of a. Now, any paradoxical decomposition of G/G, can be lifted
to a paradoxical decomposition of G. Thus, G itself is paradoxical. O

1.5 The Banach-Tarski Paradox

We will now prove the Banach-Tarski Paradox, which states that the closed
unit ball in the euclidean space R? can be decomposed into a finite number
of pieces that can then be rearranged using only isometries of R?. The proof
of the paradox relies on the paradoxicality of the free group of rank 2. The
group of rotations of R? contains a free subgroup of rank 2, which produces
a paradoxical decomposition of the unit sphere. This decomposition of the
unit sphere can then be extended to a paradoxical decomposition of the
whole unit ball.

Recall that SO(3) is the group of rotations about the origin in R? under
composition, and is identified with the group of orthogonal 3 x 3 real ma-
trices with determinant 1 under matrix multiplication. We will also need to
consider E(3), the group of isometries of the euclidean space R3.

Throughout the rest of this section, we will denote the unit sphere cen-
tred at the origin in R? by S?, and the closed unit ball centred at the origin
in R3 by B3.

The key fact in the proof of the Banach-Tarski Paradox is the following
result.

Proposition 1.5.1. The group SO(3) contains a subgroup H which is iso-
morphic to the free group F(a,b).

Proof. Consider the matrices A, B € SO(3) given by

1 6 2 -3 1 2 6 -3
A=-|(2 3 6 B=-|-6 3 2
7 ’ 7 ’

3 —6 2 3 2 6
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and the group H = (A, B) < SO(3). Let w € F(a,b) be a non-trivial reduced
word. We will now show that w(A, B) # I, thus proving that H = F'(a,b).
For the sake of simplicity, we will write w = w(A, B).

We may assume without loss of generality that w begins with A, other-
wise conjugate w by a sufficiently high power of A and invert if necessary.
Then, we can write w = AA¥ B*k2 ... A*Ft with k; > 0forall i =1,...,t.

Write A, By for the reductions modulo 7 of the matrices 7TA*!, 7B+,
respectively. Then, if we put w = /Lr/i’f B’fﬁ x 'fllj[t, it is enough to show
that (1,0,0)w # (1,0,0). Define

Vi, =1{(3,1,2),(5,4,1),(6,2,4)},
Vi ={(3,2,6),(5,1,3),(6,4,5)},
Vi, =1{(3,5,1),(5,6,4),(6,3,2)},
Ve ={(1,5,4),(2,3,1),(4,6,2)}.

Firstly, we have that

A4(1,0,0) = (6,2,4) € V4, .
Doing matrix computations, we can see that the following hold:

(i) 1
UGVA+UVB+UVBJ

then Ajv € Vi,
(ii) If
veVi U VB+ UVg ,
then A_v e Vj .
(iii) If
veVp UVz UVz,
then B v € Vg, -

(iv) If
veVg UVz UVi,

then B_v € Vj .

Now, A;(1,0,0) € Vj,, so A§(1,0,0) € V4, . Then, multiplying by B2
we arrive at Vg, UVp_, and the next multiplication takes us to Vz, UVj .
As we move right through w, at each step we are either in Vi, UV;_ orin
Vg, UVp_, which means that

w(1,0,0) € V/L. UVyz UVB+ UVg ,

and so w(1,0,0) # 0. O
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In order to prove the Banach-Tarski Paradox, we will use the following
result, known as the Hausdorff Paradox.

Theorem 1.5.2 (Hausdorff). There exists a countable subset X C S? such
that S? \ X is SO(3)-paradozical.

Proof. Every non-trivial rotation in SO(3) fixes two antipodal points in S.
Consider the set X C S? of all points fixed by some rotation in H < SO(3),
which is countable because H = F'(a,b) is finitely generated. Then, the
paradoxical group H acts freely on S? \ X, and so S? \ X is paradoxical by
Theorem 1.4.5. O

Definition 1.5.3. Let G be a group acting on a set ). We say that two
subsets X, Y C Q are G-equidecomposable, and write X ~ Y, if there exist
subsets X1,..., X, € X and Y7,...,Y, CY with

n n
x=Jx, v=Jv,
i=1 i=1
and elements ¢1,...,9, € G such that Y; = X;g; foralli=1,... n.
Remarks 1.5.4. (i) It is easy to see that being G-equidecomposable is

an equivalence relation on the family of subsets of 2.

(ii) The condition of Q being G-paradoxical can be reformulated by saying
that there exist disjoint subsets X,Y C  such that X ~ Q ~ Y.

(iii) Clearly, if X is G-paradoxical and X ~ Y, then Y is G-paradoxical as

well.

Proposition 1.5.5. Given a countable subset X C SQ, then we have that
S\ D is SO(3)-equidecomposable to S*.

Proof. Because X is countable, there is some line L C R3 going through the
origin such that L N X = ). Consider now the set I' of all angles 6 € [0, 27)
such that, if we denote by pg the rotation about L of angle 6, we have that
xppg € X for some n € N and some x € X. Then, I is countable, and so
there is some angle 6 € [0, 27) such that X p,9 N X = @ for any n € N. If we
consider the set

X = U Xpn@y
n=0
we have that
S?=XU(S*\ X)
NXpU(Sz\X)
= (X\ X)U(S$*\ X)
=S?\ X.
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Corollary 1.5.6 (Banach-Tarski). The sphere S? is SO(3)-paradozical.

Connecting every point on S? with a half-open segment to the origin,
the paradoxical decomposition of S? yields a paradoxical decomposition of
the unit ball without the origin.

Corollary 1.5.7. The punctured ball B\ {0} is SO(3)-paradozical.

There is just one final step left in order to prove the Banach-Tarski
Paradox.

Proposition 1.5.8. The punctured ball B>\ {0} is E(3)-equidecomposable
to B3.

Proof. Let p € E(3) be a rotation of infinite order about an axis crossing
B? but without going through the origin, and such that 0 - p” € B3 for all
n € N. Then, if we take X = {0} and

X ={0-p"|n >0},
we have that
B = X U (B*\ X)
NXpU(BS\X)
:]B%3\{O}.
O

Finally, combining the previous results we obtain the Banach-Tarski
Paradox.

Theorem 1.5.9 (Banach-Tarski). The ball B3 is E(3)-paradozical.

Proof. By Proposition 1.5.8, the ball B? is E(3)-equidecomposable to the
punctured ball B3 \ {0}, which is in turn E(3)-paradoxical due to Corol-
lary 1.5.7. Therefore, we can conclude that B? is E(3)-paradoxical. O

1.6 Ultrafilters, the Stone-Cech Compactification
and Fixed Point Properties

The concept of amenability can be further characterised by the fixed points
of certain kinds of actions of our group on some spaces. One such character-
isation says that a group is amenable if and only if every affine continuous
action of the group on a non-empty convex compact subset of a Hausdorff
topological vector space has a fixed point.
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Amenable groups can also be characterised as those whose every contin-
uous action on a non-empty compact Hausdorff topological space fixes some
Borel probability measure.

In order to be able to prove these characterisations, we will introduce
the concepts of filters and ultrafilters and the Stone-Cech compactification
of a discrete topological space. We will also make use of ultrafilters in the
following chapters. For a more through exposition of the topics of ultrafilters
and the Stone-Cech compactification, see [10].

Definition 1.6.1. A filter on a set () is a collection w of subsets of 2
satisfying the following properties:

(i) Qewand ) € w.
(i) f X cwand X CY, then Y € w.
(iii) f X,Y €w, then X NY € w.

An wultrafilter on € is a maximal filter, i.e. a filter that is not properly
contained in any other filter on X.

Examples 1.6.2. (i) If © is a topological space, then given any point
x € Q) the set A of all neighbourhoods of zx is a filter on Q.

(ii) Given an element x € €2, we can define the ultrafilter
wry ={X CQ|ze X}
which is called the principal ultrafilter based on x.

We can talk about convergence along filters on topological spaces. Given
a filter w on a topological space €2 and a point z € €2, we say that w converges
to x if N C w. We then have the following properties.

Proposition 1.6.3. Let Q) be a topological space. Then, the following hold:

(i) The space Q is Hausdorff if and only if every convergent filter on §2
has a unique limit.

(ii) The space Q2 is compact if and only if every ultrafilter on Q is conver-
gent.

Filters also allow us to generalise the notion of limit of a function. Given
a set ), a topological space T and a filter w on {2, we say that a map
f:Q — Y converges to the point y € T along w if f~1(V) € w for every
V € N,. If the limit is unique, we write
y = lim f(x).

T—w
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Example 1.6.4. Let (x,),en be a sequence in the topological space Q.
Then, (z,,)nen converges to the point = €  in the usual sense if and only if
it converges along the filter

{X CN|N\ X is finite}

on N.
Further suppose that (x,)nen is bounded. Then, we have that (x,)nen
is convergent in the usual sense with

lim z, =z
n—oo

if and only if
lim z, =«
n—w

for every non-principal ultrafilter w on N.

Proposition 1.6.5. Let Q) be a set, T a compact topological space and w an
ultrafilter on Q. Then, a map f: Q — T has a limit which is unique.

The concept of ultrafilter now allows us to define the Stone-Cech com-
pactification of a discrete topological space.

Definition 1.6.6. Let 2 be a discrete topological space. The set of all ul-
trafilters on € is called the Stone-Cech compactification of €2, and is denoted
by 5.

Given X C ) non-empty, we can consider
X ={wepR| X ecw} CpAQ.

This set can be naturally identified with the Stone-Cech compactification of
X, which justifies our abuse of notation.

Proposition 1.6.7. Let © be a discrete topological space and X,Y C €.
Then, the following properties hold:

(i) Given X,Y C Q, we have that

B(XNY)=pXNPY.
(ii) Given X,Y C Q, we have that

BXUY)=pBXUPBY.
(iii) Given X C Q, we have that

B\ X) = B2\ BX.
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Proof. Let us first prove (i). Given X,Y C Q and w € €, we have that
w e (X NY)if and only if X NY € w, which is in turn equivalent to
X,Y € w. But this is precisely the condition that w € X N BY.

Let us now show that (ii) holds. Given X,Y C Q and w € X, we have
that w € (X UY) if and only if X UY € w. Assume by contradiction that
X,Y ¢ w. Then, we must have that Q\ X, Q\ Y € w, leading us to deduce
that

Q\(XUY) = (Q\X)N(Q\Y)€w,

which implies that X UY & w. Therefore, X UY € w is equivalent to having
X €wor Y € w. But this is precisely the condition that w € X U BY.

Finally, let us prove (iii). Let X C Q and w € p. Because w is an
ultrafilter, it is easy to see that either X € w or Q\ X € w, and the two
possibilities are mutually exclusive. This implies that w € X if and only if

wé& B\ X). O
The above result shows that the family
{BX [ X CQ}

forms the basis for a topology on 5£2. The Stone-Cech compactification of
a discrete space {2 is thus the largest compact Hausdorff space into which
Q) can be embedded as a dense subset, as can be gleaned from its universal

property.

Theorem 1.6.8. Let Q) be a discrete topological space. Then, B2 is a com-
pact Hausdorff topological space containing Q0 as a dense subset. Further-
more, if T is a compact Hausdorff space, any continuous map f: Q — T
admits a unique continuous extension Sf: g — Y.

Proof. We can identify Q with the subspace of 52 formed by the principal
ultrafilters, i.e.
Q={w, | x € Q}.

Then, given any non-empty subset X C €2 and a point z € X we have that
wy € BX, and so X NQ # (. Hence, Q is dense in 31.

Let us now show that S is a Hausdorfl space. Given wq,ws € S with
w1 # ws, there must be some subset X C Q with X € w; and X & ws. But
then, Q\ X € wy. Hence, fX, 5(2\ X) C B are open, disjoint subsets with
w1 € BX and wy € B(2\ X). Therefore, 512 is a Hausdorff space.

Now, we need to prove that S is compact. Let {5X,}icr be a covering
of B2 by basic open sets. Suppose by contradiction that

U x: # 82

icJ
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for every finite subset J C I. Then, this implies that

@\ X;) #0

e
for every finite subset J C I, i.e. {Q\ X;}icr has the finite intersection
property. Hence, using Zorn’s Lemma we can find an ultrafilter w € £Q
such that Q\ X; C w for all i € I. Then, we have that

50\ (Um) — @\ X) £,
icl iel
contradicting that {5X;}icr is a covering of €. Therefore, we can extract
from {8X;}ier a finite subcovering, and so €2 is a compact space.
Finally, let T be a compact Hausdorff space and f: £ — T be a con-
tinuous map. Then, because T is both compact and Hausdorff, the map f
has a unique limit along every ultrafilter w € 82, and so we can define

Bf(w) = lim f(x)

for w € B2. We can then easily check that gf: 80 — T defined in this
manner is the unique continuous extension of f to Sf. O

We can use the Stone-Cech compactification to prove the characterisa-
tion of amenability in terms of continuous actions fixing Borel measures.
The key fact will be that the action of a group G on itself can be extended
to an action on SG by using the universal property of the Stone-Cech com-
pactification.

Proposition 1.6.9. Let G be a group. Then, the action of G on itself by
right multiplication can be extended uniquely to an action of G on BG by
homeomorphisms.

Proof. Given g € G, consider the right translation 7,: G — G given by
T¢(h) = hg. Then, the universal property of SG given in Theorem 1.6.8
implies that there is a unique continuous extension f7,: 3G — BG of 7,4
to BG for each g € G. Now, because 71 = idg and the extension is unique,
we have that
BT 1= idﬁG .

Furthermore, given g, h € G, using that 7407, = 74, and that the extension
is unique, we obtain that

B1g 0 BTHh = BTgh-
In particular, we have that
BTy 0 BTg—1 = BT4-1 0 By = idga
for any g € G, and so 374 is a homeomorphism of 3G for every g € G.

Therefore, the action of G by right multiplication extends uniquely to an
action of G on SG by homeomorphisms. O
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1.7 Characterisations of Amenability

We are now ready to come full circle and prove that all the different char-
acterisations of amenability that we have discussed up to this point are
actually equivalent.

Theorem 1.7.1. Let G be a group. Then, the following are equivalent:
(i) There is a right-invariant finitely additive probability measure on G.
(ii) There is a right-invariant mean on G.

(iii) The group G satisfies the Folner condition.
(iv) There is a Folner net in G.
(v) The group G is non-paradozical.

(vi) Ewvery affine continuous action of G on a non-empty conver compact
subset of a Hausdorff topological vector space has a fixed point.

(vil) Ewvery continuous action of G on a non-empty compact Hausdorff topo-
logical space has an invariant Borel probability measure.

Proof. We will prove the implications in the following diagram:

o %
4

First, the fact that (ii) is equivalent to (i) is precisely Theorem 1.1.6.

Furthermore, the fact that (iii) implies (i) is a consequence of Theo-
rem 1.3.8.

We also know that (iii) is equivalent to (iv) by Theorem 1.3.7.

Let us see that (v) implies (iii). We will actually show that G not
satisfying the Fglner condition implies the existence of a paradoxical de-
composition of G. Suppose that G does not satisfy the Fglner condition.



Chapter 1. Amenable Groups 29

Then, there exist a finite subset Xg C G and ¢ > 0 such that, for every finite
non-empty subset F' C G, there is some g € X satisfying that

|[F'\ Fyg|

> €.
||

Without loss of generality, we may assume that 1 € Xy. Thus, for any finite
non-empty subset F' C G we have that
|F| — |FXo| = |F\ FXo
> |F\ Fyl
> el F,
and so we have a finite subset Xy C GG and some A\ > 1 such that
|[FXo| > AlF].

Taking n € N large enough that A" > 2 and writing X = X', we obtain a
finite subset X C @ such that

[FX]>2|F

for every finite subset F' C G.
Let Q be the collection of families

(X Honeaxiz
of finite subsets of G satisfying the following conditions:
e For any finite subset ® C G x {1,2}, we have that

U Xea

(g,0)ed

> |®].

e For every (g,1) € G x {1,2}, we have that
X(g) < 9%

Note that € is non-empty, for {gX}gijeax{i,2y € 2. Indeed, any finite
subset ® C G x {0, 1} can be written as

b= (A x (1)) U (B2 x {2))
with Fy, Fy C G finite, and so

ngdzuﬂuﬁﬂ‘
(g9:0)e®

> 2|F1 U F2|

> | D).
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We can order €2 by component-wise inclusion. Then, every chain

{X(lg,i)}(g,z‘)ecx{l,z} 2 {X?Q,i)}(g,i)er{lg} 2

has a lower bound, namely

X} ,
{TQ\T (5:) (9.1)€Gx{1,2}

By Zorn’s Lemma, 2 has a minimal element { Mg ;) }(5.i)eax{1,2}- Let us see
that | M, ;)| = 1 for all (g,4) € G x{1,2}. The construction of {2 implies that
the M, ;) are all non-empty. Assume by contradiction that [ M, ;)| > 1 for
some (go,i0) € G x {1,2}, and take g1,g2 € Mg ;) distinct. For [ = 1,2,
construct the family {M(lg,i)}(g,i)GGX{lﬂ} by replacing in {M(g,i)}(g,i)GGX{1,2}
the set My, ;o) with Mg ;) \ {g:}. By the minimality of M, ;), neither
of the families {M(lg7i)}(g7i)€G><{1,2} are in §). Thus, there exist finite sets
®; C G x {1,2} not containing (go, ig) such that

l l
’M(go,io) U U M(g,z‘) <[P + 1.
(g7i)€q>l
Write
I _ l l
M= M, U U M, -
(gri)e(bl
Then,

[@1] + @of > M| + M7
= |M' U M?| + |M' N M2

- |M(goyi0) U < U M(W))

(g,i)eftqﬂ@z

_l’_

(M(go,m\{ghg?})U( U M(g,a)

(gai)e(plmq>2

> 1+|¢1U<I>2|+|(I)1ﬂ(1)2|
=14 [ + 4],
a contradiction. This shows that M, ;| = 1 for all (g,7) € G x {1,2}. Also,

the singletons M, ;) must be pairwise disjoint by the properties of 2.
Now, we define for each x € X the sets

Y, = {g €eG | gr € M(g,l)}a Zy = {g €G | gz € M(g,?)}'

Write M,y = {h(g,)}. Given g € G, by the properties of {2 we have that
My C Xg for i = 1,2, so there exists z; € X such that gz; = hg;),
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meaning that ¢ € Y, and g € Z,,. Furthermore, if g € Y, NY,s then
gr = g, implying that x = 2’ and the Y, are pairwise disjoint. The same
is clearly true for the Z,. Note also that all the Y, and the Z, are distinct
due to the elements k(4 ;) being distinct. Therefore, we can write

¢=Jv=_J 2.
zeX rzeX

Finally, we have that
Yoe N Zpa' =Yoo NYypr =Yoo N Zypx =0,

for all distinct z, 2" € X, and so G is paradoxical by Proposition 1.4.2.

Let us now show that (i) implies (v). We will prove that if G is para-
doxical, then there cannot be any right-invariant finitely additive probability
measure on G. Suppose that we have pairwise disjoint subsets Xi,..., X,
and Yi,...,Y,, of G, and elements g¢1,...,g, and h1,..., h, in G such that

G = (UXZ> Y (UY]> :UXigi:Uthj'
i=1 i=1 =1

j=1
Assume now by contradiction that there is a right-invariant finitely additive
probability measure p on GG. On the one hand, we have that

;:;#(Xz‘) = M(Q&'%) = u(G) =1,

and analogously,

On the other hand,

which contradicts the fact that u(G) = 1. Therefore, no such a p can exist
on G.

Let us prove that (iv) implies (vi). Let X be Hausdorff topological
vector space and C' C X a non-empty convex compact subset. Assume that
G acts on X, and consequently on C', via an affine continuous action. Let
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(F3)icr be a Fglner net in G. Choose a point z € C and, for each i € I,

define
Z zh.

heF;

1
C; =
il

|F,
Note that ¢; € C because C is convex. Without loss of generality, we may

assume that the net (¢;);er converges — otherwise, since C' is compact, we
can take a convergent subnet. Write then

c=limg;.
el

For any g € G, we have that

heF;g
and so
1
cig—q:w< Z zh — Z :L'h)
v heF;g\F; heF\F;g
|F; \ Fig| ( 1 T 1 )
_ A S o
Bl \IB\Fgl, &=, [E\Fgl, &

for every i € I. Because (F;);cs is a Folner net and C' is compact, we can
conclude that
cg —c=lim(c;g — ¢;) = 0.
el

Therefore, ¢ is a fixed point for the action of G on C.

Let us now see that (vi) implies (vii). If © is a compact Hausdorff
topological space, then the space M(£2) of complex regular Borel measures on
Q) can be identified by the Riesz Representation Theorem with the dual space
of C(£2), the space of continuous functions from 2 to C. Denote by (Q2) the
set of Borel probability measures on 2. Then, we have that B (€2) C M(N2)
and PB(Q) is clearly convex. Furthermore, P (£2) can be written as the zero
set of a continuous map on M(2). Moreover, P(2) is contained in the unit
ball of 9t(€2), which is compact by the Banach-Alaoglu Theorem. Finally,
the action of G on Q naturally induces an action on B(£2), given by

p(X) = u(Xg™)

for X C Q and g € G. Therefore, by hypothesis we must have (Q)¢ # 0.

Finally, let us see that (vii) implies (i). By Proposition 1.6.9, the action
of G on itself extends to a continuous action on its Stone-Cech compactifica-
tion SG, which is a non-empty compact Hausdorff topological space. Then,
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by hypothesis there must be some G-invariant Borel probability measure p

on BG. Define then f: P(G) — [0,1] by
A(X) = p(BX)
for X C G. It is clear that
A(G) = u(5G) = 1.

Moreover, given any disjoint X,Y C G, we have that 5X,8Y C BG are
disjoint as well, and so

Finally, given X C G and g € G, we have that (Xg) = (5X)g because G
acts by homeomorphisms, and so

i(Xg) = pu(B(Xg)) = n(Xg) = n(X) = @(X).

Therefore, p is a right-invariant finitely additive probability measure on G,
and so G is amenable. O






Chapter 2
Quasitilings

In this chapter we will develop the theory of quasitilings for finitely generated
amenable groups, and prove a result originally by D. S. Ornstein and B.
Weiss stating that quasitilings always exist. Quasitilings prove to be a key
tool in the proof of a number of results for finitely generated amenable
groups. This chapter is primarily based on [4], [5] and [15, §4.5].

2.1 Cayley Graphs and Graph Approximations

Before introducing the Cayley graph of a finitely generated group, let us fix
some notation. A graph X will consist of a set of vertices V(X) and a set
of edges F(X). We will frequently identify X with its set of vertices.

Let S be a finite set. An S-labelled graph is a graph X such that every
directed edge (z,y) € F(X) is labelled by some s € S*!, in such a way that
(y,z) is labelled by s7! € S*! and for each € X and s € S*! there is at
most one edge from x labelled by s.

Definition 2.1.1. Let G be a group generated by a finite set S. Then, the
Cayley graph of G with respect to S, denoted by Cay(G, S), is the S-labelled
graph with vertex set G and directed edges (g, gs) labelled by s € S*!, with
g€ G.

Remark 2.1.2. Given a finite set S, consider the free group F'(S) on S.
Then, an S-labelled graph is the same as an F'(S5)-set. Indeed, an action of
F(S) on any set automatically turns it into an S-labelled set, whereas the
labels of an S-labelled graph give us an action of F(S).

We can consider Fglner sequences in the Cayley graph of a finitely gener-
ated group, which turn out to be the same as Fglner sequences in the group
itself.

Definition 2.1.3. Let G be a group generated by a finite set S C G. A
sequence (F},)pen of finite subgraphs of Cay(G, S) is called a Folner sequence

35
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in Cay(G, S) if for all € > 0 there exists some N € N such that

|8SFn’
| Fy |

<e€

for all n > N.

Remark 2.1.4. It can be easily seen that this definition does not depend
on the generating set, and so a Fglner sequence in some Cayley graph of a
group is a Fglner sequnce in any Cayley graph of the group, and is in fact
a Fglner sequence in the group itself.

We will now study approximations of graphs. Whenever we have a graph
X, we can define a metric on X by setting the distance between any two
vertices of X to be the shortest length of a path between them. Given r > 0
and x € X, we denote by B,.(z) the ball of radius r centred at x.

Definition 2.1.5. Let G be a group generated by a finite set S C G, X be
a finite S-labelled graph and r € N. We say that X is an r-approzimation
of Cay(G, S) if there exists some subgraph X’ C X such that

1
X' > (1-2)IX]
T
and B, (x) is isomorphic to B,(1) as an S-labelled graph for every = € A.

This definition allows us to give another characterisation of Fglner se-
quences.

Proposition 2.1.6. Let G be a group generated by a finite set S C G. A
sequence (Fy)nen of finite subgraphs of Cay(G,S) is a Folner sequence if
and only if for every r € N there exists some N € N such that F, is an
r-approzimation of Cay(G,S) for alln > N.

Now, we proceed to define the notion of r-isomorphism of labelled graphs.

Definition 2.1.7. Let S be a finite set and r € N. Two S-labeled graphs
X; and Xy are said to be r-isomorphic if there are subgraphs X, C X; such
that

1
!
N> (1= = :
|B(X])| > (1 r)\E(Xl)|
for i = 1,2 and X7 is isomorphic to X’ as an S-labelled graph.

Lemma 2.1.8. Let X, Y and Z be S-labelled graphs and r € N. If X is
2r-isomorphic to Y and Y 1is 2r-isomorphic to Z, then X is r-isomorphic
to Z.
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Proof. Because X and Y are 2r-isomorphic, there exist X’ C X and Y’ C Y,
and an isomorphism ¢: X’ — Y’  such that

B = (1- %)\E(X) B = (1- %)UE(Y)\.

Similarly, there are Y” C B and Z’ C Z, and an isomorphism : Y — Z/,
such that

B = (1- %) B, |B2)| > (1- ?17«) E(2)].

We can obtain Y/ NY” from Y’ by erasing at most 5-|E(Y')| edges from Y.
If we write

X// — (p_l(Y/ m Y,/),
we have that
|[E(X")| = |EY' nY")
1 !
2 (1-3,)1B@)]

- (1 - 2%) |B(X)).

Thus, we can obtain X” from X' by erasing at most o |E(X’)| edges from
X', and so we can obtain X" from X by erasing at most 2| E(X)| edges from
X. Analogously, we can obtain

Z// — /l/](YI m Y//)

from Z by erasing at most %|E(Z)| edges from Z. Hence, Yop: X" — 7"
is an isomorphism, and

)

B(xX")| = (1- %) BX)|, Bz = (1- %) |B(2)

meaning that X is r-isomorphic to Z. O

2.2  Quasitilings

We will now prove a version of the Ornstein-Weiss Quasitiling Theorem for
graphs presented in [4]. Before talking about quasitilings, we will need a
number of auxiliary concepts about coverings of finite sets.

Definition 2.2.1. Let F' be a finite set, (X;);c; a family of subsets of F,
and A\, e > 0.
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(i) We say that (X;);cs is a A-even covering of F with multiplicity M if

ZXXZ- <M,

el
where xx; is the characteristic function of X;, and

> IXi| = AM|F).
el

(ii) We say that (X;)ier A-covers F' if

U

il

> \|F.

(iii) We say that (X;);er is e-disjoint if for each i € I there exists ¥; C X;
such that
il > (1 —¢)|Xil

and (Y;);er is a family of pairwise disjoint sets.

Lemma 2.2.2. Let F be a finite set, 0 < X\ < 1 and (X;)ie; a \-even
covering of F'. Then, for every subset Y C F' there exists some ¢ € I such
that

X;inY| _ ||
Xl S AE

Proof. Suppose by contradiction that there is some Y C F' such that

X;nY|] Y]
| X ALF|

for all i € I. Then, if the A-even covering (X;);c; has multiplicity M, we
have that

Y|
Z’Xi nY|> NE| Z|Xi|

i€l el

> [Y[M

> oD xx ()
yey el

=22 xxiovr (v)
el yeYy

=> |XinY],
i€l

a contradiction. O
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Lemma 2.2.3. Let F' be a finite set, 0 < e < % and 0 < X\ < 1. If (X;)ier is
a A-even covering of F' by non-empty sets, then we can extract an e-disjoint
subcollection of (X;)ier that eX-covers F.

Proof. Let © be the collection of families {(X;,Y;)}ier with I’ C T and
Y; C X, satisfying that
Vil > (1 —¢)|Xil

for every i € I’ and the sets Y; are pairwise disjoint. We can order Q by
setting

{(X“Yi)}z‘ep = {(Xi’Zi)}ieI”

if I' CI"and Y; = Z; for all i € I'. Tt is clear that  is non-empty, for given
any 19 € I we have that {(X;,, X;,)} € Q. Thus, 2 has a maximal element,
say {(X;,Yi)}ies. Assume by contradiction that (X;);cs does not eA-cover

Fie.
U

iceJ

< eMF.

Then, Lemma 2.2.2 implies that there exists some iy € I such that

[Xio WUies Xil _ [Uies Xil
| Xio | =

<e€

Thus, we can add the pair (X;,, X;, \U;cs Xi) to the collection {(X;, X;)}ier,
contradicting its maximality. O

We are now ready to study quasitilings. We will introduce the version
of quasitilings developed in [4] for graphs.

Let G be a group generated by a finite set S C G. Given a finite S-
labelled graph X and r > 0, we denote by Q,(X) the set of vertices x € X
such that the ball B,(z) C X is isomorphic to the ball B,(1) C Cay(G,S)
as an S-labelled graph.

For each point z € @, (X)), we have an isomorphism of S-labelled graphs
¢z Br(1) — By(s). Given ¢ > 0, we will say that a collection (71, ...,Tm)
of finite subsets of B,./5(1) C Cay(G, S) is an e-quasitiling of X if there exist
Ch,...,Chp € Qr(X) such that the family

U {62(Th) | = € Ci}
k=1

is e-disjoint and (1 — ¢)-covers X.

Whenever our group is amenable, every finite graph which is a sufficiently
good approximation of the Cayley graph of the group can be quasitiled by
elements of a Fglner sequence.
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Theorem 2.2.4 ([4, Theorem 2]). Let G be a finitely generated amenable
group with S C G a finite generating set and (Fy,)neny o Folner ezhaus-
tion of G. Given € > 0, there exist some r > 0 and a finite subcollection
(T1, ..., Tm) of (Fn)nen with T; C B, j5(1) fori=1,...,m such that every
finite S-labelled graph X satisfying that

‘QT(X)’ 3

LRSS
| X 4

is e-quasitiled by (T1,...,Ty).

Proof. Take m € N such that (1 — §)™ < e. Choose some n; € N and
write 11 = F,,. Then, take ry > 1 such that 77 C Brl/g(l). Now, because
(Fn)nen is a Folner exhaustion, we can take ng € N such that B,  C Fy,

and
‘Brl(Fnz)\FnJ _ ‘Fn2 'Brl(l)\Fnz‘ < f

| Frs | | Fhs | 8
Write T, = F,,, and choose r2 > 8r;. Continuing in this manner, we can
extract from (F),)nen & subcollection (T4, ..., T,,) such that

T'C B, (1) ST C---CTy C B, o,

and
By, (Tix1) \ Ti1| €
<35
|Ti1] 8
with 1 > 1 and r; < ”T“ fori=1,...,m—1.
Let X be a finite S-labelled graph satisfying that
—r > 1—-.
X T

For each z € @, (X), we can consider the isomorphism of S-labelled graphs
¢s: By, (1) — By, (). Note that (¢2(Tim))scq,,, (x) is a 3-even covering
of X. Indeed, any y € ¢.(T},) is also in @, /2, and so = € qby(TT;l). Thus,
every vertex of X is covered by at most |T,,]| tiles, i.e.

Z X (Trn) < |Trml-
IEQT‘m(X)
Furthermore,
D 16Tl = 1@, ()| T
xEQ"‘m(X)

> (1= 5) X1/l

1
> 2Tl IX],
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thus showing that (¢2(Tm))zeq,,, (x) 18 a $-even covering of X with mul-
tiplicity |T,,|. Therefore, Lemma 2.2.3 allows us to extract an e-disjoint
subcollection (¢ (Tm))zec,, with Cp, C Qr,, (X) that S-covers X.

Assume now that for 1 < k < m we have constructed sets Cg11,...,Cp
with C; C Q,(X) such that the collection

U{¢x )|z € Ci}
i=k+1

is e-disjoint and A-covers X, where

e\ m—k+2
)\:min{l—a,l—(l—2> }

Let

XK:X\< Lnj U %(TJ)-

i=k+12eC;

If | Xi| < e|X]|, we can simply take Ci,...,Ck to be the empty set and we
are finished. Assume then that |X| > ¢|X|. Because

U{qﬁx |xGC}

i=k+1

is %—disjoint and

UU%

i=k+1xzeC;

<X < - IXkI,

we have that

U U (2 (B () \ 6 0)‘52 S e

i=k+1zeC; i=k+1
m
<< U U em
1= k+1x€C¢
1
—|X
< 71Xl
Observe that
‘Qﬁc ‘ €
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because 1 < r,,. Consequently,

0000| = Q00N U U (6001 (B (1) (1)

i=k+1x2eC;

=)= U U ¢

i=k+1zeC;

U U (ealBom)eu ))‘

i=k+1zeC;

1
1= 2)IX] = (X1 = 1X) - 1%

[\D\l—‘/’\

and so

Therefore, the collection (¢4(Tk))zeq,, (x;) IS @ 1-even covering of Xj, and
so Lemma 2.2.3 implies that we can extract an e-disjoint subcollection
(¢2(Tk))zec, with Cy C Qp, (X}) that 5-covers Xj. Hence,

U{% )| @€ C)

is e-disjoint and (1 — (1 —£)™ *+1)-covers X. Therefore, we can recursively

construct sets C1,...,Cp, with C; C @, (X) such that

U{% )|z € Ci}

is e-disjoint and (1 — €)-covers X, i.e. the finite S-labelled graph X can be
e-quasitiled by (T1,...,Tn). O

We will now present a classical application of quasitilings in the form of
the Subadditive Function Theorem.

Definition 2.2.5. Let G be a group and f be a function from the set of
finite subsets of G to R. We say that f(X) converges to X\ as X becomes
more and more invariant if for every € > 0 there exist a finite subset ' C GG
and 6 > 0 such that |f(X) — A| < e for every non-empty (F,J)-invariant
finite subset X C G.

Theorem 2.2.6. Let G be a finitely generated amenable group with S C G
a finite generating set, and @ be a function from the set of finite subsets of
G to [0,00) satisfying the following conditions:
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(i) (Xg) = @(X) for every finite subset X C G and g € G.

(ii)) (X UY) < p(X)+p(Y) for all finite X, Y C G.

X o . .
Then, % converges to a limit as X becomes more and more invariant.

Proof. Let (Fy)nen be a nested Folner sequence in G. First, observe that
the subadditivity of ¢ implies that

p(X) < [Xlp({1})

for any finite subset X C G. Thus, the sequence (ﬁgﬁ))neN is bounded in

R, and so we can define

p(Fn)

|2l

A = lim inf
n—oo

Let € > 0. Given any 0 < n < %, we can extract from (F),)pen a fi-
nite subcollection (T1, ..., Ty,) that n-quasitile every (T}, 7)-invariant finite
subset of G, and such that

o(T;)

<A+
| T3]

| ™

for every i = 1,...,m. Let X C G be a (T}, 7)-invariant finite subset of G.
Then, there exist C4,...,C,, C G such that

OTZ‘QQX

i=1

and the family

n

U{Tic]ceCi}

k=1

is e-disjoint and (1 — €)-covers X. Then, for each T;c there exists a subset
T;c with
[ Tiel > (1 = €)|Tic| = (1 ¢)|T}]

and such that the Tjc are pairwise disjoint. Then, we have that

X[=Y D Tl > (1-2) > Y [T,

i=1 ceC; i=1 ceC;
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and so

SO(X)§90<CJ U Tw)—i—go(X\CJ U z;c>

A+2) Bp 1T+ eIl (1)

At 5) Xn XIe({1}).

Hence,

(p‘()‘;ﬁ) < 1i (A+ 2) +ne({1}),

and we can take 77 small enough that

p(X)
<A+te
RY
for every (T, 7)-invariant subset X C G. Therefore, % converges to A
as X becomes more and more invariant. O

2.3 Approximations by Linear Combinations

In this section, we will introduce the concept of linear combination of a
sequence of graphs. This will allow us to reformulate Theorem 2.2.4 and
then give a stronger version of this same result that we will need in the
following chapter.

Definition 2.3.1. Let 7 = (11,...,T},) be a finite sequence of S-labelled
graphs and o = (o, ..., an) € NJ'. We define the linear combination of T
with coefficient vector o, denoted by a7, as the disjoint union of «; copies
of T; foreachi=1,...,m

Lemma 2.3.2. Let T = (T1,...,T) be a finite sequence of S-labelled
graphs, each of them with at least one edge. Then, given r € N there exists
some M € N such that, for all o, f € Ng* \ {0} satisfying that ||3]] > M |||

and
’ llafl 181 H

we have that BT is r-isomorphic to ta.- T for some t € N.
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Proof. Let

E = max |E(T;)|
1<i<m

and r > 0. Take M > 2mEr and «, B € N\ {0} such that that ||5]| > M]|«||

and
[ 71l < =

Now, consider ¢ € N the largest integer such that ||| < ||3||. Note that we
must have M <t and ||«|| > 1. Consequently,

18— tal < Jlaf + '

R H

and so each coordinate of § differs from the corresponding coordinate of ta
by at most 2 a7llell. Therefore, BT can be obtained from ta7 by adding or
deleting at most 2t||a|| copies of each Tj, and the number of edges either
added or deleted is at most QmEt Il

Furthermore, the graph taT has at least t¢||«| edges, and ST has at
least ||| > t||«|| edges. Thus, because M > 2mEr, we obtain that 87T is
r-isomorphic to ta7T . O

The following is a reformulation of Theorem 2.2.4 in terms of graph
approximations and r-isomorphisms of labelled graphs.

Theorem 2.3.3 ([6, Proposition 2.7]). Let G be a finitely generated amenable
group with S C G a finite generating set and (Fy,)nen a Folner exhaustion
in G. Then, given r € N there exists some R € N and a finite subcollection
(Th, ..., Tm) of (Fp)nen such that every R-approzimation of Cay(G,S) is
r-isomorphic to some linear combination of (T1,...,Ty).

This result can be refined in order to obtain a stronger version of the
theorem that gives us quasitings of a particular type, which will prove to
play a key role in the proof of Theorem 3.3.2.

Theorem 2.3.4 ([6, Proposition 2.8]). Let G be a finitely generated amenable
group with S C G a finite generating set and (Fy,)nen a Folner exhaustion
in G. Then, given v € N there exists some R € N, a finite subsequence
T = (Th,...,Tm) of (Fn)nen and some o € Ni* \ {0} such that every T; is
a 2r-approzimation of Cay(G,S), and every R-approximation of Cay(G,S)
is 2r-isomorphic to ta. - T for some t € N.



46 2.3. Approximations by Linear Combinations

Proof. Let r € N. Assume without loss of generality that every set in
(Fy)nen is a 2r-approximation of Cay(G, S). Using Theorem 2.3.3 we can
obtain a subsequence T = (11,...,T,) of (F,,)nen and some Ry € N such
that every Rg-approximation of Cay(G S) is 8r-isomorphic to some linear
combination of 7. Now, take (F),)nen a subsequence of (Fy,)nen such that
every F! is an Rg-approximation of Cay(G, S).

For each n € N take 3, € Ny \ {0} such that F,, is 8r-isomorphic to
Bn - T. Then, (H 5 ||)n6N is a sequence of unit vectors in R™, so it must
have an accumulation point v € R™. Applying Lemma 2.3.2, we get that
there exists some M € N such that for all o, 3 € Nij* \ {0} satisfying that
181l = Ma] and

!
-t
lall 1B~ M
we have that 87 is 8r-isomorphic to some integer multiple of 7. Take
some N € N such that

1
BN H L
1Bx1 2M°
and extract from (F})nen a subsequence (F}, )ren such that
lize ] <o
18l 2M

and [|By,]| = M for all k € N. The sequence (F}, )ren is still a Fglner
exhaustion, and it satisfies that

st - |
N

for all £ € N. Thus, we have that 3,, - T is 8r-isomorphic to tz8y - T for
some tg € N.

Applying Theorem 2.2.4 with the sequence (FT’Lk) keN, we obtain a finite
subfamily @ = (Q1,...,Qq) of (F}, Jren and some R; € N such that every
Rj-approximation of Cay(G,S) is 87" isomorphic to a linear combination of
Q. Let X be an Rj-approximation of Cay(G,S). Then, every Q; is 8r-
isomorphic to the corresponding /3, - 7, which is in turn 8r-isomorphic to
tofBn - T, and so Lemma 2.1.8 yields the result that X is 2r-isomorphic to

tByn - T for some ¢ € Z. O



Chapter 3

Sofic Groups

In this chapter we will review the concept of sofic groups. Before fully
focusing on them, we will discuss the family of residually finite groups.
After that, we will introduce sofic groups as groups whose Cayley graphs
can be approximated by finite graphs. In the last section, we will present
a characterisation of soficity in terms of ultraproducts of finite symmetric
groups. The main references for this chapter are [2, §4, §7], [6], [5] and [22].

3.1 Residually Finite Groups

We will now briefly introduce the concept of residually finite groups, which
are groups in which elements can be distinguished by taking finite quotients.
They serve as a generalisation of finite groups.

Definition 3.1.1. A group G is said to be residually finite if for any g € G
with g # 1 there is some normal subgroup N <G of finite index such that

gé N.

Proposition 3.1.2. Let G be a group. Then, G is residually finite if and
only if for every finite subset F C G there exist a finite group H and a
homomorphism ¢: G — H which is injective in F.

Proof. Assume that G is residually finite and let F' C G be finite. Then, for
every g,h € I with g # h there exists some normal subgroup Ny, IG of
finite index such that gh™! & N,;. Hence, the natural projection

v: @ — H G/Ngn
g,heF
g#h

is a homomorphism from G to a finite group which is injective in F.

Let us now prove the converse. Assume that for any finite subset of G
there is a homomorphism as required. Given g € G with g # 1, there exist
a finite group H and a homomorphism ¢: G — H such that ¢(g) # 1.
Then, ker ¢ <G has finite index and g ¢ ker . O
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3.1. Residually Finite Groups

Examples 3.1.3. (i) Finite groups are residually finite.

(i)

(iii)

Infinite simple groups, as well as groups with no non-trivial finite quo-
tients, are never residually finite.

The direct product of residually finite groups is once again residually
finite. Indeed, let
¢=]]¢

iel
with G; a residually finite group for each ¢ € I. Then, given any
9 = (9i)ier € G with g # 1, there is some ig € I such that g;, # 1.
Because G, is residually finite, we can find some normal subgroup
N;, <G}, of finite index in Gj, such that g;, € N;,. Set now N; = G;
for each i # ig, and
N=]]™.

iel
It is then clear that N < G has finite index and g ¢ N.

Every finitely generated abelian group is residually finite. Due to the
fact that finitely generated groups are direct products of finite groups
and copies of Z, it follows from the previous examples that we only
have to show that the group Z is residually finite. Indeed, given any
n € Z with n # 1, take any m € Z such that m { n. Then, we have
that mZ <7 is of finite index and n & mZ.

The group Q is not residually finite. Given any finite group H with
|H| = n, every homomorphism ¢: Q — H is trivial, for we must have
that

for every x € Q. This same argument implies that the additive group
of a field of characteristic zero is never residually finite.

Free groups are residually finite. Let F'(S) be the free group on the
set S. Take w € F(S) with w # 1, and write w = s; - - - 5, in reduced
form with s; € S*!. We can now define a map f: S — S,,1. Let
s€S. Ifs¢ {sF,... s} weset f(s) =id. Otherwise, consider the
sets

XS:{i|3i:3}7 Y;:{Z"Si_lzs},

and set f(s) to be some o € S,,+1 such that i-0 =i+ 1 for i € X and
(i+1)-0 =1 for i € Y. Note that this is well-defined due to w being
in reduced form. Making use of the universal property of F'(S), we can
extend the map f: S — S, 11 to a homomorphism f: F(S) — Sy,11.
Furthermore, we can see that f(w) sends 1 to n+1, and so f(w) # id.
Therefore, ker f < F'(S) has finite index and w ¢ ker f.
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3.2 Sofic Groups

Sofic groups serve as a generalisation of both amenable and residually finite
groups. They were first introduced in [9] by M. Gromov in 1999. Their
name, given to them in 2000 by Weiss in [25], comes from the Hebrew word
for finite.

Let G be a finitely generated group with S C G a finite generating set
of G, and consider the free group F(S). Then, we can write G = F(S)/N
for some normal subgroup N < F(S). Now, let (X, )nen be a sequence of
finite F'(.S)-sets, and write

P (X,) = {z € X,, |if w € B,(1p(s)), then zw = x if and only if w € N}
for each n,r € N.

Definition 3.2.1. Let G be a finitely generated group with S C G a finite
generating set. We say that a sequence (X, )nen of finite F'(S)-sets is a sofic
approzimation of G if
lim (£
n—oo | X,

=1

for all » € N.

This concept of sofic approximation leads us to the definition of sofic
groups.

Definition 3.2.2. A finitely generated group with a sofic approximation is
called a sofic group. In general, a group is said to be sofic if all of its finitely
generated subgroups are sofic.

This definition of soficity can be interpreted in a more geometric manner.
Let G be a finitely generated group with a finite generating set S C G and
(Xn)nen a sequence of finite F'(S)-sets. The action of F(S) on X, turns it
into an S-labelled graph for each n € N. Then, for every n,r € N we have
that

PT(XN) c QT(Xn) c P27’(Xn)a

where Q,(X,,) is the set of all x € X, such that B,(z) C X,, is isomorphic to
B,(1) C Cay(G, S) as an S-labelled graph. It follows from this that (X, )nen
is a sofic approximation of G if and only if
X
lim L’"( n)| =1
n—00 ‘Xn|
for all » € N. This last condition means that for every r € N there exists
some N € N such that X, is an r-approximation of Cay(G, S) for alln > N.
We will now introduce another characterisation of soficity that looks
quite similar to the characterisation of residually finite groups in Proposi-
tion 3.1.2.
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Given n € N, we can consider the symmetric group Sy, on which we can
define the normalised Hamming distance d,: Sy, x S, — [0, 1] by

(o) = 120 270

for o,7 € S,. It is not difficult to see that d,, defines a bi-invariant metric
on the group S, i.e. a metric such that

dp(v0,77) = dn(07,77) = dn(0, T)
for every o, 7,7 € S,,.

Proposition 3.2.3. Let G be a finitely generated group. Then, G is sofic if
and only if for every finite subset F' C G and € > 0 there exist some n € N
and a map p: G — Sy, satisfying the following conditions:

(i) For every g,h € F, we have that
dn(p(gh), ¢(9)d(h)) <e.

(ii) We have that
dn (0(1),id, ) <e.

(iii) For every g € F'\ {1}, we have that

dn(go(g),idn) >1—c.

Proof. Assume first that G is sofic, with S C G a finite generating set of
G. Let ¢ > 0 and F' C G a finite subset. We choose r € N such that
F? C B,(1g). Let X be an S-labelled graph with a subgraph X’ C X such
that

X' > (1—)|X]

and for every x € X’ there is an isomorphism ¢;: B,(1g) — B,(x) of
S-labelled graphs. We can then define a map ¢: G — S(F) by setting
x-¢(g9) = ¥.(g) if g € B.(1g), and choosing ¢(g) arbitrarily otherwise. We
can easily check that conditions (i), (ii) and (iii) are satisfied.

Let us now prove the converse. Given any r € N, take F' = Ba,y2(1g)
and € > 0. Let ¢: G — S,, be a map satisfying conditions (i), (ii) and
(iii) for our chosen F' and e, and write X = {1,...,n}. For each z € X,
define ¥, Byi1(lg) — X by setting ¢z(g9) = = - ¢(g) for g € Br11(1g).
Let X’ C X be the set of points z € X satisfying the following conditions:

(a) V2(gs) = 1y, (g)(s) for all g € B.(1g) and s € S.
(b) %(9) 7é %(h) for any 97h € BT+1(1G)-
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Now, the directed edges of X are (z,1,(s)) labelled by s, with z € X and
s € S. Tt can be seen that B,(z) = 1,(B,(1g)) and all the edges coming
out of it are in By11(x) = ¥, (Br+1(1g)), for each z € X’'. Conditions (a)
and (b) imply that v, preserves the edges coming out of 1,(¢) and that 1),
is injective for x € X’ and g € B,(1lg), respectively. Therefore, we have
that 1, : B,(1lg) — B,(x) is an isomorphism of S-labelled graphs for every
xe X'

Moreover, condition (a) gives us |B,(1¢)||S| equations to check. But
condition (i) says that each of these can only fail on a subset of X of size at
most ¢|X|. Furthermore, condition (c) gives us |B,41|? inequalities. Given
g,h € Bry1(1g) and z € X, applying conditions (i), (ii) and (ii) we get that

balg) (g™ =z 0(g ')
“x-p(g'h)
=vg(h) - o(g™h),

and so 1, (g) # ¥z (h) for every z € X save for those in a set of size at most
4e|X|. Therefore, if we take

1

£ < ,
r(4Br+1(16)12 + |B:(16)||S])

we have that
(X' > (1-¢)|X],

and so G is sofic. O
We are now ready to show that amenable groups and residually finite

groups are sofic. These classes of groups constitute our main two examples
of sofic groups.

Examples 3.2.4. (i) Amenable groups are sofic. Let G be a finitely gen-
erated amenable group with S C G a finite generating set and (F},)pen
a Fglner sequence in G. Given r € N, we have that

Qr(F,) ={z € F,|zB,(1¢) C F,}

for all n € N. By Proposition 1.3.13, for any € > 0 there exists some
N € N such that

‘Qr(Fn)‘ > (1 - E)’Fn|
for all n > N, implying that

QA (F)
AR

for every r € N. Therefore, (F,)nen is a sofic approximation of G.
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(ii) Residually finite groups are sofic. This is a direct consequence of
Proposition 3.1.2 and Proposition 3.2.3, along with Cayley’s Theorem
stating that every finite group is a subgroup of some finite symmetric

group.

Remarks 3.2.5. (i) The class of sofic groups is closed under taking sub-
groups, direct products, inverse limits, direct limits, free products and
amenable extensions, as shown in [5].

(ii) One of the big open problems on the topic of sofic groups is the question
of whether every group is sofic. There are no currently known non-sofic
groups.

3.3 Ultraproducts

There is another characterisation of soficity via ultraproducts of finite sym-
metric groups. Our main interest in this characterisation is that it allows
us to state Theorem 3.3.2, which gives us a characterisation from [6] of
amenable groups as those sofic groups whose sofic approximations are con-
jugate.

If we fix a non-principal ultrafilter w on N and take a sequence (k;)nen
in N, we can define a map

do: ] Ska x T] Skw — [0,1]
neN neN

given by

dw (J? T) = AI_ISU dk‘n (O-kn’ Tk‘n)

for elements

0 = (0k, JneN; T = (Tk, Jnen € H Sk -
neN

We can see that
N, = {a e I[ Sk, | du(id, o) = 0}
neN
is a normal subgroup of [], .y Sk,, and so we can consider the quotient
Y = ( H Skn)/Nw.
neN

We say that ¥, is the wltraproduct of (Sk, )nen With respect to w.
We can then show that a finitely generated group is sofic if and only
if it can be embedded in a faithful manner into such an ultraproduct of
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finite symmetric groups. We will only give an outline of the proof of this
characterisation.

Let G be a finitely generated group with a finite generating set S C G
and a sofic approximation (X,,)nen. Given a non-principal ultrafilter w on
N, consider the ultraproduct

Yy = ( 11 S(Xn)>/Nw.

neN

Write G = F(S)/N with N < F(S). The actions of F'(S) on the X,, induce
a homomorphism 60: F(S) — X, by considering each element w € F(S5)
as an element of the symmetric group S(X,). We have that kerf = N,
and so this in turn induces an embedding ¢: G — 3,,. Furthermore, this
embedding is faithful, i.e. d,(id, ¢(g)) = 1 for every g € G \ {1}.

On the other hand, if we are given a faithful embedding ¢: G — X, for
some non-principal ultrafilter w on N, then we can consider a representative

p: G — H Sk,
neN
of ¢. Write ¢ = (&n)nen With ¢,: G — Sy, For each n € N, take the set
X, ={1,...,k,} and turn it into an S-labelled graph with directed edges
(i,i - Pn(s)) for i € X, labelled by s € S*!. From the definition of the
ultraproduct, we have that

lim dnk (@n(gh)v @n(g)gén(h)) =0

n—w

for all g,h € G and
lim dy,, (idg,, Pn(g)) =1

for all g € G\ {1}. This implies that

(X))
R A
and so
{n € N| X, is an r-approximation} € w

for every r € N. In particular, we can extract a sofic approximation of G
from (X, )nen.

The previous discussion can be summarised in the form of the following
result.

Proposition 3.3.1. Let G be a finitely generated sofic group. Then, the
following conditions are equivalent.

(i) The group G is sofic.
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(ii) For every non-principal ultrafilter w on N, there is an ultraproduct ¥,
of finite symmetric groups (Sk, )nen and a faithful embedding of G into
DI

(iii) For some non-principal ultrafilter w on N, there is an ultraproduct ¥,
of finite symmetric groups (Sk, )nen and a faithful embedding of G into
Y.

The next result is extracted from [6], and states that all sofic approxi-
mations of an amenable group are, asymptotically speaking, conjugate. The
proof of this theorem relies heavily on the theory of quasitilings developed
during Chapter 2.

Theorem 3.3.2 ([6, Theorem 2]). Let G be a finitely generated amenable
group with S C G a finite generating set, w a non-principal ultrafilter on
N and ¥, an ultraproduct of finite symmetric groups (Sk, )nen. Then, any
two faithful embeddings p,v: G — X, are conjugate, i.e. there exists some
o € X, such that

o(g) =0 (¥(g))o
forallg e G.

Proof. For each n € N, take
Xp = n:{17'~-7kn}

to be S-labelled graphs, with X,, associated to ¢ and Y, to ¢ in the same
manner as before. For each n € N, let h(n) € N be the largest integer such
that both X,, and Y;, are h(n)-approximations of Cay(G, S). Then,

{neN|h(n)>r}ecw

for every r € N. Given a Fglner exhaustion (F)),eny of G and r € N,
using Theorem 2.3.4 we can obtain a finite subsequence 7 = (T4, ...,T,,) of
(Fyn)nen and some « € N* \ {0} such that, if h(n) is large enough, then X,
is 4r-isomorphic to t;«- 7 and Y}, is 4r-isomorphic to toar- T with 1,12 € N.
We have that
| B(X)|

lim ———> =1,

n—w |E(Yn)‘
and so for n large enough we have that ty« - T is 4r-isomorphic to taa - 7.
Applying Lemma 2.1.8 twice we obtain that X,, and Y,, are r-isomorphic for
n large enough.

Now, for each n € N let [(n) € N be the largest integer for which X,

and Y,, are [(n)-isomorphic, and note that

{neN|iln)>r}ew
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for all r € N. Let o, € Si, be a bijection with X}/ C X,, and ¥}/ CY,, such
that

)

B0e] 2 (1= 0 ) IECL B0 = (1 0 ) |Bm)

and o,: X, — Y, is an isomorphism of S-labelled graphs. Then, if we

write 0 = (0 )nen, for every g € G and i € {1,...,k,} we have that
~ 1
gl_ri}} dk:n (7, : O'n@n(g)ai ’ wn(g)an) = 711_1330 m =0,
and so we can conclude that ¥o = gp. O

Remark 3.3.3. As shown in [6], the converse of this result is also true, i.e.
if G is a finitely generated sofic group such that any two faithful embed-
dings into an ultraproduct ¥, are conjugate, then G is amenable. Hence, it
characterises finitely generated amenable groups as those finitely generated
sofic groups for which all their sofic approximations are conjugate.






Chapter 4

The Sofic Liuck
Approximation Conjecture

In this chapter we will introduce the Sofic Liick Approximation Conjecture,
a version of a conjecture that has its origins in the study of L?-invariants.
We will begin by explaining the general statement of the conjecture. After-
wards, we will show how the conjecture can be proved for amenable groups
by making use of the techniques developed in the previous chapters. We will
then conclude the chapter with a brief discussion of the proof of the con-
jecture for general groups over the field Q, in order to motivate the results
that will be developed in the next chapter. This chapter is primarily based
on [13, §2,87,810] and [10, §4].

4.1 Statement of the Conjecture

Let G be a finitely generated sofic group with a finite generating subset
S C G and a sofic approximation (X,)nen, and let K be a field. For
each n € N, the free group F(S) acts on X,,, and so given any matrix
A € Maty (K[F(S)]) we can consider the linear map of K-vector spaces
qﬁ‘;}n: K[X,]* — K[X,]' defined by

¢34(n(x1, conyxp) = (21, .., 78) A
Now, we can define the rank of A with respect to X,, as

dim g ker gbf‘(n dimg im gﬁf(n

rkx, (A) =k =
| Xl R

We will be interested in the study of the convergence of these ranks. More
specifically, we want to know whether these ranks converge, and whether
convergence depends in any way on the sofic approximation that we have
chosen. We will now state the Sofic Liick Approximation Conjecture, which
tries to provide an answer to these questions.

o7
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Conjecture 4.1.1 (Liick). Let G be a finitely generated group with S C G
a finite generating set and (X,,)nen a sofic approximation of G. Let K be a
field and A € Maty;(K[F(S)]). Then, the following hold:

(i) The limit lim,_,o rkx, (A4) exists.

(ii) The limit lim,, o rkx, (A) is independent of the sofic approximation
(Xn)neN .

It is not currently known whether the Sofic Liick Approximation Conjec-
ture holds in general, i.e. for any sofic group and over any field. Nevertheless,
in some particular instances, such as when the group is amenable, or when
the field has characteristic 0, the conjecture has been proven to be true.

4.2 The Conjecture for Amenable Groups

The Sofic Liick Approximation Conjecture can easily be shown to be true
over any field in the case where our group is amenable by using Theo-
rem 3.3.2.

We will study the case where G is a finitely generated amenable group
with a finite generating subset S C G and a sofic approximation (X,,)nen-
For the sake of simplicity, we will only consider elements of the group algebra
and not matrices. Hence, if K is a field and a € K[F(S)], for each n € N
we have a K-linear map ¢% : K[X,] — K[X,], and

dimg ker ¢ B dimp im ¢ |
| Xl | Xl

I‘an (a) =

Observe then that the convergence of the ranks rkx, (a) is equivalent to
the convergence of the normalised dimensions

dimp ker ¢ |
| Xl

As a consequence, in order to prove the Sofic Liick Approximation Conjec-
ture, we will study the normalised dimensions of these kernels.

Theorem 4.2.1. Let G be a finitely generated amenable group with S C G
a finite generating subset and (X, )nen a sofic approximation of G. Given
any field K, an element a € K[F(S)] and a non-principal ultrafilter w on
N, the limit
. dimg ker 9%
lim ———==
n—w | X, |

exists and is independent of the sofic approximation (Xp)nen.
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Proof. Any subsequence of a sofic approximation of G is once again a sofic
approximation of G. Thus, if the statement of the theorem fails, we can find
two sofic approximations (X}),en and (X2),en of G such that

dimg ker ¢

TR
exists for ¢ = 1,2 but
) dim g ker qb‘;(l ) dim g ker ¢§(2
R AT D

Assume by contradiction that two such sofic approximations of G exist.
Consider then
Y, =Y =X, x X},

n

with F(S) acting on Y;! by acting on the i-th coordinate for i = 1,2. Then,
(Y en and (Y,2),en are both sofic approximations of G. Furthermore, we
have that |Y,!| = |Y;2| and

dimg ker ¢f,;  dimg ker ¢,
- L — - n (42)
Yzl | X

for i = 1,2 and for all n € N.
By Theorem 3.3.2, for each n € N there is some bijection oy, Y,! — Y2
such that, if we denote by

Vi ={zev) (0,  0dfa00)(a) =65 (2)}, Y =o0a(¥,)),

then , .
N 2 N -
AT Ty = L

Observe that, given 2 € K[Y,''], we have that z € ker ¢y, if and only if
on () € ker ¢py2. Consider then the restrictions of ¢f, to K (VY] and of PS-
to K [Yny], which we will denote by gb?,r}, and qb%%,, respectively. Thus, we
have that

ker 6%, = ker ¢% N K[V,)],  ker¢%, = ker g% N K[V,

and
a a
ker ‘an}’ = ker ¢Y3’

for every n € N. Furthermore, the Second Isomorphism Theorem implies
that
/
ker ¢, / ker ¢, < K[Y,]/K[Y,'].



60 4.2. The Conjecture for Amenable Groups

As a consequence, we obtain that
dim g ker (;S“Ynl = dimg ker qb?,,}/ + dimg (ker ¢§L/nl/ ker ¢‘)‘,7},)
< dimy ker ¢,/ + dimg (K[Y,}/K[Y,Y)
= dimg ker (;5?,7}/ + |V - |yY
for all n € N. Analogously, we obtain the inequality
dimp ker ¢» < dimp ker o, + V2| = [V

for all n € N. Therefore, we obtain that

- dimg ker ¢§, _ dim g ker qbayl,
hm _ = hm _
dimg ker ¢f,,,

= lim —M——

dimg ker ¢,
= lim —M——=,

which along with (4.2) contradicts (4.1). Hence, we can conclude that
dimg ker ¢%

T

exists and is independent of the sofic approximation (X, )nen. O

This result now automatically gives us a proof of the conjecture in the
case that our group is amenable.

Theorem 4.2.2. The Sofic Liick Approximation Conjecture holds for finitely
generated amenable groups.

Proof. Let G be a finitely generated amenable group with a finite generating
set S C G. Let K be a field and a € K[F(95)].

Any subsequence of a sofic approximation of GG is once again a sofic
approximation of G. Thus, if either condition (i) or (ii) in Conjecture 4.1.1
fails, we can find two sofic approximations (X,,),en and (Y),),en of G such
that both limits

g, (e, i rhe (a)

exist but

nh—>1120 rkx, (a) # nh_}rrgo rky, (a).

Using the same argument as in the proof of Theorem 4.2.1, we can assume
without loss of generality that |X,,| = |Y,,| for all n € N.
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Now, for any non-principal ultrafilter w on N, we have that
. dimg ker % . dimg ker ¢f,
im ———* = lim ——*
n—w | X0 | n—w |5

as a consequence of Theorem 4.2.1. But then,

lim rkx, (a) = lim rky, (a)

n—oo n—w
dim g ker ¢%
=1-lim ——==
n—w | X |
dim g ker ¢5,
=1-lim ———=
n—w Y|

= lim rky, (a)

= 45, o (a)

which is a contradiction. Therefore, we conclude that the Sofic Liick Ap-
proximation Conjecture holds in this case. O

4.3 The Conjecture over the Field Q

We will now discuss the proof of the Sofic Liick Approximation Conjecture
over the field Q for general groups. We will refrain from giving all the details,
as our main goal is to motivate the techniques that we will develop in the
next chapter. For a detailed proof, see [13].

Let G be a finitely generated sofic group with § C G a finite generating
set, G = F(S)/N with N < F(S) and (X, )nen a sofic approximation of G.
For the sake of simplicity, we will once more restrict our attention to the
case where a € Q[F(S)]. This element defines a linear map of Q-vector

spaces ¢% : Q[Xn] — Q[Xy] by
¢%. (z) = za.
Then, the rank of a with respect to X, is

dimp ker 9%~ dimg im ¢
Xal Xl

I‘an ((J,) =

The group G acts on the Hilbert space £2(G) by both left and right
multiplication. The element a € Q[F(S)] thus defines a bounded operator
% 12(G) — 3(G) by

¢G(v) = va
for v € (2(@). Given a left-invariant closed subspace V < ¢%(G), we can
consider projy : £2(G) — V, the orthogonal projection onto V. Then, we
can define
dimg V = (projy(1g), 1)
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In order to prove the Sofic Liick Approximation Conjecture, we will work
towards proving that

. dimg ker ¢%

im ———==»

— 2 a
Jim X = dimg ker ¢

independent of the sofic approximation (X, )nen. In order to do this, we
will construct a sequence of measures whose values at zero coincide with the
normalised dimensions of the kernels of the associated operators. Then, we
will show that these measures converge weak-*, and finally that their values
at zero converge.

Write the element a € Q[F(S5)] as

a= AW
weF(S)
with a,, € Q for w € F(S). The adjoint of a is then the element
at = apw L.
weF(S)
Given any = € Q[X,], we have that xa = 0 if and only if z(aa*) = 0, and so
dimg ker ¢%, = dimg ker ¢% .

Moreover, the adjoint of the operator ¢% is (¢5§(n)* = qbg(*n. Analogously,
we have that
dimg ker ¢ = dimg ker ¢&*
and (¢})* = qﬁ‘g.
Therefore, we may assume that a = bb* for some b € Q[F(S)], and so
a = a*. Thus, ¢% and ¢f are positive self-adjoint operators, and so their
spectra are compact and contained in [0, 00). In fact, we have that

spec ¢k, C [0,]16%, [l], specog C [0, log]-
For each n € N, we can define a probability measure
a 1
| n| AEspec P%
Xn

on spec ¢% , where d) denotes the Dirac measure concentrated at the point
A. Moreover, we have that

di ker %
i, (103) = T, (43)

We can also associate a probability measure to the operator ¢¢,, using the
concept of spectral measures of self-adjoint operators. Let H be a Hilbert
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space, A € B(H) be a bounded self-adjoint operator, and v € H. Then,
there exists a unique positive Radon measure p14, on spec A, called the
spectral measure associated to A and v, satisfying that

[ T duan = ()
spec A

for every continuous function f on spec A. Furthermore, we have that
pau(spec A4) = o] < o,

For more information on spectral measures associated to bounded self-adjoint
operators, see [16, §3].

Because ¢¢, is a self-adjoint operator, we can thus define a probability
measure (¢ on spec ¢¢, associated to ¢ by

HE = Hog, e
Moreover, we can show that
& ({0}) = (xo(8)16, 1) = dimg ker 6. (4.4)

Because of 4.3 and 4.4, our goal will now be to prove that
: a _ a
lim_ p, ({0}) = ug ({0})-

Before doing this, we will need some compact space on which all of the
measures are defined, which will then allow us to show that there is weak-*
convergence.

It is possible to find a uniform bound for the norms of the operators
¢%, - If we denote by

S(a) = {w € F(S) | aw # 0}|

the size of the support of a € Q[F(S)] and set

lal =) lawl,

weF(S)
we can prove the following result.

Lemma 4.3.1. Given a € Q[F(S)] with a = a*, we have that

6%, 1l < S(a)lal

for all n € N.
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As a consequence of this bound, we can deduce that there is some con-
stant ¢ > 0 such that

ol <e ¢k, Il <c
for all n € N. Due to the fact that
spec 9%, C [0, 9%, Il], spec ot C [0, lo&]l],

this leads us to the conclusion that u¢ and pf are probability measures on
the same interval [0, ¢] for all n € N.

The set of complex regular Radon measures on the compact Hausdorft
space [0, ¢] is identified by the Riesz Representation Theorem with the dual
space C([0,c])*. As such, we say that a sequence of measures yu, € C([0,c|)*
converges weak-x to p € C([0, ¢])* if

li ‘ du, = ’ d
nggo/o [ du /Of Iz
for all f € C([0,c]).

Now, we will see that (1% )nen converges weak-+ to .

Lemma 4.3.2. For every n,l € N, we have that

¢ 1
thdpl = ——tr (6% )Y).
Proof. From the definition of p% , it follows that
/Ctl dul, = — >N = Lot (%)),
0 t X pe "

AEspec ¢g(n

Lemma 4.3.3. For every l € N, we have that

c C
lim ¢ duk, = / th dud,
0

n—oo 0

independent of the sofic approximation (Xp)neN-

C C !
[t anse, = [ eans,
0 0

and the analogous result is true for p¢,, so we may assume that [ = 1. In
light of Lemma 4.3.2, we need to study the limit

Proof. Note that

N
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Further note that if

then

-
0]
3

I

S
S
-
<&
:\'

and so
Analogously,

which implies that

[tae= ¥ auestonie) = X [ rau

weF(S) weF(S)
We may thus assume that a = w € F(S). Then, we have that
tro%, = [{z € Xn | 2w =z},

and due to the fact that (X, )nen is a sofic approximation we get that

1 1 ifwe N,
lim tr¢3”(n:{ s

n—oo | X, 0 ifw¢gN.
Finally,
¢ 1 ifweN
tdud = (w,1g) = ’
A He = (w;la) % ifwd N,
and so

C

C
lim tduy, = / t duds.
0

n—oo 0

O]

The Weierstrass Approximation Theorem says that the polynomials form
a dense subset of C([0, ¢]), which along with the Bounded Convergence The-
orem and the previous lemma gives us the following result.

Proposition 4.3.4. The sequence of probability measures (1% )nen on [0, c]
converges weak- to pi¢,.

Now that we have weak-+ convergence of the measures, our goal will be
to prove the convergence at the point 0.
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Remark 4.3.5. In general, weak-* convergence of the measures does not
imply convergence of the value at any given point. As an example, consider
the sequence of measures (01 /,)nen on [0, 1], which converges weak-* to do.
Nonetheless, 01 /,({0}) = 0 for all n € N, whereas do({0}) = 1.

In order to prove our result, we will make use of a classical theorem in
measure theory.

Theorem 4.3.6 (Portmanteau). Let 2 be a compact metric space. Let p
and py, for n € N be Borel probability measures on Q. Then, the following
are equivalent:

(i) The sequence (pn)nen converges weak-x to fi.

(ii) For every closed subset V' C Q we have that

lim sup p, (V) < (V).

n—oco B
(iii) For every open subset U C Q we have that

liminf p, (U) > p(U).

n—00 -

As a consequence of Proposition 4.3.4, the Portmanteau Theorem auto-
matically tells us that

lim sup p, ({0}) < u&({0}), (4.5)

so we are left with the other inequality to prove.

In principle, we have that a € Q[F(S)]. Nevertheless, multiplying by
some constant if necessary, we can assume that a € Z[F'(S)]. Then, for each
n € N we define

detyo%, = [ A

A€spec ¢% \{0}

Under the assumption that a € Z[F(S)], we can easily prove the following
result.

Lemma 4.3.7. For every n € N we have that det4 ¢% € N.

Proof. Because a € Z[F(S)], every element in spec¢% is an algebraic
integer. Furthermore, det; ¢% is invariant under the action of the Ga-
lois group of the splitting field of the characteristic polynomial of ¢% , so
dety ¢% € Q. Therefore, dety ¢% € Z. Finally, since spec ¢% C [0, c], we
have that dety ¢% > 0, and so dety ¢% € N. O

Given 0 < € < 1, we can find a uniform bound for % ((0,¢)) with the
help of the previous result.
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Lemma 4.3.8. Given 0 < € < 1, we have that

1 ((0,2)) < — 0B

loge
for every n € N.

Proof. By Lemma 4.3.7, we have that dety ¢% € N, and so det4 ¢% > 1.
On the other hand,

det+¢)§(n = H )\
A€spec ¢%, \{0}
(L0 ) (I )
AEspec q&g(ﬂ AEspec qi)g(n
0<A<e A>e

< Xk, (00) | Xl

and so we have that
Xalige, (00) | Xl > 1,

Taking logarithms, we obtain that
1%l (% ((0,€)) loge +log ) > 0.

Hence, we have that
log c

,U,Xn((O,E)) < lOgE.

O]

Applying the Portmanteau Theorem once again along with the bound in
Lemma 4.3.8, we obtain that

1 ({0}) < 11 ([0,))
< liminf %, ([0,¢))

n—oo
logc
< liminf p% 0}) — .
< liminf i, (101) — 3,7
Thus, if we make ¢ tend to 0, we get that
a < limi % . .
pe; ({0}) < liminf ps, ({0}) (4.6)

Therefore, the inequalities (4.5) and (4.6) imply that
iy, ({0}) = p&;({0}).

Consequently, we obtain the following result.
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Theorem 4.3.9 (Liick). Let G be a finitely generated group with S C G a

finite generating set and a € Q[F(S)]. Then, for every sofic approximation
(Xn)nen of G we have that

. dimg ker ¢%
im ——==

— A3 a
Jim X = dimg ker ¢¢.

In particular, the Sofic Liick Approzimation Conjecture holds over Q.



Chapter 5

Convergence of Adelic
Measures Associated to Sofic
Representations

In this final chapter we will present a generalisation of the Sofic Liick Ap-
proximation Conjecture, first for discrete valuation domains and then for
rings of integers of number fields. Associated to each of the operators ap-
pearing in the conjecture, we will construct a probability measure on the
space of ideals of our ring, and then study the convergence of these measures
for amenable groups, proving that they converge strongly to some limit mea-
sure. The main results in this chapter are original. Some of the auxiliary
results in the second section have been taken from [12, §8.3, §8.4].

5.1 Approximation of Local Measures

Let O be a discrete valuation domain, i.e. a principal ideal domain with a
unique non-zero maximal ideal m, and let K be the field of fractions of O. If
the ideal m is generated by the prime element 7w € O, then every non-trivial
ideal of O is of the form m’ = 7¢O with i € N. We will denote the set of
ideals of O by

Z(0) = {0,0,m,m? ...}.

Furthermore, given an ideal m* € Z(O) with i € N we will write
[0,m’] = {0, m’, m*t1 ...}

Let G be a finitely generated amenable group with a finite generat-
ing subset S C G and a sofic approximation (X,),cn. Consider then an
element ¢ € O[F(S)] and the associated linear map of K-vector spaces
¢%, : K[Xn] — K[X,] for each n € N. Then, ¢% can be associated to a
matrix A, € Mat|x, |(O).

69
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Remark 5.1.1. We will only consider elements in O[F(S)], for given any
element a € K[F(S)], we can always multiply it by some constant A € O so
that Aa € O[F(9)].

We will now use of the Smith normal form of a matrix defined over a
principal ideal domain in order to construct a measure associated to ¢% = for
each n € N.

Proposition 5.1.2 (Smith normal form). Let R be a principal ideal domain
and A € Matg(R). Then, there exist invertible matrices P,Q € GLx(R) and
a diagonal matrix

aq

at € Mat;(R)

0

with o; | a1 for alli =1,...,t — 1, such that A = PDQ. Furthermore,
the elements ai,...,a; € R are unique up to multiplication by units. The
matriz D is called the Smith normal form of A.

For a proof of the existence and uniqueness of the Smith normal form,
see [11].

Remark 5.1.3. Given a matrix A € Matg(R) with Smith normal form D,
if a1,...,04 € R are the non-zero elements that appear in the diagonal of
D, then the R-module R¥/RFA can be written as

R¥/RFA~2 R/a1R®---® R/oyR® R',

with r > 0 being the number of zeroes in the diagonal of D. This decom-
position of R¥/RFA is the one given by the Structure Theorem of finitely
generated modules over principal ideal domains.

Using the Smith normal form of A;,, we can assume that ¢% is associated
to a diagonal matrix of the form

k1

k¢
Dn = € Mathn‘(O)
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with k; < k;y1 forall i =1,...,f — 1. This allows us to define a probability

measure
X,

¢ |
1
e — __ E Ok 1)
Xn an\(,_ LE: 0)
=1 1=t+1

on the space of ideals Z(O) for each n € N. Our goal will now be to prove
that these measures converge at each ideal independent of the chosen sofic
approximation (X, )nen-

Firstly, observe that the measure at zero is

dimpg ker ¢

vk, ({0}) = T =1-rky,(a)

for each £ € N. Therefore, convergence at zero is equivalent to the Sofic
Liick Approximation Conjecture, which holds for amenable groups by The-
orem 4.2.2. Thus, we have the following result.

Lemma 5.1.4. The limit

lim v% ({0})

n—oo
exists and is independent of the sofic approximation (Xp)nen.

We will now seek a formula for the measures at each m* € Z(0). In order
to do this, we need to introduce the concept of length of a module over a
ring.

Let R be a commutative unitary ring. Given an R-module M, we can
define the length of M over R, which we denote by Lr (M), as the supremum
of the lengths of chains of R-submodules of the form

0=MyC M C-C M, =M.

This concept serves as a generalisation for modules of the concept of dimen-
sion for vector spaces.
The length function satisfies some key properties.

e If the chain of R-submodules
0=My G M &--- G My=M

is maximal, i.e. M;_1 is a maximal R-submodule of M; fori =1,...,k,
then k = Lr(M).

o If
0—M —M-—M"—0

is a short exact sequence of R-modules, then

Lp(M) = Lg(M') + Lr(M").
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Let us now return to the case that we were studying, with O a discrete
valuation ring and m its maximal ideal. For each 7 € N, we have the maximal
chain of O/m'-modules

0Cm/m' C--- Cm/m' CO/w,
and 80 Ly /i (O/ m’) = i. Furthermore, because
O/m = (O/m’)/(m/m’)

as (O/m?)-modules, we have that Lo/mi(O/m) = 1.

Now, for an element a € O[F(S)] and n € N, not only can we consider the
associated O-module homomorphism ¢% : O[X,] — O[X,], but also the
induced (O/m')-module homomorphism %, it (O/m)[X,,] — (O/m")[X,,)
for each 7 € N.

We are now going to find a way to compute v§ using the lengths of the
kernels of these induced homomorphisms.

Lemma 5.1.5. For each n,i € N, we have that

Lom (ker 6%, ;) S V%, ({m}) mingj i},

| Xl jENU{oo}

where m™ = 0.

Proof. Assume that ¢% is associated to a diagonal matrix D,, € Mat,x,|(O)
in Smith normal form as before, with 7*1, ... 7% the non-zero elements in
the diagonal of D,,. Then, given x € O[X,,] of the form

T =011+ 0T+ 1Tl T X, | TUX, |

we have that
D,x = omrklxl + -+ amktxt.

Now, for eachi € N the induced homomorphism ¢§(mi is associated to the
reduction of D,, modulo m?, which we will denote by Dy, ;. Then,

Dn,il‘ = O‘lwklxl + -+ Oérﬂ-errv

where
r=max{l <j<t|k;<i}.
Therefore, © € ker ¢% ; if and only if a; € m‘~% for all j =1,...,r. Hence,
ker ¢%,; = (mM/m) @@ (m/m) @ P (O/m),
j=r+1
and so

Losmi(ker ¢k, ;) = |Xa| Y vk, ({m’}) min{j,4}.
jeNU{oo}
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As a direct consequence of this result, we obtain the following one.

Lemma 5.1.6. For each n € N, we have that

Lom(ker ¢, 1)

Vg(n([ovm]) = |X | ,

i Lojw(ker % ;) Lot (ker % ;1)
a i o/mi(ker 9%, o/mi-1(ker o% ;4
e R —e

fori>2.

Then, we can compute

v, ({m'}) = v&, (0, m']) — v, ([0,m™*1)

for each n, i € N. Consequently, if we prove the convergence of the measures
of intervals, we will also obtain the convergence at each ideal. In order to
do so, following Lemma 5.1.6 we will show that

LO/m’i (ker qsg(n,z‘)
| Xl

converges for each i € N independent of the sofic approximation (X, )nen-
The proof of this is very similar to that of Theorem 4.2.1.

Proposition 5.1.7. Let (Xp,)nen and (Yy)nen be two sofic approximations
of G and w be a non-principal ultrafilter on N. Then,

Lo/mi (ker ¢C)L(n,i) — lim LO/mi (ker ¢§L’n7i)
n—w |Xk‘ = |Yn|

for every i € N.

Proof. Using the same argument as in the proof of Theorem 4.2.1, we may
assume without loss of generality that |X,| = |Y,| for each n € N. As
a consequence of Theorem 3.3.2, for each n € N there is some bijection
on: Xn — Yy, such that, if we denote by

Xy ={z € Xnl (0! 0 0%, 0on)(z) =%, (x)}, Y, =ou(Xy),

then . )
X Y
lim‘ "|—lim|”‘—

n—w ‘Xn| C nSw |Yn‘ o

1.

Observe that, given x € (O/m*)[X]], we have that x € ker ¢%,, i if and only if
on(z) € ker ¢§, ;. Consider then the restrictions of ¢% ; to (O /m¥)[X/] and
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of ¢3. ; to (O/ m?)[Y;], which we will denote by ¢%, , and ¢%, ;, respectively.
Thus, we have that

ker ¢%, ; = ker ¢%, ; N (O/m")[X]], ker ¢y, ; = ker ¢y, ; N (O/m")[Yy],

and
ker ¢§(;l,i = ker ¢%¢;,z‘

for every ¢ € N. Furthermore, the Second Isomorphism Theorem implies
that

ker ¢, i/ ker ¢%, ; S (O/m")[Xy]/(O/m")[X}].
As a consequence, from the short exact sequence of (O/m?)-modules
0 — ker (25)%7,' — ker (mei — ker (ﬁxmz‘/kel‘ ¢X§L,z’ — 0

we obtain that

Lomi(ker ¢, ;) = Lo msi(ker ¢%, ;) + Lo jmi(ker 6%, ;/ ker ¢%, ;)
< Lomi(ker ¢5%; ;) + Lomi ((O/m")[Xn]/(O/m")[X;])
= Lo (ker ¢%; ;) + [ Xn| — | X5,

for all n € N. Analogously, we obtain the inequality
Lo jmi(ker ¢%, ;) < Lomi(ker ¢5 ;) + Yol — [V

for all n € N. Therefore, since ker ¢%, , = ker ¢y, ;, we obtain that

 Lomilkerdk, ) | Lomi(kerd, )
n—w ‘Xn‘ N k—w ‘Xk‘

for each 7 € N. O

As a consequence of this result along with Lemma 5.1.4 and Lemma 5.1.6,
we obtain the pointwise convergence of our measures v .

Corollary 5.1.8. The limit

lim ugl(n ({I})

n—o0

exists and is independent of the approximation (X, )nen for every I € Z(O).
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We would now want to prove that this gives us strong convergence of the
measures (V§ )nen to a probability measure vg on Z(0), so that we have
that

ve(Q) = lim vy (Q)

for any subset 2 C Z(0O).

Nevertheless, in order to show this in general, we would need some sort
of uniform bound on the measures, which we have not found. In the next
section, we will work over number fields in order to develop a global version
of this construction, and in that case we will be able to obtain a uniform
bound that will allow us to prove the strong convergence of the measures
constructed.

5.2 Approximation of Adelic Measures

We will now develop a global version of the construction from the previous
section. We will work over number fields and, using the structure theory
of finitely generated modules over Dedekind domains, we will develop an
analogue of the measures constructed in the previous section.

Let K be a number field with ring of integers O. Then, O is a Dedekind
domain, and so every non-zero ideal can be written in a unique way as a
product of maximal ideals. We will denote by Z(Q) the space of ideals of O
and by Z(O)max € Z(O) the set of maximal ideals.

Because O is a Dedekind domain, a finitely generated O-module M can
be written as a direct sum

M = Mtors D M/MtorSa

where My is the torsion submodule of M and M /M. is torsion-free.
Now, the torsion part is of the form

Mtors = O/Il @"‘@O/It

with Iy,...,I; € Z(O) non-trivial ideals. Furthermore, it is possible to find

such a decomposition with I;1q1 C I; for ¢ = 1,...,¢t — 1, in which case the
ideals I1,...,I; are unique. On the other hand, the torsion-free part is of
the form

M/Mtorsgjl@”'@tjr
with Jp,...,J, € Z(O) non-zero ideals. Hence, we have that
Mz=20/L® -0/, J1® @ J.

For more information on the structure of finitely generated modules over
Dedekind domains, see [18, §1.3].
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Given a maximal ideal m € Z(O)max and a non-zero ideal I € Z(O) we
can consider the m-adic valuation of I, denoted by vy (I), which is defined
as the biggest integer n > 0 such that I C m™. We also define vy, (0) = oc.
Setting vm(a) = vm(aO) for a € O, this defines a discrete valuation on O
that is extended naturally to K. Now, we may consider

On ={a € K | vn(a) > 0},

the localisation of O at m, which is a discrete valuation ring with unique
maximal ideal mQO,.

Let G be a finitely generated amenable group, with .S C G a finite gener-
ating set, G = F(S)/N with N <F(S) and (X, )nen a sofic approximation
of G. Take an element a € O[F(S)]. For each n € N, we have the induced
linear map of K-vector spaces ¢% : K[X,] — K[Xp].

Consider now the O-module

M, = O[X,]/0[X,]a.
Then, M,, can be written in the form
M, 20/L®-- a0/ &1 ®- @ Jp,

where I;, J; € Z(O) are non-zero ideals such that ;11 C I; C O for any
i =1,...,t —1and 5 = 1,...,r. Furthermore, the ideals Iy,...,I; are
unique. We can then write

M,=(0/0)ye0/L&--- @O0/ Ji & & J,

with s € N such that
s+t+1r=|X,l

Using this decomposition of the O-module M,,, we can define for each
n € N a probability measure v, on Z(O) by

s t r
a 1
=1 =1 =1
Observe that
K[X,)/K[Xn]a = K ©0 M, = K",

meaning that

" dim g ker ¢
v%, ({0}) = TXW

Therefore, convergence at zero is once again equivalent to the Sofic Liick Ap-
proximation Conjecture, which holds for amenable groups by Theorem 4.2.2.
Thus, we have the following result.
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Lemma 5.2.1. The limit
: a
Jim %, ({03)
exists and is independent of the sofic approzimation (X;)neN.

Given a non-trivial ideal I € Z(0O), for each n € N we can consider the
induced (O/I)-module homomorphism ¢% ;: (O/I)[X,] — (O/I)[Xn].
Also, denote by

0,I]={J€Z(0) | J CI}.

We are now going to find a way to compute the measures of intervals using
the lengths of the kernels of these induced homomorphisms.

Lemma 5.2.2. For each non-trivial ideal I € Z(QO), we have that

L(/)/[(kerqban7 ) N a i
D VI A(CDI (I DR Y CRURNENS ]

JEZ(O) mEI(O)max

Proof. We have that

Losi(ker ¢%, 1) Low/10,(ker 9% 10,
mt= Y e (5.1)
[l MEZ(O)max [ Xl
ICm

Now, Lemma 5.1.5 implies that

Low/io, (ker 6%, 0.)
| Xl

> %00 ({mOr}) min {on(1), 5},

JENU{oo}

where v/, denotes the local measure induced on Z(Or,) for each maximal
ideal m € Z(O)max. Now, for each j € NU {oo} we have that

v0a(IW0u}) = > &, ({1). (5.3)
o

Hence, from (5.1), (5.2) and (5.3) we obtain that

L (kergbam)
) S S (1) mi (D), val)

MEZ(O)max jENU{oo} JEZ(O)

vm (J)=j
= . V?cn({J})( > min{vm(n,vmu)}).
JEI(0) MEZ(O)max
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Now, if we take a maximal ideal m € Z(O)pax and d € N, we have that

Lo jma(ker %, md)  Loma—(ker ¢S 1)

) o n, — e (J)
X X JE%d] L.
=k, ([0, md]).
Take now two maximal ideals mq, mo € I(O)max and exponents dq,dy € N.
Then, if we write I = m‘lllm2 and I' = ml mg2 ! we have that
Loj(ker¢%, 1) Losr(ker¢x, 1)
= > D+ D D+ Y 2wk ()
Jeo,m1] Jomi1] Jeom1md2)
JE[0,m32] Je[o,mgz}
=%, ([Oamcfl]) + %, ([0, m 21) + 2%, ([0, m{ mgQ])

We can thus show that, if 7 = m'...m% and I' = m®~'...md—1 with

my,..., My € Z(O)max distinct maximal ideals and dy, ..., d, € N, then
Loj(ker¢%, 1) Lor(kerox, )
| X | X

=SS g (mml)),

7=1 1§i1<"'<ij§’l’b

and so we can inductively write v% ([0, ]) in terms of the lengths of the
kernels of ¢% ; for J € Z(O) with I C J.

We can now prove the following result, which is analogous to Proposi-
tion 5.1.7.

Proposition 5.2.3. Let (X;,)nen and (Yy)nen be two sofic approzimations
of G and w be a non-principal ultrafilter on N. Then,

Loj(ker¢, ) Los(kery ;)
im = lim
n—w |Xn| n—w |Yn|

for every non-trivial ideal I € Z(O).

Proof. Formula (5.1) tells us that we can write

Loy(ker ¢% 1) _ Z Low/1o, (ker 6% 0..)
| Xl T (O | Xl ’
ICm
Loji(ker ¢y, 1) _ 3 Low/10,(ker ¢§, 10.)
Yokl T (O |Yal

ICm
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We can then apply Proposition 5.1.7 to obtain that

. Lowionker % 10.) . Lowmo.(ker ¢y, o)
lim : = lim ’

n—w |Xn| n—w ’Yn|

for every m € Z(O)max with I C m. Because there are only finitely many of
these summands, this leads us to conclude that

LO/I(ker¢§(m1> i L@/I(ker%‘,ml)

n—w |Xn’ T onow ‘Yn|

O]

As a consequence of Lemma 5.2.2 and Proposition 5.2.3, we obtain the
convergence of the measures of intervals.

Proposition 5.2.4. Given an ideal I € Z(O), the limit

lim v% ([0, 1])

n—oo
exists and is independent of the approzimation (X, )nen-

Now that we have obtained convergence of our measures for intervals,
we will work towards proving point-wise convergence. In order to do this,
we will seek to write the measure of an ideal in terms of the measures of a
finite number of intervals.

Observe that, given a non-zero ideal I € Z(O), we can write

[0,1] ={I} U < U [O,ml]>.
meZ(0)
From this, we can obtain that
vy ({1}) = v ([0,1]) — yggn< U [O,ml]>
meZ(0)

for each n € N. Our goal will now be to approximate the measures of this
union by the measures of a finite union of intervals. We will do this by
studying the sizes of the ideals that can appear in the decompositions of the
modules M,, = O[X,]/O[X,]a.

If I € Z(O) is a non-zero ideal, we can consider its norm, defined as

N(I) =10/1I|.
Then, for a € O we have that

N(a0) = [Nkq(a)

)
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where
k |K:Ql/k
Ng.g(a) = (H ai>
i=1
with aq,...,a, € Z the roots of the minimal polynomial of a over Q. Fur-

thermore, it is well-known that for any constant A > 0 there are only finitely
many non-trivial ideals I € Z(O) such that N(I) < A.

Now, given any matrix A € Maty(O), we can consider the finitely gen-
erated O-module

My =OF/OFA.

Then, we can define
det+(A) = ‘(MA)torS‘~

In particular, identifying the O-module homomorphism ¢% ~with its asso-
ciated matrix, we can write

et (6%,) = | (Mo )rors|-

Lemma 5.2.5. Let A € Maty(O) with dimgim A =t and I € Z(O) the
ideal generated by all the non-zero t x t minors of A. Then, we have that

det(A) = N(I).
Proof. First, observe that if we write
(Ma)tors =0/ 1 &--- 0O/
with I1,...I; € Z(O) non-trivial ideals, then
Ok /0% A = On ®0 Ma,
and so

(O{;/O{%A)tors = Om ®o (MA)tors

for any maximal ideal m € Z(O)max. But in the local case, we have that
}(O{;/OrﬁA)torS‘ = |Om/IOm|

due to the existence of the Smith normal form and Remark 5.1.3, and so we



Chapter 5. Convergence of Adelic Measures Associated to Sofic
Representations 81

can compute
det(A) = \(MA)torS|
=|0/Lh&--- @O0/

= H |Om/110m@"‘@0m/1t0m|
mGI(O)max

= H |Om Ko (MA)tors‘
MEZ(O)max

= H ‘Om/IOm’

MEZ(O)max
=[0/1]
— N(I).

O

Given an element o € O, let o, ..., oy € Z be the roots of the minimal
polynomial of « over Q. Then, define

o] = max o

Remark 5.2.6. Given a, 8 € O, we can check that
[a+ 8] < o] + [B]

and
[aB] < [a][B].

More generally, given a non-zero matrix A = (a;;) € Maty(O), we can
define

and set [0] = 1.
Lemma 5.2.7. Given a non-zero a € O, we have that
N(a0) < [a]lFC,

Proof. Let a,...,a; € Z be the roots of the minimal polynomial of o over
Q. Then, we have that

et (a) = [ Nig(a)]
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This bound can now be generalised to matrices.

Lemma 5.2.8. Given A € Maty(O), we have that
dety (A) < [ATFIEQL

Proof. Let t = dimgim A and I € Z(O) be the ideal generated by all the
non-zero t x t minors of A. By Lemma 5.2.5, we have that det(A4) = N(I).
In particular, if 8 € O is a non-zero t x ¢t minor of A, we have that

det.(A) = [0/1] < [0/50| = N(BO).
Then, by Remark 5.2.6 we have that
[8] < [A)" < [ATF,

and so
det (4) < N(BO) < [B]/K:0 < [ATHIQ,

Now, given a € O[F(S)] of the form

E AW,

weF(S)

[a]l= ) [aw].

weF(S)

Lemma 5.2.9. Given a € O[F(S5)], we have that

[0%,1 < lal

we set

for all n € N.
Proof. Assume that
Xn = {xl,...,a:k}

and ¢% is associated to the matrix A, = (aij). Then, for each i =1,...,k
we have that
0%, (i) = anx1 + -+ + @iy (5.4)

On the other hand, if we write
=Y
weF(S)
then for each i = 1,...,k we have that

%, (v3) = xia = Z QX1+ + Z AT (5.5)

weF(S) weF(S)
T; W=T1 T, W=
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Therefore, combining (5.4) and (5.5) and applying Remark 5.2.6, we obtain
that

= [a]

for all j =1,...,k. As a consequence,

k
[¢%,] = max > fay] < [a]

for all n € N. O

This result allows us to give a uniform bound for det, (¢% ).
Corollary 5.2.10. Given a € O[F(S)], we have that

dety (¢%,) < [a] XI5
for all n € N.
Proof. Applying both Lemma 5.2.8 and Lemma 5.2.9, we obtain that
det (¢%,) < [¢%, XKl < [q] Xell K0

for any n € N. O

Consequently, we can bound

det 4 (¢%,) < X!

with some ¢ > 0 for every n € N. This allows us to bound the measures of
sets of big ideals.

Lemma 5.2.11. Given Q C Z(0)\ {0, 0} and ¢ = [a]5Q we have that

1
a Q <
Y () < log. minjeq {N(I)}

for every n € N.
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Proof. If k = | X,|v% (£2), then we must have
(Mp)tors = (O/Iy & -+ ® O/I,) & (O Ijp1 & - - - ® O/ 1)
with I,..., I € Qand Ixiq,...,1; €, and so

det+ (ng(n) = ‘ (Mn)tors|

Applying now Corollary 5.2.10, we obtain that

min {N(1)}} < o,

which taking logarithms gives us that

1
a Q <
I/X”( )< log, minscq {N(I)}

for all n € N. O
Now, given A > 0 we will denote by
Z(O)x = {J € Z(0) \ {0, 0} | N(J) > A}.

Using the previous result, we can show that the measures of Z(0), are small
for large A.

Proposition 5.2.12. Given € > 0, there exists some A > 0 such that
Vg(n (I(O))\) <e
for all n € N.

Proof. If we take A > ¢'/¢, then Lemma 5.2.11 implies that

I/g(n (I(O))\) < <e

log, A

for all n € N. O

Remark 5.2.13. The previous result can be summed up by saying that
for big A > 0 the value v§ (Z(O),) is uniformly small. Tt can be seen as
an analogue to Lemma 4.3.8, which said that for small € > 0 the value
1%, ((0,€)) was uniformly small.
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Let I € Z(O) be a non-zero ideal. Then, we have that

oi=nu( U o)

mEZ(O)max

Given € > 0, as a consequence of Proposition 5.2.12 there is some A > 0
such that v§ (Z(0),) < ¢ for all n € N. Furthermore, there are only finitely
many distinct maximal ideals my, ..., mg € Z(O)max with N(m;I) < A for
i=1,...,k. Then, we have that

k
U [om1= (UOml ) Z(0)x N[0, 1]).
MEZ(O)max i=1

Using now that
[O,ml-I] N [O,ij] = [O,mimjl]

for any i # j, we can apply the inclusion—exclusion principle to compute
k k
g (Uomt]) =307 30 g (O w1,
i=1 j=1 1<y <--<ij <k

which converges independent of the approximation (X, ),en because the
measures of the intervals converge by Proposition 5.2.4. Furthermore, if we
write

k
Z(O0)\ = [0,1]\ ({I}U <U [0, m;] )) CZ(0)\ N[0, 1],
=1

then
vk, (Z(0)y) <%, (Z(O)y) <e.
Therefore,
V%R(O[O,mil]) < yg(n< U [0,mI> < v (0 0, m; ] )

i=1 MET(O)max

for every n € N, which implies that
v, < U 0])
MEZ(O)max
converges independent of the approximation (X, ),en. As a consequence,

V}I(n({l}):yg(n([I,O])—y‘)’g"( U [mI,O]>

mEI(O)max
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converges as well for any non-zero I € Z(0O) independent of the approxima-
tion (X, )nen-

More generally, the uniform bound in Proposition 5.2.12 allows us to ap-
proximate uniformly the measures of each subset 2 C Z(O) by the measures
of a finite number of ideals. This implies that for each Q@ C Z(O) the limit

: a
35 V()
exists and is independent of the approximation (X, ),en. Indeed, because
Z(0) is a countable space, we can write

v, () =) vk, ({1})

1€

and, because of Proposition 5.2.12, this series converges uniformly. There-
fore, taking limits commutes with the sum, and

lim v (@) = 3 lim v ({1})

n—o0
IeQ

As a consequence, we can consider the limit probability measure v¢, on
Z(0), given by
ve () = lim v§ (Q)

for any subset 2 C Z(©). This can be summed up in the following result.

Theorem 5.2.14. Let G be a finitely generated amenable group with S C G
a finite generating set and (X, )nen a sofic approrimation. Let K be a num-
ber field with ring of integers O, and a € O[F(S)]. Then, the sequence of
probability measures (Vg(n)neN converges strongly to some probability mea-
sure vg on Z(O), independent of the sofic approzimation (X, )nen.

5.3 Adelic Liick Approximation

Throughout this chapter, we have always worked with amenable groups,
which allowed us to use the characterisation of amenability in Theorem 3.3.2
to prove the convergence of our measures. Nevertheless, the constructions
of the measures themselves are not dependent on whether our group is
amenable or not.

We would then like to finish by conjecturing that the measures con-
structed in the last section converge in general, even for non-amenable
groups. This conjecture, which we will call the Adelic Liick Approxima-
tion Conjecture, serves as a generalisation of the Sofic Liick Approximation
Conjecture.
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Conjecture 5.3.1. Let G be a finitely generated sofic group with S C G
a finite generating set, (X, )nen & sofic approximation of G, K a number
field with ring of integers O, and a € O[F(S)]. Consider for each n € N the
measure V5 as before. Then, the sequence of probability measures (Vg(n)neN
converges strongly to some probability measure v on Z(0), independent of
the sofic approximation (Xp,)nen.
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