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Abstract
Recently, there has been a growing interest in examining the mathematical ambiguities in the
formalism of Loop Quantum Cosmology with the objective of seeking alternatives that also
result in viable physical pictures and compare their respective physical predictions. In this
way, we would be able to discern whether the remarkable results of standard Loop Quantum
Cosmology (such as the singularity resolution) are robust. In this Master’s Thesis, I will
focus on two sources of ambiguities: the regularisation of the Hamiltonian constraint and
the choice of a quantisation prescription.

On the one hand, the regularisation procedure is relevant to this discussion because
the one employed in standard Loop Quantum Cosmology has fundamental differences with
respect to the one employed in full Loop Quantum Gravity. Thus, the doors are open to
constructing formalisms which actually follow more closely the precepts of Loop Quantum
Gravity as far as the regularisation of the Hamiltonian constraint is concerned. Dapor and
Liegener proposed such a modified Hamiltonian constraint, obtained by adopting without
any substantial modification the regularisation procedure of the full theory.

On the other hand, the selection of a quantisation prescription (that is, a factor ordering
rule) is important inasmuch as the same classical regularised Hamiltonian, when quantised
adopting different quantisation prescriptions, leads to quantum theories that are not totally
equivalent (although the differences in the physical predictions due to this choice are ex-
pected to be slight). In the community of Loop Quantum Cosmology, two prescriptions
are predominant. For this thesis, I will adopt the Martín-Benito–Mena Marugán–Olmedo
(MMO) prescription, which is characterised by resulting in a quantum theory with very
attractive features at least in the standard approach. Hence, with the work presented in
this text, I aim to fill a gap that existed in the literature by determining whether these nice
features remain present under the modification proposed by Dapor and Liegener.

Since the MMO prescription is inspired by the treatment of anisotropic spacetimes, I
deal in parallel with both isotropic and anisotropic, flat, homogeneous cosmologies. I begin
by introducing some preliminary concepts of Loop Quantum Gravity with the objective of
motivating the treatment of cosmological spacetimes in the rest of the thesis. After this
introduction, I review the classical and quantum kinematical aspects of the isotropic and
anisotropic cosmologies under consideration. Next, I proceed to the regularisation using
holonomy variables of the Hamiltonian constraint; first according to the standard method,
and then considering the modified one instead. After the Hamiltonian is regularised via
the modified procedure, I quantise it by adopting the MMO prescription in the isotropic
scenario. After examining its action on the Hilbert space of the system, I conclude that
this prescription still displays the attractive features that characterise it in the standard
approach: a) the singularity is decoupled at the kinematical level, b) the action of the quan-
tum modified Hamiltonian defines superselection sectors that are simpler than those found
adopting other prescriptions, and c) it is possible to find the exact form of the eigenfunctions
of the quantum Hamiltonian. Finally, to complete the description of this alternative formal-
ism, I perform a numerical analysis of its effective cosmological dynamics and compare it
with the effective dynamics of standard Loop Quantum Cosmology and General Relativity,
concluding that, whereas the Big Bang singularity is still replaced by a quantum bounce, the
bouncing mechanism is qualitatively different from the one found in standard Loop Quantum
Cosmology.
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1 INTRODUCTION

1 Introduction

Modern theoretical physics lies on two fundamental pillars: General Relativity (GR) and
Quantum Mechanics (QM). The former describes the classical motion of matter in the pres-
ence of gravitational fields, in a purely geometric framework. At the same time, this theory
explains how matter alters the geometry of space and time, giving rise to these gravitational
effects in the first place. GR is characterised by providing a covariant description of the
aforementioned phenomena, that is, a description which is independent of the choice of co-
ordinate system [1, 2, 3]. On the other hand, QM is the paradigm governing the physics
of the microscopic world, where the classical laws no longer hold. Instead of being based
on the notion of spacetime trajectories, QM relies on a probabilistic description of Nature
where physical observables have an intrinsic uncertainty. Within this theory, the probability
distribution of physical observables is determined by the state of the system and its time
evolution is given by the Schrödinger equation (which preserves the probabilistic character
of the quantum states) [4, 5].

Physical predictions of both GR and QM have been tested with extremely high precision
in their respective regimes of application. Furthermore, the partial combination of both for-
malisms when physical systems are described by relativistic quantum fields (which receives
the name of Quantum Field Theory or QFT, for short) has led to numerous predictions that
have been experimentally confirmed as well. These fields describe quantum material excita-
tions (or particles) propagating on a classical (spacetime) background. QFT has proven to
be extremely successful and is at the core of, e.g., the Standard Model of Particle Physics, one
of the biggest achievements of the history of science. In this scenario, elementary particles
and their fundamental interactions (excluding gravitation) are described: physical events
take place in a flat spacetime, which is not affected by the physics itself.

Beyond the aforementioned success of the quantisation of relativistic fields in flat geome-
tries, there exists a theoretical formulation of Quantum Field Theory in Curved Spacetime
[6, 7]. In this formulation, the inclusion of gravitational effects is realised in the form of
considering a classical curved spacetime as the background of the field theory. Several the-
oretical predictions exist at this point (such as the Hawking radiation [8], the Unruh effect
[9, 10] or the particle production in nonstationary backgrounds [11, 12]) but they remain to
be confirmed experimentally. These effects typically arise due to the fact that the general-
isation of QFT to curved backgrounds is far from immediate. Indeed, the consideration of
a general spacetime leads to an ambiguity in the choice of quantum representation of the
classical algebra of canonical variables. In the context of a standard Fock quantisation, this
means that there is not a preferred choice of creation and annihilation operators. In turn,
this implies that the definition of the vacuum of the theory (i.e., the state annihilated by
all the annihilation operators) is not unique: in general, there is an infinite number of a
priori equally valid vacua. In standard QM (where the number of degrees of freedom is
finite), all the possible quantum representations are ensured to be unitarily equivalent by
the Stone-von Neumann Theorem [13] (provided that certain reasonable continuity condi-
tions are met). Nevertheless, when the number of degrees of freedom is infinite (as occurs
in QFT), the theorem no longer holds and, in general, the quantisation is not unique. In
Minkowski spacetime, there is a preferred vacuum (and, thus, a preferred notion of particle)
owing to the fact that only one vacuum is invariant under the Poincaré group (that is, the
isometry group of Minkowski spacetime). Similar physical criteria can be used to select pre-
ferred quantisations when the background admits a series of isometries, e.g., in stationary
spacetimes, in which the imposition that the quantum theory respects the time-translational
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1 INTRODUCTION

symmetries of the classical spacetime essentially selects a single possible vacuum, as in the
case of Minkowski space.

Nevertheless, such a selection cannot be performed when considering quantum fields
propagating in more general spacetimes (which, for instance, are not stationary). Many pro-
cesses of physical interest are described by spacetimes that fall into this category, from the
gravitational collapse of a star to the cosmological evolution of the Universe itself. Indeed,
no continuous time symmetry exists in these cases and, as a consequence, the quantum the-
ory cannot be restricted by the means mentioned in the previous paragraph. The gravity of
the consequences of this nonstationarity is twofold if we realise that the quantum represen-
tations of the classical (anti)commutation relations need not be unitarily equivalent among
themselves at different times. Therefore, the standard probabilistic interpretation may not
be respected and the theoretical robustness of all the predictions based on the quantum
evolution of the states is compromised. An extensive number of studies carried out during
the past decade appear to point towards an intimate relation between these two problems
(nonuniqueness of the quantisation and nonunitarity of the evolution). Indeed, it has been
shown that, for (free) scalar and fermionic fields in a variety of cosmological scenarios, the
unitarity of the quantum dynamics guarantees the uniqueness of the Fock representation of
the classical (anti)commutation relations (provided that the symmetries of the field equa-
tions are imposed at the quantum level). For this reason, the possibility of implementing
the quantum Heisenberg dynamics by a unitary operator has recently been proposed as a
criterion for the selection of a unique equivalence class of quantisations (for some examples,
see Refs. [14, 15, 16, 17]).

Once we have reached this point of the discussion, it is important to remark that QFT
and GR appear to be, in general, in tension with each other. Indeed, it seems strange to
consider matter of a quantum nature living in a classical spacetime, since the Einstein equa-
tions state that matter affects the classical curvature of the spacetime. Thus, some serious
conceptual problems emerge when we try to formulate the effect of quantum matter fields
on the background spacetime, especially if such matter is in a state with large quantum fluc-
tuations. Therefore, it seems rather convincing that, if there exist physical scenarios where
it is valid to consider quantum fields in classical spacetimes (as suggested by experimental
evidence), other regimes may exist where the quantum nature of both matter and space-
time must be taken into account to capture the real physics. Then, the classical Einstein
equations could be understood as a certain limit of the full theory of quantum gravity that
would govern such physical regimes. In addition, knowing the full theory would allow us
to alleviate the conflicts that appear when accommodating QFT in the intermediate stages
between the fully classical and the fully quantum. Apart from this fundamental motivation
(based on the consistency between the two fundamental cornerstones of modern theoretical
physics), other reasons push the scientific community to seek a theory of quantum gravity.
For instance, GR predicts the presence of spacetime singularities, where some physical ob-
servables diverge and the theory breaks down, no longer being predictive [2]. Indeed, some
of these singularities appear to exist in scenarios of physical interest, such as the formation
of black holes at the end of the life of massive stars and the Big Bang singularity in the
primeval Universe. For this reason, there is a widespread hope that quantum effects may
resolve the singularities of the classical theory, allowing for the extraction of robust physical
predictions in the regions nearby.

In the past fifty years, several attempts to formulate a quantum theory of gravity have
been made. Among these, Loop Quantum Gravity (LQG) is a formally robust attempt
to quantise gravity following the theoretical precepts of GR [18, 19, 20, 21]. LQG is a
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1 INTRODUCTION

nonperturbative quantisation of GR in 3+1 dimensions, independent of any spacetime back-
ground structure. Unlike other preexisting canonical approaches to Quantum Gravity (such
as the Wheeler-DeWitt theory [22]), it relies on the use of techniques extracted from Yang-
Mills gauge theories. In its canonical formulation, the basic variables are holonomies of the
Ashtekar-Barbero connection along loops and fluxes of the densitised triad across surfaces.
A key feature of the LQG programme is that it employs a quantum representation which
is not unitarily equivalent to the Fock representation of ordinary QFT, but it is instead
compatible with the background independence characteristic of GR. Besides, it attempts to
respect the general covariance of the classical theory at the quantum level. In order to do
so, the constraints that generate the spacetime diffeomorphisms (regarded as a fundamental
symmetry of the theory) are imposed at the quantum level, following Dirac’s formalism for
the quantisation of constrained systems [23]. Indeed, classical GR is a completely constrained
system, meaning that its total Hamiltonian is purely a(n integrated) linear combination of
four constraints: the three spatial diffeomorphism constraints and the scalar or Hamiltonian
constraint (which generates time reparametrisations up to spatial diffeomorphisms). Apart
from these four constraints, the Gauss constraint (which encodes the information about an
SU(2) symmetry introduced in the triadic formulation of GR that LQG is based upon) also
plays an important role. In summary, in LQG the geometric degrees of freedom in vacuum
are described by pairs of canonical variables given by the components of the densitised triad
and the gauge connection. Their respective fluxes across surfaces and holonomies along loops
form an algebra under Poisson brackets, which one seeks to represent quantum mechanically
on a Hilbert space. This Hilbert space is called the kinematical Hilbert space of the theory
and the quantum (operator) constraints are imposed on it, requiring that they annihilate
the physical states.

The foundations of LQG have undergone an exhaustive examination for the past decades.
Notwithstanding the fact that the quantisation programme has not yet been completed
in general scenarios, it can be done in systems with a large number of symmetries: the
so-called symmetry reduced sectors. These have been studied thoroughly, in addition to
perturbations around them, driving LQG closer to making robust physical predictions that
can be falsified by observations [24, 25, 26, 27, 28, 29]. Notably, the techniques of LQG have
succeeded in achieving a complete and consistent quantisation of cosmological spacetimes.
This conjunction of LQG and cosmology led to the birth of a new field of research named
Loop Quantum Cosmology (LQC) [30, 31, 32, 33], that has experienced a rapid evolution
in the past years. Indeed, there exists a large number of studies in a variety of scenarios.
See, for example, Refs. [34, 35, 36, 32, 37, 38, 39, 40] for homogeneous and isotropic models
such as Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes. For works concerning
anisotropic Bianchi cosmologies, one can consult Refs. [41, 42, 43, 44, 45, 46, 47]. Analyses
of inhomogeneous cosmologies have been carried out as well. Examples of this last class can
be found in Refs. [48, 49, 50, 51], where Gowdy spacetimes are treated.

In LQC, the Big Bang singularity is found to be resolved, which is counted among the
most outstanding results in the field. Instead of collapsing, the Universe undergoes a regular
quantum bounce when the energy density becomes comparable with the Planck density. The
(spacetime) curvature turns out to decrease quickly before and after the bounce. Therefore,
just a few Planck times after or before the bounce, GR is fit to describe the cosmological
dynamics with a very good accuracy. For this reason, it is often said that two classical
universes (the prebounce one, that contracts; and the postbounce one, that expands) are
linked together by the bounce. Moreover, semiclassical states at large volumes have been
found to stay peaked across the bounce region [52] and the quantum evolution of their peaks
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1 INTRODUCTION

is well approximated by an effective dynamics [36]. In this sense, the bounce is referred to
as being deterministic. The disappearance of the classical singularity by virtue of the effects
of quantum geometry not only has been found in general homogeneous cosmologies (both
isotropic and anisotropic [31, 53, 54, 55, 56]), but also has been confirmed in inhomogeneous
scenarios [57]. In fact, a variety of results suggests that all strong singularities are resolved
in LQC (at the very least in systems with a large number of symmetries [58]).

The regularisation and quantum representation of the Hamiltonian constraint in LQG is,
as of today, an open problem. A number of strategies were introduced by Thiemann within
the framework of LQG, which serve to regularise the Hamiltonian. Later on, LQC fell heir
to these strategies. Nonetheless, the regularisation procedure involves certain ambiguities
[59, 60, 61], which were originally resolved by appealing to some apparently natural physical
criteria. However, a new tendency has arisen recently: other options that result in viable
physical pictures are being examined by comparing their physical predictions. This exercise is
particularly interesting when it comes to alternatives that lie closer to full LQG, in that their
regularisation procedure follows more faithfully the strategy of the full theory. These cases
have sparked the curiosity of the scientific community lately, resulting in an extensive analysis
of the cosmological dynamics and the singularity resolution in these modified alternatives, in
order to seek quantitative and/or qualitative differences with respect to the standard LQC
picture.

One is led to expect the existence of alternatives that are closer to full LQG because the
regularisation procedure in LQG and the one that has been commonly employed in LQC
have fundamental differences. These lie in the treatment of the two pieces that compose
the gravitational Hamiltonian constraint in GR: the so-called Euclidean and the Lorentzian
parts. In LQG, each of them requires a separate quantisation strategy. The regularisation
procedure usually employed in LQC, however, relies on the fact that the Euclidean and
Lorentzian parts are proportional when the spatial sections of the spacetime under consider-
ation are flat. For this reason, the Hamiltonian constraint has predominantly been quantised
as being proportional to the Euclidean part alone. As of yet, we do not fully comprehend
the details of how LQG and LQC are related to each other (see Refs. [62, 63]). Therefore,
the cosmological dynamics resulting from the standard approach to LQC is not ensured to
capture the full cosmological dynamics in LQG, even at leading order. Hence, it seems rea-
sonable to analyse suitable alternative approaches to LQC that are closer to LQG with the
objective of shedding light on whether the classical singularity is also resolved by a quantum
bounce in the full theory.

Yang, Ding, and Ma first addressed this matter in Ref. [64] by explicitly construct-
ing a different Hamiltonian for LQC using a regularisation procedure similar to that in
LQG. Whereas the standard Hamiltonian constraint yields a second-order difference equa-
tion, this alternative Hamiltonian results in a fourth-order one by cause of the Euclidean and
Lorentzian parts being quantised separately. Moreover, the authors found that the modified
Hamiltonian led to a bounce mechanism with the standard features described above: no
qualitative differences were noticed.

Dapor and Liegener considered, in a more recent work [65], a nongraph-changing regu-
larisation scheme [66] within the framework of LQG. Computing the expected value of the
resulting Hamiltonian constraint on complexifier coherent states (representing homogeneous
and isotropic spacetimes), they recovered an effective Hamiltonian identical (at leading order
in a semiclassical expansion) to the one found in Ref. [64]. This regularisation procedure
(that was originally conceived in the context of LQG) was applied, without any modification,
to LQC in a later work [67]; resulting in the same effective Hamiltonian found in the pre-
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vious investigations [64, 65]1. Although an examination of the quantum dynamics revealed
that the initial singularity was resolved in this formalism, the bouncing picture underwent
a qualitative modification: while it still involved a large classical universe, a de Sitter epoch
with an emergent Planckian cosmological constant appeared as well2. Therefore, unlike in
Ref. [64], the bounce was asymmetric: it either joins a de Sitter contracting solution and
a classical expanding universe or the other way around. In a follow-up publication [69],
where the whole detailed analysis underlying Ref. [67] was presented, the authors have par-
tially filled a gap in the understanding of the spectral analysis of the modified Hamiltonian
operator. In particular, they have shown that it admits a family of self-adjoint extensions
(although this proof relies on the choice of a very particular superselection sector, as I will
briefly comment in Sec. 7.4).

Moreover; some months ago Li, Singh, and Wang studied in a systematic way the effective
cosmological dynamics that resulted from this alternative Hamiltonian [70], to which I will
refer as the modified Hamiltonian for the rest of this thesis. Using numerical and analytical
techniques, they considered massless and massive scalar fields as the matter content of a
flat FLRW cosmology. They realised that, while one set of Hamilton’s equations is sufficient
to compute the evolution of the Universe, two different sets of Friedmann-Raychaudhuri
equations are needed for the same purpose: both descriptions are not related by a one-
to-one correspondence. This resolves the tension between the previous works concerning
the symmetric or asymmetric nature of the bounce. Indeed, considering only one set of
equations, the bounce appears to be symmetric, but this conclusion is proven to be physically
inconsistent in Ref. [70], where it is shown that the bounce must be asymmetric, as suggested
in Refs. [65, 67]. The main interest of this alternative formalism is that this asymmetry
may give rise to phenomenological consequences that differ from those arising from the
standard LQC formalism. In a following article [71], the same authors broadened their
analysis by considering yet another alternative Hamiltonian, arriving at a formalism that
they designated as mLQC-II. Moreover, a further study and comparison of the alternative
effective dynamics for various inflationary potentials allowed to conclude that both mLQC-
I and mLQC-II display a nonsingular inflationary era. In a very recent work [72], the
authors have established a series of dynamical features that appear to be shared by the three
formalisms of LQC that they discussed in previous papers. Furthermore, they compute the
probability that the Universe undergoes inflation, finding a large one in the three scenarios.

Efforts have also been made in the direction of extracting physical predictions for ob-
servables in cosmology which are sensitive to this quantisation ambiguity. In this respect,
Agullo used the modified Hamiltonian constraint to obtain the scalar power spectrum and
compared it with the one that had been computed in standard LQC [73].

Some other aspects of the alternative formalisms have been explored in very recent pub-
lications. For instance, Liegener and Singh have argued that the bounce needs to be asym-
metric, employing for the first time a gauge invariant treatment of the singularity resolution
[74]. In this sense, the symmetric bounces obtained in the standard approach to LQC appear
to be an artefact of the gauge fixing in the fluxes of the densitised triad. On the other hand;
Yang, Zhang, and Ma have proposed a procedure to obtain yet another modification of the
Hamiltonian constraint [75]. This procedure is based on a regularisation of the Euclidean
and Lorentzian parts of the Hamiltonian by expressing them in terms of the Chern-Simons
action defined on the spatial sections. The resulting model (which appears to yield the cor-

1This alternative Hamiltonian constraint results in a formalism of LQC sometimes referred to as mLQC-I
in the literature.

2An emergent cosmological constant had already been encountered in the inner region of black holes [68].
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rect classical limit) is nonsingular, since the Big Bang is also replaced by a quantum bounce
that is asymmetric.

The main original contribution of this thesis is the construction of a new formalism of
LQC. To achieve this purpose, I will quantise the modified Hamiltonian constraint by se-
lecting the MMO quantisation prescription (put forward by Martín-Benito, Mena Marugán,
and Olmedo in Ref. [37]), instead of the one proposed in Ref. [36]. The result of this
construction will be presented throughout the following sections and was first published in
Ref. [76]. The MMO prescription differs from other existing prescriptions in that it incor-
porates in isotropic LQC a symmetrisation of the Hamiltonian that is natural in anisotropic
scenarios such as Bianchi I cosmologies (from which the proposers of the prescription drew
inspiration). This symmetrisation, which comprises a special treatment of the signs of the
components of the triad, gives rise to some attractive features after the quantisation of the
theory. One of these features is the decoupling of the (quantum analogue of the classi-
cally) singular state at the kinematical level. Moreover, in the quantum theory, the MMO
prescription results in superselection rules that pick superselection sectors which are much
simpler than the ones found when using other prescriptions. In standard LQC, these simpler
superselection sectors make it possible to explicitly find a closed expression for the gener-
alised eigenfunctions of the Hamiltonian constraint operator, which is exceptionally efficient
computationally speaking. This efficiency permits the construction of the eigenfunctions in
a more rapid and precise way. All these defining characteristics are regarded as strengths of
the MMO prescription. Hence, it seems natural to wonder whether these strengths prevail
when the MMO prescription is adopted for the representation of the modified Hamiltonian
instead.

The rest of this thesis is organised as follows. I will start with a brief account of the
notation and conventions that I will be using throughout this text. I will devote the next
section (Sec. 2) to the discussion of the classical and quantum Hamiltonian formalisms for
constrained systems. In Sec. 3, I will introduce some preliminary concepts and techniques
employed in LQG, which serve to motivate the treatment of cosmological spacetimes in the
rest of the thesis. In Sec. 4, we review the kinematical aspects of the loop quantisation
of FLRW and Bianchi I cosmologies, whose study is motivated by the fact that we want
to identify a symmetrisation structure that is clear in anisotropic scenarios. In Sec. 5, I
illustrate the regularisation of the Hamiltonian constraint according to the standard scheme.
In Sec. 6, I regularise the Lorentzian part of the Hamiltonian constraint separately and
compute the modified gravitational Hamiltonian in FLRW and Bianchi I cosmologies. Once
the full Hamiltonian is regularised in a manner that does not rely on the spatial flatness and
homogeneity of the cosmological models that I am considering, I proceed to quantise it in
Sec. 7. In this section, I compute the action of the Hamiltonian constraint operator on an
orthonormal basis of the kinematical Hilbert space and identify the superselection sectors
defined by its action. Additionally, I discuss the form of its generalised eigenfunctions and
how they can be computed by finding a closed analytical expression for them. Finally, in
Sec. 8, I study analytically and numerically the effective dynamics arising from standard
and modified LQC, and compare the results with the ones obtained in classical GR. In Sec.
9, I conclude by summarising the main ideas covered in this work.
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1 INTRODUCTION

Notation and conventions
Throughout this Master’s Thesis, I will use Greek letters (µ, ν, ρ, σ...) for spacetime indices.
Therefore, they take values from 0 to 3. Additionally, since we will be working with objects
defined in spacelike sections of the spacetime manifold, I will use Latin letters from the
beginning of the alphabet (a, b, c, d...) to denote spatial indices. Finally, Latin letters from
the middle of the alphabet (i, j, k, l...) will play the role of internal indices, associated with
an SU(2) freedom. Both spatial and SU(2) indices will take values from 1 to 3.

I will use Einstein’s summation convention (unless I explicitly state the contrary) whereby
a sum must be understood over every pair of repeated indices as long as one is upstairs and
the other is downstairs.

The complete symmetrisation of a number of indices will be indicated using parentheses
and vertical lines to separate the indices affected by the symmetrisation from those who are
not. For instance, (µ| . . . |ν) means that the indices µ and ν are symmetrised, whereas the
ones between them are left unchanged. A similar notation is used with the antisymmetri-
sation of indices, but I employ square brackets instead. Note that, in my convention, the
appropriate combinatory factor is included in the definition. For example, with two indices,

T(µν) :=
1

2
(Tµν + Tνµ), (1)

T[µν] :=
1

2
(Tµν − Tνµ). (2)

δab and εijk (with the indices properly placed) denote the Kronecker delta and the Levi-
Civita symbol, respectively, defined by

δab =

{
1 a = b
0 a 6= b

(3)

εijk = ε[ijk], ε123 = 1. (4)

Finally, the content of this thesis is written in units where ~ = c = 1, and using the
metric signature composed of mostly plus signs: (−,+,+,+).
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2 HAMILTONIAN FORMALISM OF CONSTRAINED SYSTEMS

2 Hamiltonian formalism of constrained systems
As I mentioned in Sec. 1, canonical LQG is a quantisation programme which starts from the
Hamiltonian formulation of classical GR. Since the classical theory is invariant under general
coordinate transformations, we must answer the questions of how to deal with systems with
symmetries and how to construct a Hamiltonian formulation of GR when the time should
be treated on the same footing as the rest of the coordinates.

The symmetries of a system result, as I commented above, in constraints. To illustrate
this idea in a straightforward way, let us consider a simple two-dimensional system described
by a Lagrangian which is invariant under rotations,

L =
1

2
(ṙ2 + r2φ̇2)− V (r). (5)

Since the angular coordinate φ is cyclic, its equation of motion reads
∂L

∂φ
− d

dt

∂L

∂φ̇
= 0 ⇒ r2φ̇ = l, (6)

where l (which is essentially the angular momentum) is a constant. Therefore, the existence
of a symmetry implies the conservation of a quantity which is a function of the generalised
coordinates and velocities. Hence, the dynamical variables that describe the system cannot
vary arbitrarily: they are bound to vary in such a way that the conservation law is always
satisfied. In this sense, a system with symmetries is a constrained one.

In view of this simple example, it seems natural to adopt a formalism which is appropriate
for the treatment of constrained systems. Next, I will discuss the basics of the Hamiltonian
formulation of theories with constraints, following Dirac [23, 78].

2.1 Classical theory
Consider a dynamical system with N independent constraints of the form χn = 0 (with
n = 1, . . . , N), where χn are functions of the dynamical variables. These receive the name
of primary constraints. It should be noted that, in constrained systems, the Hamiltonian is
not uniquely determined. Indeed, if H is a Hamiltonian that describes the dynamics of the
system, a Hamiltonian obtained from this one by summing an arbitrary linear combination
of the constraints is equally valid. As a result, the evolution of a dynamical function f can
be written as ḟ = {f,HT}, where {· , ·} denotes the Poisson bracket, HT = H + unχn is
the total Hamiltonian of the system and un are N unknown coefficients. By virtue of the
standard properties of the Poisson bracket, this expression can be rewritten as

ḟ = {f,H}+ {f, unχn} = {f,H}+ un{f, χn}+ {f, un}χn. (7)

The third term is not defined, given that the Poisson bracket is only defined for functions
of the dynamical variables. However, the ill-defined bracket is multiplied by a quantity that
vanishes identically for all n: the primary constraints. As a result, ḟ is well-defined. We
have to remark, though, that the Poisson bracket has to be computed before imposing the
constraints, since both processes do not commute in general. For this reason, we will declare
the following notation: we will use the symbol ≈ in weak identities (that is, identities that
only hold once the constraints are imposed) instead of the standard =, which we will reserve
for the strong ones. Hence, we write χn ≈ 0 and express the evolution of a dynamical variable
as

ḟ ≈ {f,HT}. (8)
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This notion of evolution can be applied on the constraints themselves to obtain consis-
tency equations (the constraints must remain satisfied under time evolution):

χ̇m ≈ {χm, H}+ un{χm, χn} ≈ 0, m = 1, . . . , N. (9)

We then have N consistency conditions and we can encounter three distinct situations:
i) The consistency conditions are trivially satisfied.
ii) The consistency conditions involve the dynamical variables, resulting in new con-

straints called secondary (as long as they are independent from the primary ones)3.
iii) The consistency conditions involve the unknown coefficients un.

In the first scenario, the primary constraints are robust under evolution. In the second sce-
nario, however, we obtain K new constraints {ξk}k=1,...,K , whose consistency under evolution
must be checked as we did for the primary constraints

ξ̇k ≈ {ξk, H}+ un{ξk, χn} ≈ 0, k = 1, . . . , K. (10)

Again, these consistency checks can result in the three different cases listed above. After ex-
hausting all the possible consistency conditions, we will end up with P additional constraints
{%p}p=1,...,P and a series of conditions that the coefficients un must satisfy.

In general, the additional constraints need to be treated on the same footing as the
primary ones, so it is useful to express all the constraints in a tuple {φj}j=1,...,J such that
the N first constraints are the primary ones and the rest are the additional (secondary)
constraints:

φj ≈ 0 (j = 1, . . . , N + P = J) :

{
φn = χn ≈ 0 n = 1, . . . , N.
φp = %p ≈ 0 p = N + 1, . . . , N + P.

(11)

Finally, the conditions on the coefficients un (where n = 1, . . . , N) can be written as

{φj, H}+ un{φj, φn} ≈ 0, (12)

as long as they do not reduce to one of the constraints. These conditions can be regarded as a
set of inhomogeneous linear equations where the coefficients un are the unknowns. Provided
that the equations of motion are consistent, we must be able to find a solution to these
equations un = Un(ζ) (where ζ compactly refers to all the dynamical variables of the system
under consideration) [23]. Nevertheless, this solution is not unique. Indeed, it is easy to see
that Un + V n is also a solution if V n{φj, φn} = 0. In fact, the most general solution can be
constructed out of all the independent solutions of V n{φj, φn} = 0. Let A be the number of
independent solutions, {V n

a }a=1,...,A. Then,

un = Un(ζ) + vaV n
a (ζ) (13)

is the most general solution, where va are arbitrary coefficients. Finally, we can write the
total Hamiltonian as

HT = H + Umφm + vaV m
a φm = H ′ + vaφa, (14)

where

H ′ = H + Umφm, (15)
φa = V m

a φm. (16)
3Notice that there is no fundamental difference between primary and secondary constraints: which is

which merely depends on the Lagrangian we start with.
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In the light of this result, we conclude that the total physical Hamiltonian of a constrained
system involves A arbitrary coefficients va, which are not fixed even when we have satisfied
all the requirements of our dynamical theory. For this reason, the dynamical variables at a
certain time t cannot be uniquely determined by their initial values at t0. This is a reflection
of the fact that we are working in a frame where there is an ambiguity, intimately related
with the freedom of fixing a gauge.

To close this discussion about constrained Hamiltonian systems, I will introduce two
concepts which will be useful to illustrate the procedure by which these systems are quantised
(often referred to as quantisation à la Dirac). A dynamical function R is said to be first-class
if it commutes with all the constraints under Poisson brackets

{R, φj} ≈ 0, j = 1, . . . , J. (17)

It is only necessary that they weakly commute, which is a more relaxed condition. If this
does not occur, the dynamical variable is said to be second-class.

It should be noted that both H ′ and vaφa (defined above) are first-class. Indeed, using
the properties of the Poisson bracket,

{H ′, φj} = {H + Umφm, φj} = {H,φj}+ Um{φm, φj}+ {Um, φj}φm ≈ 0, (18)

which follows from the fact that Um is a solution of Eq. (12) and φm ≈ 0. Similarly,

{vaφa, φj} = va{φa, φj}+ {va, φj}φa ≈ va{φa, φj}
= va{V m

a φm, φj} = vaV m
a {φm, φj}+ va{V m

a , φj}φm ≈ 0, (19)

where I have used the fact that φa ≈ 0 (it is a linear combination of constraints) and that,
by definition, V m

a {φm, φj} = 0 for all j (recall that this is what enabled us to find the most
general solution to Eq. (12) in the first place).

Since the φa are linear combinations of primary constraints, they also are primary. Fur-
thermore, given that V m

a are all the independent solutions of V m{φm, φj} = 0, {φa}a=1,...,A

is the set of all the primary constraints which are also first-class.
Before discussing the quantum theory, let us examine the role of the first-class constraints

as generators of transformations. Let f be a dynamical variable whose value at an initial
time t = 0 is f0. Then, its value at an infinitesimal time δt is given by

f(δt) ≈ f0 + ḟ δt ≈ f0 + δt{f,HT} = f0 + δt ({f,H ′}+ {f, vaφa}) . (20)

Notice the appearance of the arbitrary coefficients va in the expression above. This results
in the fact that the value of the dynamical variable f at time δt is not uniquely determined
by its initial value at t = 0, as we mentioned before. These coefficients are arbitrary and at
our disposal, so we could choose a different set of them, v′a. If we did so, the value of f at
δt would differ. The difference would only involve the third term of the previous expression
and would read

∆f(δt) ≈ δt{f, (v′a − va)φa} ≡ {f, εaφa}, (21)

where εa = δt(v′a − va) are infinitesimal arbitrary parameters.
If we decided to transform every dynamical variable of our system according to the

rule δf ≈ {f, εaφa}, we would still be describing the same state4. Then, we conclude
4This is so because there exists a redundancy in our description, which makes that the same state is

described by a collection of sets of dynamical variables instead of by just one.
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that the primary, first-class constraints generate infinitesimal contact transformations of the
dynamical variables that do not alter the physical state.

Nonetheless, not only the primary, first-class constraints generate such transformations.
In fact, secondary, first-class constraints do as well5. To realise this in a straightforward
way, consider two infinitesimal transformations with parameters εa and γb (b = 1, . . . , A),
respectively. Then, we apply them in different orders and see how the result changes. To
illustrate this simple computation, let us do one of them explicitly. Consider the case where
we apply the transformation with εa first and the one with γb afterwards.

f
ε7−→ f + {f, εaφa}

γ7−→ f + {f, εaφa}+ {f + {f, εaφa}, γbφb},

f
γ◦ε7−→ f + {f, εaφa}+ {f, γbφb}+ {{f, εaφa}, γbφb}. (22)

When the transformations are applied the other way around, the first two terms will appear
and, in the third one, εaφa and γbφb will be interchanged. Hence, the difference between the
two is

∆f ≈ {{f, εaφa}, γbφb} − {{f, γbφb}, εaφa}
= {{f, εaφa}, γbφb}+ {{γbφb, f}, εaφa}
= −{{εaφa, γ

bφb}, f} ≈ {f, εaγb{φa, φb}}, (23)

where the third equality follows from the Jacobi identity that the Poisson bracket satisfies.
In this instance, the generators of these gauge transformations (in the sense that the

physical degrees of freedom are unaffected by them) are {φa, φb}. Since the φa are first-class,
{φa, φb} ≈ 0, which means that the generators must be strongly equal to linear combinations
of constraints (they are by definition the only independent quantities in our theory that are
weakly zero):

{φa, φb} = c j
ab φj, (24)

where c j
ab are unknown coefficients. It is easy to see that these must be first-class, although

there is no restriction on whether they are primary or secondary. Indeed, let us prove that
the Poisson bracket of two first-class variables R and S is first-class. By assumption, R and
S weakly commute with all the constraints. Therefore,

{R, φj} ≈ 0 ⇒ {R, φj} = r j′

j φj′ , (25)
{S, φj} ≈ 0 ⇒ {S, φj} = s j′

j φj′ . (26)

By virtue of the Jacobi identity and the product law,

{{R,S}, φj} = {{R, φj}, S} − {{S, φj}, R}
= {r j′

j φj′ , S} − {s j′

j φj′ , R}

= r j′

j {φj′ , S} − s j′

j {φj′ , R}+
(
{r j′

j , S} − {s j′

j , R}
)
φj′ , (27)

which is weakly zero because R and S are first-class and φj′ ≈ 0 for all j = 1, . . . , J .
Therefore, we have proven that

{R, φj} ≈ 0, {S, φj} ≈ 0 ⇒ {{R,S}, φj} ≈ 0. (28)
5As I commented before, the difference between primary and secondary constraints is not fundamental.

The difference between first- and second-class, though, is crucial as we will see shortly.
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In the light of this result, we infer that {φa, φb} = c j
ab φj is a linear combination of

first-class constraints, both primary and secondary. Then, we realise that all the first-class
constraints can be thought of as the generators of infinitesimal gauge transformations, that
is, transformations that modify the canonical variables without altering the physical state
(on account of the redundancy in our mathematical description of the system).

This idea suggests that we should include in our notion of evolution the variations that
lead to no change in the physical state. Then, we should generalise our equations of motion
to encompass these transformations. This can be done by defining

ḟ := {f,HE}, (29)

where HE is an extended Hamiltonian given by

HE = HT + v′
a′
φa′ . (30)

The generators {φa′}, which are not contained in HT , are the secondary, first-class con-
straints.

In conclusion, the final picture from the classical viewpoint is that we end up with a
total Hamiltonian which is written as the sum of a first-class Hamiltonian and a linear com-
bination of the primary, first-class constraints. This Hamiltonian can be extended to include
secondary, first-class constraints, which generate (as their primary counterparts) infinites-
imal transformations of the dynamical variables that leave the physical state unchanged.
Therefore, even though the extra terms produce further changes in the evolution of dy-
namical variables, these changes do not correspond to any alteration of the physical state
itself.

2.2 Quantum theory
The objective of this subsection is to illustrate the quantisation procedure of a constrained
system described classically using the formalism we have developed in Subsec. 2.1.

Let us begin by discussing the case when all the constraints of the system are first-class.
Formally, the quantisation of a classical system (whose phase space is denoted by Γ) is
performed following the steps sketched below [79]:

i) Make a selection of a subspace S of the (vector) space of smooth, complex functions
on Γ such that a) it is large enough6 and contains the unit function ‘1’, b) it is closed
under Poisson brackets, and c) it is closed under complex conjugation. The elements
of S can be thought of as elementary classical variables with well-defined quantum
analogues that coordinatise the classical phase space.

ii) Define a linear map ·̂ : S → O that represents every classical variable F by a linear
operator F̂ acting on the kinematical Hilbert space of the system, Hkin. Such a map
must represent the classical structure of Poisson brackets. That is, up to higher-order
quantum corrections,

[F̂ , Ĝ] = i{̂F,G}, (31)
where [· , ·] denotes the operator commutator7. This is the so-called Dirac rule. This
needs to be complemented with a representation rule or factor ordering prescription

6This means that any regular function on Γ can be expressed as (possibly a limit of) a sum of products
of elements in S.

7Here, I am assuming that the classical variables are all independent. Otherwise, one would need to
introduce the algebraic relations between them in the form of anticommutation relations. For details on this
issue, see Ref. [79].
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that specifies how to symmetrise nonlinear products of powers of classical variables. We
will see the necessity of choosing a representation rule when dealing with the quantum
representation of the first-class constraints.
This map is also required to transform the complex conjugation of elementary variables
into the Hermitian conjugation of quantum operators. Hence, real classical variables
would become self-adjoint operators upon quantisation.

iii) Impose the condition that the representation be irreducible (otherwise, it could be
written as the direct sum of irreducible representations and extra information would
be needed to select one of them).

Once we have represented our canonical variables by quantum operators satisfying the
appropriate commutation relations, we write down a Schrödinger equation

i
dψ

dt
= H ′ψ, (32)

where ψ ∈ Hkin is a quantum state. Furthermore, we impose additional conditions on the
quantum states: we require that physical states be annihilated by (possibly the adjoint action
of) the operators that represent the constraints8

φ̂jψ
phys = 0 ∀ j, (33)

where ψphys ∈ Hphys is a physical state belonging to the physical Hilbert space.
We now have to verify that these requirements do not introduce inconsistencies. In order

to do so, consider two constraints, φ̂j and φ̂j′ . Then, the difference between applying one
first and then the other, or the other way around is

(φ̂jφ̂j′ − φ̂j′φ̂j)ψ
phys = [φ̂j, φ̂j′ ]ψ

phys = 0. (34)

We need this condition to hold for consistency. However, we want all the conditions on the
physical states to be contained in Eq. (33). Thus, we must have

[φ̂j, φ̂j′ ]ψ
phys = ĉ j′′

jj′ φ̂j′′ψ
phys. (35)

Indeed, if Eq. (35) does hold, then the consistency condition (34) follows from the original
requirement that the physical states be annihilated by the constraint operators. Recall that
all the constraints are first-class by assumption. Therefore, {φj, φj′} = −ic j′′

jj′ φj′′ is true
at the classical level (the −i is written to recover only c j′′

jj′ in the quantum expression).
Nevertheless, this does not imply Eq. (35). What it does imply is

[φ̂j, φ̂j′ ]ψ
phys = ̂c j′′

jj′ φj′′ψ
phys. (36)

Since the coefficients c j′′

jj′ can depend on the canonical variables, they may not commute
with the constraint operators at the quantum level, leading to anomalies in the imposition of
the constraints. This simple example also serves to illustrate one of the sources of ambiguity
in the quantum theory: beyond the problem of anomalies, a certain classical expression may
involve quantities that do not commute quantum mechanically and then we have to choose
a factor ordering in the quantum theory. I will refer to the choice of a specific ordering as
adopting a quantisation prescription.

8This physically means that the quantum states are invariant under the transformations the constraints
generate: we are asking that the quantum theory inherits the symmetries of the classical theory.
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In conclusion, if we manage to select a quantisation prescription such that all the coeffi-
cients appear to the left in Eq. (36), then we can successfully formulate a quantum theory
of a classical Hamiltonian system bound only by first-class constraints.

Let us now analyse the effects of the second-class constraints in the system we want to
quantise. It is instructive to consider a simple case in the first place.

Consider a two-dimensional system described by the canonical variables x1, p1, x2, and
p2. Classically, the nontrivial Poisson brackets are {xi, pj} = δij. Imagine that the system
was constrained to move on the direction 2, so that x1 = 0 and p1 = 0. It is trivial to realise
that these two constraints are second-class, given that they do not commute under Poisson
brackets ({x1, p1} = 1). These constraints cannot be imposed at the quantum level as we
have done with the first-class ones. Indeed, if we try to do so, inconsistencies are introduced:

x̂1ψ = 0
p̂1ψ = 0

}
−→ (x̂1p̂1 − p̂1x̂1)ψ = 0 but [x̂1, p̂1]ψ = iψ 6= 0. (37)

In this simple case, it is immediate to see what the solution is: forget about the direction
1 and redefine the Poisson bracket to only take into account x2 and p2 (which are the only
ones of physical interest). Once the second-class constraints have been imposed classically
and the Poisson bracket has been appropriately redefined, we have a Hamiltonian system
with only first-class constraints that we can proceed to quantise as discussed above.

In the same spirit, we can always use the second-class constraints to reduce the number
of degrees of freedom of the system. A general method to do this was devised by Dirac [23].
I will not describe it fully for the sake of brevity.

In summary, the prescription that we will adopt is the following. When we have a con-
strained system, we will replace the constraints by independent linear combinations of them
in such a way that we bring those combinations into the category of first-class constraints.
The remaining second-class constraints (the constraints whose linear combinations can never
be first-class) are imposed to reduce the number of degrees of freedom of the system while
the first-class constraints are kept and imposed at the quantum level9. In practice, this is
done by requiring that, once promoted to operators acting on the kinematical Hilbert space,
they annihilate the physical states of the quantum theory.

2.3 The case of General Relativity
First of all, it is important to remark that, while the Lagrangian formulation of GR is
manifestly covariant, its Hamiltonian formulation breaks the explicit covariance through the
selection of a preferred notion of time. This is done via a process that receives the denom-
ination of ADM decomposition [80, 81], named after the initials of its authors (Arnowitt,
Deser, and Misner). I will briefly sketch this procedure in this subsection.

We consider globally hyperbolic spacetimes (M, g), where M is a four-dimensional dif-
ferentiable manifold and g is a Lorentzian metric. By definition, they admit a global time
function t and are characterised by the existence of a(n achronal10) Cauchy hypersurface
Σ, that causally determines the whole spacetime [2]. Therefore, the spacetime is topologi-
cally M = R × Σ. Additionally, there exists a future-oriented timelike vector tµ such that

9In principle, we could also introduce a gauge fixing condition which is second-class with respect to one
of the first-class constraints and proceed to the reduction of the number of degrees of freedom of the system.
Nevertheless, this eliminates quantum fluctuations that would otherwise affect the quantum theory.

10Although this construct is valid for all nontimelike sections, I will focus on spacelike Cauchy hypersurfaces
for definiteness.
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tµ∇µt = 1, where ∇ is the covariant derivative associated with the Levi-Civita connection.
The integral curves of tµ only intersect once each of the Cauchy hypersurfaces, so that they
can be parametrised by the time function t.

Once Σ is given, virtually all the physically relevant information to determine the classical
solutions is encoded in the spatial three-metric hµν induced on Σ, and in the corresponding
extrinsic curvature

Kµν =
1

2
Lnhµν , (38)

where Ln is the Lie derivative along the unit normal to Σ, nµ. Since nµ has to be orthogonal
to Σ and future-oriented,

nµ = −Ngµν∇νt, (39)

where N can be thought of (in this regard) as a normalisation factor called the lapse function.
The timelike vector tµ can then be decomposed as

tµ = Nnµ +Nµ, (40)

where Nµ, the projection of tµ onto the Cauchy hypersurfaces, is the so-called shift vector.
The metric of a globally hyperbolic spacetime can always be written in the following

form:
ds2 = −(N2 −NaN

a)dt2 + 2habN
adtdxb + habdx

adxb. (41)
Hence, the four-dimensional metric can be described using the spatial three-metric hab (where
the information about the spatial geometry is stored), the lapse function N , and the shift
vector Na (in which the information about the time evolution of the spatial sections is
contained).

It is important to note that I have written the shift vector and the spatial three-metric
with spatial indices (from the beginning of the Latin alphabet). This is because they are
both tensor fields defined on the spatial sections (and, thus, they live in their corresponding
range space T r

sΣ). From now on, I will write these tensor fields with spatial indices (as well
as others like Kab), except when I wish to refer to their four-dimensional counterparts.

Let SEH be the Einstein-Hilbert action

SEH =

∫
M
d4xLG =

1

16πG

∫
M
d4x

√
−gR, (42)

where LG is the Einstein-Hilbert Lagrangian density, G is Newton’s gravitational constant,
g is the determinant of the spacetime metric, and R is the Ricci scalar. Expressing g and
R in terms of hab, N , and Na, an ADM decomposition of the action can be carried out.
Since we can read off the Lagrangian density from the action, the Hamiltonian density can
be obtained from this decomposition through a Legendre transform.

The lapse function N and the shift vector Na are relevant to this discussion inasmuch
as they appear as Lagrange multipliers in the Hamiltonian of GR that results from this
transformation. Indeed, it can be shown that they are not dynamical, i.e., there are no time
derivatives of these functions in the Hamiltonian. Furthermore, apart from boundary terms,
the Hamiltonian turns out to vanish on solutions, which means that it has the form of an
integrated linear combination of the four constraints encoding the general covariance of the
theory

HGR =

∫
d3x (NS +NaVa) , (43)
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where S is the scalar constraint and Va (a = 1, 2, 3) are the three spatial diffeomorphism
constraints. These four constraints are functions of the canonical variables: the spatial
three-metric hab and its conjugate momentum

πab =
1

16πG

√
h(Kab −Khab), (44)

where h is the determinant of the spatial three-metric and K = habKab is the trace of the
extrinsic curvature. Whereas the spatial diffeomorphism constraints are linear (both in the
spatial three-metric and the momentum), the Hamiltonian constraint is nonlinear, which
will complicate enormously its implementation in general cases, as we will see.

Since no time derivatives of the lapse function or the shift vector appear in the Hilbert-
Einstein action and the constraints only depend on hab and πab, the equations of motion
associated with N and Na simply reduce to

δSEH

δN
= S = 0,

δSEH

δNa
= Va = 0, (45)

which state that S and Va are indeed constraints on the canonical variables.
It is worth remarking once more that the explicit covariance of the theory has been broken

in this process and we cannot be sure whether the genuine covariance has been compromised
as well. Classically, when one reconstructs the theory from the algebra of constraints, the
general covariance is restored. In the light of this result, we carry on with our quantisation
programme and expect that the general covariance is recovered once the complete quantum
theory is formulated and the constraints successfully implemented.

If we quantise the system employing hab and πab as canonical variables, and a conventional
quantisation method, we arrive at a theory called quantum geometrodynamics, which suffers
from certain problems11 and whose analysis is not the objective of this thesis. Hence, we
will adopt different variables instead, whose introduction is one of the objectives of the next
section (Sec. 3).

11For instance, i) how to deal with the high nonlinearity of the theory is not well-understood, ii) it does
not cure the singularities in generic peaked solutions, and iii) there is no well-controlled functional analysis
on its associated configuration space (the space of three-geometries modulo spatial diffeomorphisms).
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3 Rudiments of Loop Quantum Gravity
The objective of this section is to provide a very brief introduction to the concepts and
techniques of canonical LQG, so that this thesis is as self-contained as possible. Furthermore,
this will hopefully provide a clearer motivation for the treatment of cosmological spacetimes
in subsequent sections. Although this information is covered in any introductory book on
LQG (see, for instance, Ref. [77]), I will mainly follow the clear exposition of Ref. [32].

3.1 Triadic formulation
Instead of using the spatial geometry as a dynamical variable to describe the system, we can
adopt an entirely equivalent formulation in terms of co-triads eia defined through

hab = eiaδije
j
b. (46)

As I already commented, Latin indices from the middle of the alphabet denote SU(2) indices12

that take values from 1 to 3.
We can also define a triadic version of the extrinsic curvature as

Ki
a = Kabe

b
jδ

ji, (47)

where eai is the inverse of the co-triad, the so-called triad, and is defined through

eai e
j
a = δji , eai e

i
b = δab . (48)

Once we have reached this point, it is interesting to discuss the intuitive physical inter-
pretation of the triad and the co-triad. It is transparent if we write the three-metric of the
Cauchy hypersurfaces as

dl2 = habdx
adxb = eiaδije

j
bdx

adxb = δijdy
idyj, (49)

where dyi = eiadx
a or, equivalently,

∂yi

∂xa
= eia. (50)

Therefore, the components of the co-triad can be thought of as spatial 1-forms that, at each
point of spacetime, solder the cotangent space T ∗Σ (defined as the dual of TΣ) with a local
flat space. In this sense, they are also referred to as soldering forms.

With the two relations in Eq. (48), we can invert Eq. (46) by contracting it with eake
b
l .

The result is the following:

habe
a
ke

b
l = eake

i
aδije

j
be

b
l = δikδijδ

j
l = δkl. (51)

The equation above can be interpreted as an orthonormality relation for a set of three vector
fields {eai }i=1,2,3. Then, the physical interpretation of the introduction of a triad is clear: we
attach at each point in M a coordinate system (given by the three coordinate axes defined
by the components of the triad) which is locally at free fall (i.e., the three-metric is locally

12This alternative triadic formalism allows for the coupling of fermions through the internal SU(2) indices,
which we will have to do if we wish to formulate a theory of quantum geometry that interacts with quantum
matter fields.
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flat). In other words, a triad can be thought of as a set of coordinate axes corresponding to
an inertial reference frame at each point of space.

Before moving on, it is important to note that, given a spatial three-metric, the choice of
co-triad is not unique. Indeed, consider a certain co-triad eia satisfying Eq. (46). Then, any
other co-triad obtained from eia as the result of a local (in space) internal rotation (meaning
with respect to the index i) also satisfies Eq. (46). To directly realise this, consider a three-
dimensional rotation matrix Ri

j ∈ SO(3). Rotating the co-triad eia solution of Eq. (46)
trivially results in

ẽja = Rj
ie

i
a. (52)

Thus,

ẽiaδij ẽ
j
a = Ri

ke
k
aδijR

j
le

l
b = ekaRjkR

j
le

l
b = ekaR

T
kjR

j
le

l
b = eka(R

TR)kle
l
b, (53)

where the superscript T denotes the transpose. Since R is an orthogonal matrix by definition,
(RTR)ij = δij. As a result, we obtain

ẽiaδij ẽ
j
a = ekaδkle

l
b = hab, (54)

where the last equality follows from the assumption that the original co-triad satisfies Eq.
(46). Given that we have made no assumptions on the nature of R other than that it is
a three-dimensional rotation, we conclude that all the co-triads related by a local internal
rotation are equally valid and all of them describe the same spatial three-metric. Hence,
we realise that there is a redundancy in our triadic description of the gravitational degrees
of freedom: at each point in space we have the freedom of performing an internal SO(3)
transformation and the physics remains unchanged. In conclusion, a triadic formulation of
canonical GR introduces an extra symmetry (this time, local or gauge) under transformations
of SO(3) or of its double universal cover SU(2), endowing the spacetime with the structure
of an SU(2) principal bundle of three-dimensional reference frames13. This SU(2) symmetry
that enlarges the symmetry group of the theory will give rise to an additional constraint on
the dynamical variables, called the Gauss constraint.

Once we have analysed the advantages and consequences of appealing to a triadic for-
mulation of GR, it is worth noting that the triad and the triadic extrinsic curvature do not
provide a canonical pair (in the sense that their Poisson bracket is not proportional to the
identity). However, an actual set of canonical variables for GR can be easily obtained by
considering the densitised version of the triad instead

Ea
i :=

√
h eai . (55)

Then, the densitised triad and the triadic extrinsic curvature have all the properties we
were looking for: they are canonical variables for GR especially adapted for the coupling of
fermionic fields. Indeed, their Poisson bracket is given by

{Ki
a(x), E

b
j (y)} = 8πGδijδ

b
aδ(x− y), (56)

where δ(·) is the three-dimensional Dirac delta, and x and y are two generic points in Σ.

13It is for this reason that I refer to the i, j, k... indices as SU(2) indices.

18



3 RUDIMENTS OF LOOP QUANTUM GRAVITY

3.2 Ashtekar-Barbero variables
To continue with the LQG programme, one introduces a connection valued 1-form to replace
the triadic extrinsic curvature. In order to do this, it suffices to realise that the densitised
triad determines an su(2)-connection (also called spin connection) Γi

a compatible with it
through the metricity condition

DbE
a
i = ∇(3)

b Ea
i + ε k

ij Γj
bE

a
k = 0, (57)

where Db is the minimally-coupled gauge covariant derivative, analogous to the standard
covariant derivative in non-Abelian gauge field theories Da = ∂a − TiA

i
a but with a nonflat

spatial background, which induces the replacement of the partial derivative by the covariant
derivative ∇(3)

a compatible with hab .
In terms of the Christoffel symbols Γ d

ab = 1
2
hdc(∂ahbc + ∂bhac − ∂chab), the metricity

condition reads

0 = ∂bE
a
i + Γ a

cb E
c
i − Γ c

cb E
a
i + ε k

ij Γj
bE

a
k ,

ε k
ij Γj

bE
a
k = −(∂bE

a
i + Γ a

cb E
c
i − Γ c

cb E
a
i ), (58)

where the third term of the gauge covariant derivative appears due to the fact that the
densitised triad is a vector density of weight −1 (recall the square root of the determinant
of hab involved in its definition). If we contract Eq. (58) with E ′l

aε
im

l, the result is

ε k
ij ε

im
lE

a
kE

′l
aΓ

j
b = −εimlE

′l
a(∂bE

a
i + Γ a

cb E
c
i − Γ c

cb E
a
i ). (59)

The definition of the densitised co-triad E ′i
a is such that Ea

kE
′l
a = δlk. Using this definition

and the property
εijkε

ilm = δljδ
m
k − δmj δ

l
k, (60)

we obtain

ε l
ij ε

im
lΓ

j
b = −εimlE

′l
a(∂bE

a
i + Γ a

cb E
c
i − Γ c

cb E
a
i ),

(δmj δ
l
l − δjlδ

lm)Γj
b = −εimlE

′l
a(∂bE

a
i + Γ a

cb E
c
i − Γ c

cb E
a
i ),

2Γm
b = −εimjE

′j
a(∂bE

a
i + Γ a

cb E
c
i − Γ c

cb E
a
i ). (61)

Thus, we have obtained a closed expression for the spin connection:

Γi
a =

1

2
εikjE

′j
b(∂aE

b
k + Γ b

ca E
c
k). (62)

Notice that I have omitted the third term since it vanishes identically owing to the complete
antisymmetry of the Levi-Civita symbol:

− 1

2
εikjΓ

c
ca E

′j
bE

b
k = −1

2
εikjΓ

c
ca δ

j
k = −1

2
εikkΓ

c
ca = 0 �. (63)

Then, we conclude that a spin connection is uniquely determined (up to gauge transforma-
tions) from the geometry of Σ. However, if we wish to replace the triadic extrinsic curvature
by a connection in our canonical pair, such a connection must encode all the information
about Ki

a (i.e., about the time evolution of the spatial geometry). This can be achieved by
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realising that the sum of Γi
a with any vector (both from the internal and external viewpoints)

provides again an su(2)-connection valued 1-form. Therefore, we can simply consider

Ai
a = Γi

a + γKi
a, (64)

which is the so-called Ashtekar-Barbero connection [20, 21]. The Immirzi parameter γ is a
free nonzero constant14. This connection, together with the densitised triad, provides a set
of canonical variables, their Poisson bracket being given by

{Ai
a(x), E

b
j (y)} = 8πGγδbaδ

i
jδ(x− y). (65)

For the sake of a global vision of what we have done so far, let us summarise the steps
we have followed up to this point:

• We have considered globally hyperbolic spacetimes in GR and performed an ADM
decomposition thereof in order to construct a Hamiltonian formalism which can be
readily quantised via a canonical approach.

• Instead of using the spatial metric and its conjugate momentum (related to the extrinsic
curvature) as the dynamical variables, we have introduced a triad and a co-triad (which
can be though of as the coordinate axes corresponding to an inertial frame of reference
at each point of spacetime).

• Using the newly introduced triad and co-triad, we have defined a triadic version of the
extrinsic curvature. Together with the densitised triad, the triadic extrinsic curvature
provides a set of canonical variables for GR.

• Finally, we have replaced the triadic extrinsic curvature with an su(2)-connection val-
ued 1-form composed by two pieces: a spin connection (defined from the densitised
triad by a metricity condition) and the triadic extrinsic curvature. In this process, the
Immirzi parameter (which is not fixed by the theory itself) is introduced.

In conclusion, we choose our canonical variables to be the densitised triad, which contains the
information about the spatial geometry, and the Ashtekar-Barbero connection, that knows
about how the spatial geometry changes with time.

It is important to remember that these variables are bound by a series of constraints15 that
generate the symmetries of (the triadic formulation of) GR: the spacetime diffeomorphisms
and the gauge SU(2) transformations. First of all, let us begin by writing down the Gauss
constraint, which generates SU(2) transformations:

Gi :=
1

8πGγ
(∂aE

a
i + ε k

ij A
j
aE

a
k) = 0. (66)

The fact that GR is invariant under spatial diffeomorphisms is manifested in the vector or
spatial diffeomorphism constraint:

Va :=
1

8πGγ
F i
abE

b
i = 0, (67)

where F i
ab is the curvature tensor of the Ashtekar-Barbero connection.

F i
ab = 2∂[aA

i
b] + εijkA

j
aA

k
b . (68)

14The Immirzi parameter introduces an ambiguity in the quantisation, which is often resolved in LQG by
appealing to the recovery of the Bekenstein-Hawking law for the entropy of black holes [82].

15The expressions of these constraints are considerably simplified by the introduction of the Ashtekar-
Barbero gauge connection [83].
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Finally, the invariance under time reparametrisation is reflected (up to spatial diffeomor-
phisms) in the scalar or Hamiltonian constraint. This constraint adopts the following form
in vacuo:

S :=
1

16πG
√
h
Ea

i E
b
j (ε

ij
kF

k
ab − 4Ki

[aK
j
b]). (69)

The Hamiltonian constraint will play a central role in this thesis. The first piece of the
expression above is often referred to as the Euclidean part, whereas the second one is the
so-called Lorentzian part. We will discuss this distinction in detail later.

3.3 The holonomy-flux algebra
It should be noted that, given that the introduction of triads and co-triads results in the
symmetry group of the theory being enlarged by the addition of a new SU(2) gauge symmetry,
our mathematical description is redundant. This redundancy implies that there are gauge
degrees of freedom with no physical relevance. Only the gauge invariant information has
physical meaning. Thus, the question is how to successfully capture such information in our
formalism.

We have discussed above how the triads and co-triads endow the spacetime with the
structure of an SU(2) principal bundle. The spin connection Γi

a extensively discussed above
allows one to define a notion of parallel transport of elements of the fibres along a path.
Such parallel transport is uniquely determined up to a gauge transformation at the initial
and final points. Therefore, if we close the path, the gauge freedom is suppressed. This
indicates that the gauge invariant information is encoded in closed paths or loops (this idea
is closely related to the concept of Wilson loop appearing in Yang-Mills theories). In this
manner, it seems natural to replace the connection with holonomies of the connection along
edges, e

he = Pexp
(∫

e

dxaAi
aτi

)
, (70)

where P denotes the path-ordering operator. Here, τi = −iσi/2 (with σi being the Pauli
matrices) are the generators of the defining representation of SU(2) and, as such, verify
[τi, τj] = ε k

ij τk. It should be noted that two goals are achieved in this process:
i) The line integral in the exponent smears the connection along one dimension, partially

alleviating the contact divergences (x = y) of the theory. See, for instance, Eq. (65).
ii) The gauge degrees of freedom are eliminated without the need of introducing a pre-

ferred background structure16.
The most important divergences are expected to arise in the form of three-dimensional

Dirac deltas in the Poisson brackets of the canonical variables. Since we have managed
to smear the connection along one dimension, it seems reasonable to ask whether we can
smear the densitised triad along two dimensions without paying the price of introducing a
background structure. The answer is, in general, in the affirmative. For any surface S and
any smooth test function of SU(2) f i, we define the flux of the densitised triad as

E(S, f) =

∫
S

dxbdxc εabcf
iEa

i . (71)

Let us note that this is only possible because the densitised triad is a vector density (of weight
−1) in Σ and, therefore, its Hodge dual can be integrated over two-dimensional surfaces.

16By this we usually mean that no metric is needed to construct the object in question.
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The holonomies of the Ashtekar-Barbero connection and the fluxes of the densitised triad
form an algebra under Poisson brackets, which no longer has the distributional divergences of
the canonical relations. This algebra is chosen in LQG to be represented over a kinematical
Hilbert space. Thus, the quantisation of the theory as it is formulated consists in looking for
a representation of the holonomy-flux algebra in the form of operators acting on a Hilbert
space. On this representation, the diffeomorphism and scalar constraints must be imposed.

To close this subsection, let us briefly describe the kinematical Hilbert space of LQG. To
begin with, we need to define a cylindrical function of the connection as a complex function
that only depends on the connection through holonomies along a finite number of edges. The
algebra of the cylindrical functions of the connection is identified in LQG as the configuration
algebra. By virtue of the properties of this algebra when completed with a suitable norm, the
configuration algebra is ensured to be isomorphic to the algebra of continuous functions on
a compact space Ā (called the spectrum) by Gel’fand theory [84]. The kinematical Hilbert
space of any representation of the configuration algebra is that of square integrable functions
on Ā, L2(Ā, dµ), for some measure dµ.

3.4 The LOST Theorem
The Lewandowski-Okolow-Sahlmann-Thiemann Theorem (or LOST Theorem, for short) is
a crucial result in LQG. This theorem states the uniqueness (up to unitary equivalence)
of a cyclic representation of the holonomy-flux algebra whose vacuum is invariant under
diffeomorphisms [85]. In the language of the previous paragraph, this theorem ensures
that there is a unique Hilbert space L2(Ā, dµAL) that supports a representation not only
of the holonomies but also of the fluxes and such that the measure dµAL is invariant under
diffeomorphisms17.

Therefore, a unique family of unitarily equivalent quantisations is selected by the choice
of canonical variables (motivated by the independence of background structures) and the
identification of the invariance under diffeomorphisms as a fundamental symmetry.

To conclude this section concerning LQG, I want to briefly summarise (in a qualitative
manner) the result one obtains when considering the representation of the holonomy-flux
algebra that verifies the conditions above and whose existence is guaranteed by the LOST
Theorem. For a technical and rigorous account, I refer to any standard reference on LQG
(such as [18] or [19]).

The physical consequence of trying to quantise a theory of geometry is that space and
time themselves are discrete. The LQG programme results in a picture where spacetime is
granular and the geometric quantities (such as the area) are discrete.

The unique cyclic representation of the holonomy-flux algebra with a diffeomorphism
invariant vacuum turns out not to be continuous [18]. This implies that we cannot obtain
a representation of the connection (which appears in the exponent of the holonomy). This
introduces a nonlocality in the theory, since physical observables will have to be expressed
in terms of holonomies instead of connections. Another consequence of the discontinuity
of the representation is that a generalisation of the Stone-von Neumann Theorem no longer
holds and, thus, the representation of LQG is not equivalent to that of standard QM or QFT
(usually referred to as Schrödinger representation).

In the quantum theory, the holonomies play the role of ‘excitation lines’ by means of
which the excited states are generated from the vacuum. When one wants to compute the
expected value of a given geometrical operator (the area of a surface, for instance), one

17This measure is usually referred to as the Ashtekar-Lewandowski measure.
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obtains that the commutator of the holonomies with the densitised triad is nonzero and
each ‘punction’ contributes with a quantum of area weighted with a certain representation
of SU(2). The holonomy paths are embedded in the spacetime and regarded as equivalent
under spatial diffeomorphisms. Then, one can view them as composed by straight edges that
intersect. Recall that we wanted closed paths in order to retain only the physical degrees of
freedom. Then, we obtain a network of straight edges that meet in vertices in such a way
that no vertex is a ‘dead end.’ Each edge carries a representation of SU(2) (or spin number),
j, and at each vertex there is an intertwiner (that is, a scheme of addition of representations
that generalises the Clebsch-Gordan coefficients, intuitively speaking), so that the SU(2)
invariance is respected. In total, we have a set of edges with different spin numbers that
meet in vertices, where the ‘angular momentum’ is conserved. Such structures receive the
name of spin networks and their time evolution are the so-called spin foams.

As of today, the Gauss and spatial diffeomorphism constraints have been implemented.
The scalar constraint, however, remains to be solved, which prevents the obtention of the
physical Hilbert space, thereby blocking the road towards the completion of the LQG quan-
tisation programme.
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4 Homogeneous LQC: Kinematics
In this section, we will review the standard loop quantum theory of two cosmological space-
times which will play a central role in this thesis: Bianchi I and flat Friedmann-Lemaître-
Robertson-Walker (FLRW) cosmologies. In particular, we will focus on their kinematical
aspects.

Owing to their simplicity and their importance in cosmology, these models have been
thoroughly studied both in GR and LQC. For details about these homogeneous cosmological
models, a plethora of references can be consulted. See, e.g., Refs. [36, 37, 41, 46, 86].

4.1 Bianchi I cosmologies
The spacetimes of type Bianchi I are homogeneous but anisotropic and have flat spatial
sections. In this regard, they can be thought of as the immediate anisotropic generalisation
of flat FLRW spacetimes. For this reason, flat FLRW cosmologies are expected to be recov-
ered in the isotropic limit of Bianchi I cosmologies (i.e., when the three spatial directions are
identified). Even though this statement holds classically, its veracity at the quantum level de-
pends critically on the quantisation prescription that we select to represent the Hamiltonian
constraint. We will discuss this matter extensively in subsequent subsections.

In this subsection, we will summarise the classical and quantum kinematical aspects of
the Bianchi I models that will be relevant for this thesis (leaving out the regularisation
procedure of the Hamiltonian constraint, to which I will devote the following section).

Following the philosophy of LQG, we describe the system using Ashtekar-Barbero vari-
ables [44, 41, 46]. Usually, the definition of these variables require the introduction of a finite
cell (which plays the role of an infrared regulator18) and a fiducial triad. Nevertheless, it was
shown in Ref. [45] that, provided that one specialises to a diagonal gauge, an appropriate
election of the Ashtekar-Barbero variables results in the physical quantities being indepen-
dent of the choice of finite cell and fiducial metric. Therefore, for the sake of simplicity, we
select a diagonal Euclidean triad and focus the discussion on spatial sections with a compact
topology, namely, that of a three-torus T 3. Under these considerations, it seems natural to
fix the finite cell as the whole of the T 3 section, with sides of coordinate length 2π. In these
circumstances, one arrives at the following Ashtekar-Barbero variables:

Ai
a =

ci

2π
δia, Ea

i =
pi
4π2

δai , (72)

where ci and pi are constants in Σ (but not under time evolution) that encode all the
geometric degrees of freedom.

When dealing with Bianchi I cosmologies, I will not use Einstein’s summation convention
for the internal indices, since I believe it is confusing owing to their repeated appearance in
pairs. Therefore, I will be using the standard summation notation,

∑
. However, Einstein’s

notation will still be applied in the case of spatial (and spacetime) indices.
The nontrivial canonical Poisson brackets on the phase space of the model adopt the

following form in terms of ci and pi:

{ci, pj} = 8πGγδij. (73)

18Indeed, owing to the spatial homogeneity of the models we will be considering, certain quantities (such
as the Hamiltonian itself) diverge upon being integrated over noncompact spatial sections.

24



4 HOMOGENEOUS LQC: KINEMATICS

It is important to notice that, due to the fact that we have chosen a diagonal system, the
internal SU(2) and spatial indices can be identified, and we will for convenience.

Using circular coordinates {xi} = {θ, σ, δ}, xi ∈ S1, we can write the spacetime metric
as

ds2 = −N2dt2 +
V 2

4π2

∑
i=θ,σ,δ

(dxi)2

p2i
, (74)

where N is the lapse function and

V =
√

|pθpσpδ| (75)

is the physical volume of the Universe.
In homogeneous LQC, we characterise the configuration space using holonomies of the

Ashtekar-Barbero connection Ai
a along straight edges. In the case of Bianchi I, these edges

are oriented along the fiducial directions (labeled by i = θ, σ, δ) and have lengths 2πµi ∈ R,
respectively. In this manner, we get the basic holonomies

hµi

i (ci) = exp{µic
iτi}, (76)

whose explicit expression will be computed in the next section (Sec. 5).
The description of the phase space is then completed with the fluxes of the densitised

triad through the fiducial rectangles composed by edges of the holonomies. The area of the
rectangle formed by two edges oriented along two different fiducial directions j and k (both
orthogonal to the direction i) turns out to be proportional to pi. Indeed, the triad flux
associated with a rectangular surface of this kind is given by

E(Si) =
pi
4π2

Si, (77)

where Si is the fiducial area of the rectangular surface.
The configuration algebra is given by sums of products of the matrix elements of the

irreducible representations of the holonomies. It is well known [32] that this algebra is
the algebra of almost-periodic functions of the connection variables ci. Such an algebra is
generated, as I said before, by the holonomy matrix elements∏

Nµi
(ci) =

∏
eiµic

i/2. (78)

In the previous expression, the product is to be taken over the three fiducial directions
(i = θ, σ, δ) and µi ∈ R is any real number.

Upon quantisation, these exponentials will be represented by a ket state19 |µi〉. We can
define the analogue of the space of cylindrical functions in LQG as [50]

CylBI
S = span {|µθ, µσ, µδ〉} , (79)

where

|µθ, µσ, µδ〉 = |µθ〉 ⊗ |µσ〉 ⊗ |µδ〉 (80)

denotes the tensor product of the states corresponding to the three different spatial direc-
tions. The kinematical Hilbert space of a Bianchi I cosmology, (BI)Hkin

grav = ⊗iHkin
grav,i, will be

given by the completion of CylBI
S with respect to the discrete inner product

〈µi|µ′
i〉 = δµi,µ′

i
(81)

19From now on, I will use Dirac’s bra-ket notation.
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in each direction. Clearly, a basis of the kinematical Hilbert space is provided by the states
|µθ, µσ, µδ〉 introduced above. The action of the fundamental operators on these states is
simple: they are eigenstates of p̂i (associated, as we saw, with triad fluxes across rectangular
surfaces orthogonal to the ith fiducial direction), and the operators N̂µi

shift their labels.

p̂i |µi〉 = 4πγl2pµi |µi〉 , (82)
N̂µ′

i
|µi〉 = |µi + µ′

i〉 , (83)

where lp =
√
G is the Planck length. Of course, these operators act trivially on states

belonging to the Hilbert spaces associated with the fiducial directions orthogonal to the ith
direction. In this sense, when I write N̂i, I am referring to N̂i ⊗ Ij ⊗ Ik. Nevertheless, in
most cases we will omit the trivial actions for brevity.

In LQG, the area spectrum is discrete and the limit of zero area cannot be attained [18]:
there exists an area gap ∆, which is commonly identified with the quantity

∆ = 4
√
3πγl2p. (84)

It has been argued that this fact should be taken into account in LQC as well. In particular,
this nonzero area gap is imported in the form of a minimum coordinate length of the edges of
the holonomies. Although different prescriptions exist concerning the implementation of this
minimum length, the most widespread one is the so-called µ̄-scheme or improved dynamics
prescription [36]. It states that the minimum coordinate length for each direction should
be fixed by requiring that the edges of the holonomies form rectangles of minimum nonzero
area ∆ [41]

µ̄jµ̄k|pi| = ∆, (85)

with i 6= j 6= k. We can write similar expressions for rectangles orthogonal to the directions
j and k: µ̄iµ̄k|pj| = ∆ and µ̄iµ̄j|pk| = ∆. Multiplying the last two conditions and dividing
the result by the first one yields

µ̄i =

√
|pi|

|pjpk|
∆. (86)

The fact that this minimum coordinate length depends on the variables pi for the three
spatial directions implies that the shift produced by N̂µ̄i

depends on the state it acts upon.
However, it is possible to rewrite these holonomy operators in such a way that their action
is considerably simplified. This is normally done by introducing an affine parameter λi for
each spatial direction, such that

λi = sgn(pi)
√

|pi|
(4πγl2p

√
∆)1/3

⇒ (4πγl2p
√
∆)1/3dλi = sgn(pi)d|pi|1/2. (87)

In the previous equation, sgn(·) denotes the sign function.
We can represent iµ̄ic

i in the exponent of the holonomies by the differential operator
8πγGµ̄i∂pi (as usual in the p-representation, ci is represented by the differential operator
ĉi = −iC∂pi , where C is the constant appearing in the canonical commutation relations
through [ĉi, p̂j] = iCδij). It can be shown that such an operator can be recast as [41, 46]

8πγGµ̄i∂pi =
1

|λjλk|
∂λi
, (88)
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where the three directions appearing in the expression above are different from one another.
Indeed,

µ̄i∂pi =

√
∆√

|pjpk|
sgn(pi)

√
|pi|

∂

∂|pi|
=

√
∆

2
√
|pjpk|

sgn(pi)
∂

∂|pi|1/2

=

√
∆

2(4πγl2p
√
∆)1/3

1√
|pj|

1√
|pk|

∂λi

=

√
∆

2(4πγl2p
√
∆)1/3

1

(4πγl2p
√
∆)1/3|λj|

1

(4πγl2p
√
∆)1/3|λk|

∂λi

=
1

8πγl2p

1

|λjλk|
∂λi
,

1

2
iµ̄ic

i → 1

2
8πGγµ̄i∂pi =

1

2|λjλk|
∂λi

�. (89)

Then, it seems natural to relabel the states of the |µθ, µσ, µδ〉-basis using the λ-parameters
instead, |λθ, λσ, λδ〉. The action of the fundamental holonomy operators is now written as
follows [50]

N̂±µ̄θ
|λθ, λσ, λδ〉 =

∣∣∣∣λθ ± 1

2|λσλδ|
, λσ, λδ

〉
, (90)

N̂±µ̄σ |λθ, λσ, λδ〉 =
∣∣∣∣λθ, λσ ± 1

2|λθλδ|
, λδ

〉
, (91)

N̂±µ̄δ
|λθ, λσ, λδ〉 =

∣∣∣∣λθ, λσ, λδ ± 1

2|λθλσ|

〉
. (92)

Once we have reached this point of the discussion (where we have completed the descrip-
tion of the kinematical Hilbert space of the system), I will summarise the steps we have
followed in order to see the parallelism with the strategy adopted in LQG.

1. We have begun by describing the gravitational degrees of freedom using a gauge con-
nection and a densitised triad. In this process, we have selected a fiducial cell adapted
to the choice of (compact) T 3 topology for the spatial sections and we have selected
a gauge with diagonal variables (recall that this is motivated by the fact that it has
been proven that the physical results are independent of these choices).

2. We have defined the holonomies of the connection along edges of a certain coordinate
length and the fluxes of the densitised triad across rectangular surfaces.

3. We have identified the configuration algebra (which is given by the sums of products
of the holonomy matrix elements) with the algebra of almost-periodic functions of the
connection variables ci.

4. We have represented each of the exponentials by a ket state. Then, we have defined the
space of cylindrical functions as the linear span of these ket states and the kinematical
Hilbert space as its completion with respect to a discrete inner product in each fiducial
direction.

5. We have represented the classical variables (that is, the holonomy matrix elements
and the triad variables pi) by operators acting on the kinematical Hilbert space and
we have written their action on the basis provided by the ket states introduced above.

6. Finally, we have argued that a minimum coordinate length should exist in LQC, ap-
pealing to the fact that there is a nonzero area gap in LQG. We have discussed how
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this minimum coordinate length is implemented according to the improved dynamics
prescription. This process results in the action of the fundamental holonomy operators
becoming state-dependent. For this reason, we have devised an alternative relabelling
of the ket states such that the action of the fundamental operators is simplified.

The next step in the quantisation programme is the representation of the Hamiltonian con-
straint, which is the only nontrivial constraint in a flat homogeneous cosmology for the
introduced diagonal scenario. In particular, we must regularise it classically to express it in
terms of the holonomies of the Ashtekar-Barbero connection and then quantise it by choos-
ing a factor ordering prescription. I will devote the next three sections to analysing these
two procedures.

4.2 FLRW cosmologies
Before that, let us briefly discuss the isotropic limit of Bianchi I cosmologies, that is, the
limit in which the three fiducial directions behave in the same manner and, thus, become
equivalent. As mentioned in Sec. 4, in this process one reaches a flat FLRW cosmology. For
further details on the quantisation of models in LQC, one can consult, e.g., [35, 36, 37].

In the isotropic case (i.e., pi = p and ci = c for all i), the Ashtekar-Barbero variables
reduce to

Ai
a =

c

2π
δia, Ea

i =
p

4π2
δai . (93)

The only nontrivial Poisson bracket is given by

{c, p} =
8πGγ

3
. (94)

Notice the extra factor 1/3 in the Poisson bracket of c and p with respect to its analogue
in Bianchi I cosmologies. The identification of the three pairs (ci, pi) corresponding to each
spatial direction is the origin of this difference.

The expressions above are valid if one chooses a Euclidean fiducial metric and a diagonal
fiducial triad. This fixes the spatial diffeomorphism and the gauge freedoms, so that the
Hamiltonian constraint is again the only constraint whose content is nontrivial. It is known
that the LQC model that results from these choices is in fact independent of the fiducial
structures [35, 36].

In the next paragraphs, we will follow a procedure that is identical to that already
presented in the previous subsection for the case of Bianchi I cosmologies. However, owing
to the isotropy of the model we are currently working with, this case is considerably simpler.

Let us introduce holonomies along edges of coordinate length 2πµ and triad fluxes through
squares formed by these edges. The configuration algebra is then the algebra of almost-
periodic functions of the connection variable c, which is generated by the holonomy matrix
elements

Nµ(c) = eiµc/2. (95)

As before, the states |µ〉 are the quantum representation of these exponentials. The span
of these states defines the analogue of the space of cylindrical functions of the connection
variable CylS = span{|µ〉}. The completion of CylS with respect to the discrete inner product
〈µ|µ′〉 = δµ,µ′ results in the kinematical Hilbert space of a FLRW spacetime, Hkin

grav.
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The fundamental operators have a straightforward action on the |µ〉-basis. Indeed, these
states are eigenstates of the operator p̂, and their labels are shifted by N̂µ:

p̂ |µ〉 =
4πγl2p
3

µ |µ〉 , (96)

N̂µ′ |µ〉 = |µ+ µ′〉 . (97)
We adopt the improved dynamics prescription to determine the coordinate length of the

edges of the holonomies. Then, we require that they form squares whose area is equal to
the area gap in LQG, µ̄2|p| = ∆. From this condition, we recover the minimum coordinate
length of the edges of the holonomies

µ̄ =

√
∆

|p|
. (98)

It is easy to realise that this expression reproduces the result we obtained in Bianchi I
cosmologies when all the fiducial directions are equivalent. As in the anisotropic case, the
fact that µ̄ depends on p results in the fundamental holonomy operators producing state-
depend shifts. Once more, we can introduce an affine parameter v to solve this inconvenience.
For this, we require that the differential operator corresponding to iµ̄c/2 is ∂v [36]. This
amounts to imposing that

iµ̄c→ 8πGγ

3
µ̄∂p = 2∂v. (99)

Manipulating this equation yields

dv =
3

4πl2pγ

dp

µ̄(p)
=

3

4πl2pγ
√
∆

√
|p|dp = (2πGγ

√
∆)−1sgn(p)d|p|3/2, (100)

which can be easily integrated:
v = (2πl2pγ

√
∆)−1sgn(p)|p|3/2, (101)

p = (2πl2pγ
√
∆)2/3sgn(v)|v|2/3. (102)

Notice that, in the light of Eq. (101), v has a very clear physical interpretation: it is an
adimensional parameter that is proportional to the physical volume of the Universe. Indeed,
taking the isotropic limit of the line element (74), one realises that the volume operator can
be defined in this setting as

V̂ = |̂p|
3/2

(103)
and, hence,

V̂ |v〉 = 2πγl2p
√
∆ |v| |v〉 =

√
16
√
3π3γ3 l3p|v| |v〉 . (104)

Therefore, v essentially gives the physical volume in units of the Planck volume l3p (except
for a factor [16

√
3π3γ3]−1/2 ≈ 0.29, with the value usually taken for the Immirzi parameter).

Finally, if we relabel the states |µ〉 using the quantity v instead, we obtain the following
simple actions:

p̂ |v〉 = (2πγl2p
√
∆)2/3sgn(v)|v|2/3 |v〉 , (105)

N̂µ̄ |v〉 = |v + 1〉 . (106)
With this we complete the description of the kinematical Hilbert space of FLRW cos-

mologies. In the next section (Sec. 5), I will present the standard regularisation procedure
of the Hamiltonian constraint in flat, homogeneous scenarios.
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5 The standard regularisation procedure

In this section, we will discuss the first step in the implementation of the quantum Hamil-
tonian constraint: the regularisation procedure. More precisely, we will discuss how the
Hamiltonian constraint is usually regularised in the context of flat, homogeneous LQC.
Throughout this thesis, I will refer to this procedure as the standard one, in the sense that it
is the one which has been extensively used in the community since the foundation of LQC.
However, we will see that this regularisation scheme differs from the one followed in LQG in
that it is based on a peculiarity of the kind of systems under consideration.

I want to begin by noting that the Hamiltonian constraint is the only nontrivial constraint
in homogeneous spacetimes. Indeed, the spatial diffeomorphism constraint is trivially satis-
fied owing to the spatial homogeneity of the cosmologies we are considering and the gauge
freedom has been eliminated once we have chosen a set of diagonal variables.

In LQG, the (gravitational part of the) Hamiltonian constraint Hgr is composed of two
distinct pieces: the Euclidean part HE and the Lorentzian part HL. The reason behind this
nomenclature is straightforward: its origin lies in the fact that the first piece (that is, the
Euclidean one) is the only one that appears in Euclidean gravity. Therefore, the second
piece is intimately related to the Lorentzian nature of gravitation.

Explicitly, Hgr(N) = N(HE +HL), with

HE =
1

16πG

∫
d3x e−1

∑
i,j,k

εijkE
a
i E

b
jF

k
ab , (107)

HL = −1 + γ2

8πG

∫
d3x e−1

∑
i,j

Ea
i E

b
jK

i
[aK

j
b]. (108)

Here, e =
√

|det(E)| =
√
h. Recall that the Ashtekar-Barbero connection is defined as the

sum of the spin connection and the triadic extrinsic curvature (multiplied by the Immirzi
parameter γ). Therefore, we have classically that γKi

a = Ai
a − Γi

a.
When the spatial sections are flat, the spin connection Γi

a vanishes identically and, then,
the Ashtekar-Barbero connection reduces to the triadic extrinsic curvature multiplied by
the Immirzi parameter. Moreover, for homogeneous cosmologies, the extrinsic curvature is
equal at all points of each spatial section (although it may vary under time evolution). This
implies that

∂aA
i
b = γ∂aK

i
b = 0. (109)

Thus, in the case of the symmetry reduced models we are considering (both of which are flat
and homogeneous), the curvature tensor of the Ashtekar-Barbero connection can be written
as

F k
ab = γ2

∑
l,m

εklmK
l
[aK

m
b] . (110)

As a result, when contracted with εijk, HL turns out to be proportional to HE. By virtue of
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5 THE STANDARD REGULARISATION PROCEDURE

Eq. (60),

16πGHE = γ2
∫
d3x e−1

∑
i,j,l,m

Ea
i E

b
j

(∑
k

εijkε
k
lm

)
K l

[aK
m
b]

= γ2
∫
d3x e−1

∑
i,j,l,m

Ea
i E

b
j (δ

i
lδ

j
m − δimδ

j
l )K

l
[aK

m
b]

= γ2
∫
d3x e−1

∑
i,j,l,m

Ea
i E

b
j (2δ

i
lδ

j
m)K

l
[aK

m
b]

= 2γ2
∫
d3x e−1

∑
i,j

Ea
i E

b
jK

i
[aK

j
b] = −8πG

2γ2

1 + γ2
HL,

⇒ HL = −1 + γ2

γ2
HE �. (111)

Then, when dealing with flat, homogeneous cosmologies; the gravitational Hamiltonian con-
straint can be written as being proportional to the Euclidean part alone.

Hgr(N) = N(HE +HL) = N

(
1− 1 + γ2

γ2

)
HE = −N

γ2
HE. (112)

Owing to this fact, the most common regularisation method in LQC has consisted in regu-
larising the Euclidean part and employing the identity above. I remark that it is only valid
in flat and homogeneous scenarios. Throughout this thesis, I will refer to this process as
the ‘standard regularisation procedure.’ In this section, I will sketch how this regularisation
scheme is implemented, reproducing the results obtained in the literature.

5.1 Standard Hamiltonian in Bianchi I cosmologies
We want to express the Euclidean part of the Hamiltonian constraint in terms of the
holonomies of the connection and the densitised triad. In order to achieve this objective, we
need to deal with the curvature tensor first. For this, we employ the so-called Thiemann
identities, which Thiemann devised in the context of LQG. These classical identities usually
involve the Poisson brackets of the holonomies with other quantities, as we will see. These
identities are inherited by LQC (together with the rest of techniques inspired by LQG)
and can be used in particular to regularise the curvature tensor. We will use the following
identity, valid in our diagonal model,

(BI)F i
ab = −2

∑
j,k

tr

(
hµ̄�jk

− δjk

4π2µ̄jµ̄k

τ i

)
δjaδ

k
b , (113)

where i 6= j 6= k. Besides,

hµ̄�jk
:= h

µ̄j

j h
µ̄k

k (h
µ̄j

j )−1(hµ̄k

k )−1 (114)

is the holonomy along a rectangular circuit whose sides (of coordinate lengths 2πµ̄i and
2πµ̄j) are oriented along the fiducial directions i and j, respectively.

For the sake of a complete illustration of the regularisation procedure, let us do this
computation in detail.
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The holonomies along an edge of fiducial length 2πµ̄i ∈ R oriented along the ith fiducial
direction is

hµ̄i

i = exp(µ̄ic
iτi) =

∞∑
n=0

(−i)n
(
µ̄ic

i

2

)2

σn
i

=
∞∑
n=0

(−1)nx̄2ni σ
2n
i − i

∞∑
m=0

(−1)mx̄2m+1
i σ2m+1

i , (115)

where x̄i = µ̄ic
i/2. Since σ2

i = I (where I is the 2×2 identity matrix), it follows trivially
that, by using the Taylor expansions of the sine and cosine functions,

hµ̄i

i = cos x̄iI− i sin x̄iσi. (116)

Writing this expression in components results in

hµ̄i

i =

(
cos x̄i − i sin x̄iδiδ − sin x̄i(δiσ + iδiθ)
sin x̄i(δiσ − iδiθ) cos x̄i + i sin x̄iδiδ

)
. (117)

From this, it follows that the determinant of hµ̄i

i is given by

det(hµ̄i

i ) = cos2 x̄i + sin2 x̄i
∑

j=θ,σ,δ

δij = cos2 x̄i + sin2 x̄i = 1 ∀ i. (118)

In conclusion, the inverse of hµ̄i

i is simply its adjoint

(hµ̄i

i )−1 = adj(hµ̄i

i ) =

(
cos x̄i + i sin x̄iδiδ sin x̄i(δiσ + iδiθ)
− sin x̄i(δiσ − iδiθ) cos x̄i − i sin x̄iδiδ

)
= cos x̄iI+ i sin x̄iσi. (119)

With these explicit expressions at hand, we are ready to compute the holonomy along a
rectangular circuit:

hµ̄�jk
= h

µ̄j

j [hµ̄k

k , (h
µ̄j

j )−1](hµ̄k

k )−1 + h
µ̄j

j (h
µ̄j

j )−1hµ̄k

k (hµ̄k

k )−1,

hµ̄�jk
− I = h

µ̄j

j [hµ̄k

k , (h
µ̄j

j )−1](hµ̄k

k )−1. (120)

Given that the cos x̄i in the holonomies appear together with the identity matrix, they will
not appear in the commutator. Hence,

hµ̄�jk
− I = sin x̄j sin x̄k h

µ̄j

j [σk, σj](h
µ̄k

k )−1

= −2i sin x̄j sin x̄k
∑
l

ε l
jk h

µ̄j

j σl(h
µ̄k

k )−1. (121)

Multiplying this by τ i = −iσi/2 and taking the trace yields

−tr
[
(hµ̄�jk

− I)τ i
]
= sin x̄j sin x̄k

∑
l

ε l
jk tr

[
h
µ̄j

j σl(h
µ̄k

k )−1σi
]
. (122)

There are three types of terms in this expression: the ones concerning the trace of two, three
or four Pauli matrices. Therefore, we will need the following identities:

tr(σiσj) = 2δij, (123)
tr(σiσjσk) = 2iεijk, (124)

tr(σiσjσkσl) = 2(δijδkl − δikδjl + δilδjk). (125)
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Using these, one arrives at

(BI)F i
ab =

1

π2

sin x̄a
µ̄a

sin x̄b
µ̄b

∑
l

ε l
ab

{
cos x̄a cos x̄bδ

i
l + ε i

al sin x̄a cos x̄b

− ε i
lb cos x̄a sin x̄b + sin x̄a sin x̄b(δalδ

i
b − δabδ

i
l + δiaδlb)

}
. (126)

Note that the only terms that do not vanish are those where a, b, and l are different from
one another. That means that the last term (the one that comes from the trace of four Pauli
matrices) identically vanishes. As a result, we have that the curvature tensor for a Bianchi
I cosmology can be written as

(BI)F i
ab =

1

π2

sin x̄a
µ̄a

sin x̄b
µ̄b

∑
l

ε l
ab (cos x̄a cos x̄bδ

i
l − ε i

la sin x̄a cos x̄b − ε i
lb cos x̄a sin x̄b)

=
1

4π2

sin 2x̄a
µ̄a

sin 2x̄b
µ̄b

ε i
ab +

1

2π2

(
sin 2x̄a
µ̄a

sin2 x̄b
µ̄b

δia −
sin2 x̄a
µ̄a

sin 2x̄b
µ̄b

δib

)
. (127)

The last two terms will not contribute to the computation of the Euclidean part of the
Hamiltonian constraint. It is easy to realise why. In Eq. (107), we see that HE is propor-
tional to the integral of

∑
a,b ε

ij
kE

a
i E

b
j
(BI)F k

ab. Owing to our choice of diagonal variables,
this quantity is proportional to εijk

(BI)F k
ij. Recall that the second and third terms of the

Bianchi I curvature tensor (which are proportional to δki and δkj , respectively) are symmetric.
Therefore, those contributions will vanish owing to the presence of the totally antisymmetric
symbol.

We are finally ready to compute the Euclidean part of the Hamiltonian constraint, HBI
E .

Owing to the spatial homogeneity of Bianchi I cosmologies, the integration will simply result
in the product of the integrand by the volume of the finite fiducial cell, (2π)3. Hence,

16πGHBI
E = (2π)3e−1

∑
i,j,k

εijk
pi
4π2

pj
4π2

(BI)F k
ij

=
e−1

2π

∑
i,j

pipj
1

4π2

sin 2x̄i
µ̄i

sin 2x̄j
µ̄j

∑
k

εijkε
k

ij

=
e−1

(2π)3

∑
i,j

(δiiδ
j
j − δijδ

j
i ) pi

sin 2x̄i
µ̄i

pj
sin 2x̄j
µ̄j

=
e−1

(2π)3

∑
i

pi
sin 2x̄i
µ̄i

∑
j

(1− δij) pj
sin 2x̄j
µ̄j

=
e−1

(2π)3

∑
i

pi
sin 2x̄i
µ̄i

∑
j 6=i

pj
sin 2x̄j
µ̄j

. (128)

It only remains to compute the determinant of the densitised triad:

det(E) = det


pθ

(2π)2
0 0

0
pσ

(2π)2
0

0 0
pδ

(2π)2

 =
pθpσpδ
(2π)6

,

e =
√

|det(E)| =
√
|pθpσpδ|
(2π)3

=
V

(2π)3
⇒ e−1

(2π)3
=

1

V
. (129)
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Using this result, the Euclidean part of the gravitational Hamiltonian in a Bianchi I
cosmology is

HBI
E =

1

16πG

1

V

∑
i

pi
sin µ̄ic

i

µ̄i

∑
j 6=i

pj
sin µ̄jc

j

µ̄j

, (130)

where we recall that µ̄i =
√

∆|pi|/
√

|pjpk|.
In the standard approach to LQC, the gravitational Hamiltonian is written only in terms

of the Euclidean part, as we saw before. This results in the gravitational Hamiltonian being

HBI
gr (N) = − N

16πGγ2
1

V

∑
i

pi
sin µ̄ic

i

µ̄i

∑
j 6=i

pj
sin µ̄jc

j

µ̄j

. (131)

5.2 Standard Hamiltonian constraint in FLRW cosmologies
In principle, we would have to carry out the same process presented above in an isotropic
scenario.

1. Use an appropriate Thiemann identity to express the curvature tensor in terms of the
holonomies. This typically involves the computation of a holonomy along a closed
circuit (this time, a square one). Indeed,

F i
ab = −2

∑
j,k

tr

(
hµ̄�jk

− δjk

4π2µ̄2
τ i

)
δjaδ

k
b , (132)

which is entirely analogous to the identity we employed in the anisotropic scenario.
2. Obtain the Euclidean part of the Hamiltonian constraint by introducing the result of

the previous computation in Eq. (107). For this, we make use of the form of the
densitised triad in FLRW cosmologies and of the spatial homogeneity.

3. Lastly, insert the Euclidean piece in Eq. (112) to obtain the standard regularised
gravitational Hamiltonian of a flat FLRW cosmology.

Nevertheless, it is immediate to realise that there is no need to go over the whole computation
again. Indeed, as I commented above, it is classically true that flat FLRW spacetimes are
the isotropic limit of Bianchi I cosmologies. Therefore, it suffices to set pi = p, ci = c and
µ̄i = µ̄ for all i ∈ {θ, σ, δ} in Eq. (130). If we do this,

∑
i

∑
j 6=i → 6, given that the six terms

in HBI
E are equal in the isotropic limit. In conclusion20,

HE =
3

8πGV

(
sgn(p)|p|sin(µ̄c)

µ̄

)(
sgn(p)|p|sin(µ̄c)

µ̄

)
. (133)

I choose to keep this structure explicitly (although there appears a sign function squared) to
facilitate the quantum representation of the Hamiltonian constraint according to the MMO
prescription in Sec. 7.

Finally, we can obtain the standard gravitational Hamiltonian constraint as before, using
that it is proportional to HE in spatially flat and homogeneous cosmologies:

Hgr = − 3N

8πGγ2
1

V

(
sgn(p)|p|sin(µ̄c)

µ̄

)(
sgn(p)|p|sin(µ̄c)

µ̄

)
. (134)

20Notice that I have omitted any reference to the fact that we are considering FLRW cosmologies to
simplify the notation.
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6 The full Hamiltonian constraint
Once we have reviewed the regularisation procedure of the Euclidean part of the Hamilto-
nian constraint, I will discuss in this section the regularisation of the Lorentzian part (108).
Together with the regularised Euclidean part constructed in Sec. 5, this will allow us to
write the full Hamiltonian constraint without relying on a peculiarity of the models under
consideration (namely, spatial flatness and homogeneity). After carrying out this computa-
tion in a Bianchi I cosmology, we will take the isotropic limit to obtain the full gravitational
Hamiltonian constraint in an FLRW cosmology, which we will proceed to quantise in Sec. 7.

6.1 Lorentzian part in Bianchi I cosmologies
We have seen in Sec. 5 that the Lorentzian part of the Hamiltonian constraint becomes
proportional to the Euclidean one in homogeneous scenarios and in absence of spatial cur-
vature. For this reason, the whole Hamiltonian constraint has usually been regularised (and
then quantised) as being proportional to HE. Nevertheless, as we will see in this section, the
imposition of symmetries and the regularisation scheme do not commute. In other words, the
result of regularising the most general Hamiltonian and imposing the symmetries afterwards
is not the same as the result presented above (in Eq. (131) for Bianchi I cosmologies or in
Eq. (134) for FLRW spacetimes). In this sense, it is interesting to study a regularisation
procedure which is closer to the one used in full LQG (where HE and HL are regularised
in a different manner). This would be enlightening inasmuch as it would give an insight
into a cosmological dynamics that actually lies closer to the one in LQG. In Sec. 8, we will
compare the effective cosmological dynamics arising from both models.

In the same way as the Euclidean part contains the curvature tensor, the Lorentzian
part is proportional to two powers of the triadic extrinsic curvature. Therefore, the regular-
isation procedure starts from a classical identity that allows us to reexpress Ki

a in terms of
holonomies. Indeed, it is based on the following identity:

Ki
a =

1

8πGγ3
{Ai

a, {HE, V }}. (135)

The Poisson bracket of the volume and the regularised Euclidean part for the Bianchi I
model can be written as

{HBI
E , V } = 8πGγ

∑
i

∂HBI
E

∂ci
∂V

∂pi
= 4πGγ

∑
i

sgn(pi)

√∣∣∣∣pjpkpi
∣∣∣∣∂HBI

E

∂ci

=
γ

2

∑
i

pi
sin 2x̄i
µ̄i

∑
j 6=i

cos 2x̄j, (136)

where i 6= j 6= k. Hence,

{Ai
a, {HBI

E , V }} = 8πGγ
∑
k

∂Ai
a

∂ck
∂

∂pk
{HBI

E , V } = 4Gγ
∂

∂pi
{HBI

E , V } δia

= 2Gγ2
sin 2x̄i
µ̄i

(∑
j 6=i

cos 2x̄j

)
δia. (137)

From this result, we conclude that the triadic extrinsic curvature can be expressed as

(BI)Ki
a =

1

8πGγ3
{Ai

a, {HBI
E , V }} =

1

4πγ

sin 2x̄i
µ̄i

(∑
j 6=i

cos 2x̄j

)
δia. (138)
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The Lorentzian part of the gravitational Hamiltonian of a Bianchi I cosmology can be
written as

HBI
L = −1 + γ2

2G

π

V

∑
i,j

pipj
(BI)Ki

[i
(BI)Kj

j], (139)

where the integral over the finite cell has already been performed. Inserting in this expression
the regularised triadic extrinsic curvature of Eq. (138) yields

HBI
L = −1 + γ2

γ2
1

64πG

1

V

∑
i,j

pipj(R
i
iR

j
j −Ri

jR
j
i ), (140)

where Ri
j = 4πγ (BI)Ki

j. By virtue of Eq. (138),

∑
i,j

pipj(R
i
iR

j
j −Ri

jR
j
i ) =

[∑
i

pi
sin 2x̄i
µ̄i

(∑
k 6=i

cos 2x̄k

)]2

−
∑
i

p2i
sin2 2x̄i
µ̄2
i

(∑
k 6=i

cos 2x̄k

)2

=
∑
i

pi
sin 2x̄i
µ̄i

(∑
k 6=i

cos 2̄xk

)∑
j 6=i

pj
sin 2x̄j
µ̄j

(∑
l 6=j

cos 2̄xl

)
. (141)

In conclusion, the regularised Lorentzian part is given by

HBI
L = − 1

64πG

1 + γ2

γ2
1

V

∑
i

pi
sin 2x̄i
µ̄i

∑
j 6=i

pj
sin 2x̄j
µ̄j

∑
k 6=i

cos 2x̄k
∑
l 6=j

cos 2x̄l. (142)

Finally, if we combine the Lorentzian part obtained above with the Euclidean part obtained
in the previous section, we arrive at the following expression for the gravitational Hamiltonian
regularised according to the modified procedure:

HBI
gr =

N

16πGV

∑
i

pi
sin µ̄ic

i

µ̄i

∑
j 6=i

pj
sin µ̄jc

j

µ̄j

{
1− 1 + γ2

4γ2

∑
k 6=i

cos µ̄kc
k
∑
l 6=j

cos µ̄lc
l

}
. (143)

As we will discuss thoroughly in the next section, the motivation for studying Bianchi
I cosmologies in this context was the identification of a natural symmetrisation structure
which is apparent in anisotropic scenarios. For this reason, it is crucial to emphasise that
the gravitational Hamiltonian presented above these lines is of the form

∑
N=1,2

[∑
i

sgn(pi)F (N)
i (|p|, c)

∑
j 6=i

sgn(pj)F (N)
j (|p|, c)

]
. (144)

For each value of i and N , the functions F (N)
i (|p|, c) only depend on the norm of the triad

variables |pl| and the three connection variables cl (with l = θ, σ, δ). Indeed, all the depen-
dence on the signs of the triad variables is factored out and contained in sgn(pi) sgn(pj).
Notice that this conclusion is valid both in the standard and in the modified regularisation
schemes (i.e., the Lorentzian part has the same sign structure as the Euclidean part).

Owing to the fact that the three spatial directions are in general not equivalent, sgn(pi)
needs not be equal to sgn(pj) if i 6= j. Therefore, sgn(pi)sgn(pj) 6= 1. Furthermore, the

36



6 THE FULL HAMILTONIAN CONSTRAINT

Poisson bracket of the sign of the triad variables with the connection variables is nonzero,
in general.

Based on these remarks, it seems natural to symmetrise the products of these variables
upon quantisation. Additionally, it also seems natural that the isotropic model inherits
this symmetrisation prescription, if we wish to regard FLRW cosmologies as the limit of
Bianchi I cosmologies where all the spatial directions behave in the same way. This choice of
symmetrisation and its preservation for isotropic situations is the cornerstone of the MMO
quantisation prescription, that I will use to represent the full Hamiltonian constraint in
Sec. 7. Other quantisation prescriptions (see, for instance, Ref. [36]) seek to rearrange the
commented products to obtain factors quadratic in signs, which would equal the unit in an
isotropic scenario.

6.2 Lorentzian part in FLRW spacetimes: the isotropic case
If we set ci = c, pi = p, and µ̄i = µ̄ for all spatial directions i, as we did in Secs. 4.2 and 5.2,
the isotropic limit of the Lorentzian part of the Hamiltonian constraint yields

HL = − 3

8πGV

1 + γ2

4γ2

(
sgn(p)|p|sin(2µ̄c)

µ̄

)(
sgn(p)|p|sin(2µ̄c)

µ̄

)
. (145)

Hence, the gravitational part of the Hamiltonian constraint for a flat FLRW cosmology is,
in fact, a difference of squares:

Hgr =
3N

8πGV

{(
sgn(p)|p|sin µ̄c

µ̄

)(
sgn(p)|p|sin µ̄c

µ̄

)
−1 + γ2

γ2

(
sgn(p)|p|sin 2µ̄c

2µ̄

)(
sgn(p)|p|sin 2µ̄c

2µ̄

)}
. (146)

Once again, I have chosen to keep the sign structure explicitly in spite of the classical nature
of the expression.

Notice that, for small µ̄ (or small ∆), this Hamiltonian equals at leading order the
standard LQC Hamiltonian constraint. Indeed,

Hgr ≈ − 3N

8πGγ2V

(
sgn(p)|p|sin µ̄c

µ̄

)(
sgn(p)|p|sin µ̄c

µ̄

)
(147)

when µ̄c � 1. Likewise, as expected, we retrieve the gravitational Hamiltonian constraint
of GR for isotropic and homogeneous cosmologies in the (classical) limit µ̄→ 0,

lim
µ̄→0

Hgr = HGR
gr = − 3N

8πGγ2
c2
√
|p|. (148)

In the light of these observations, we expect to recover the defining aspects and results of
standard (classical) cosmology and effective LQC in the limit of small minimum coordinate
length.

This remark appears to suggest that the inclusion of the Lorentzian term into the regu-
larisation scheme results in small modifications in the form of higher-order corrections to the
standard formalism in LQC. Therefore, at first glance, one may be led to expect no qualita-
tive changes in the dynamics. However, this conclusion is far from being correct. In fact, we
will show in Sec. 7 that the number of formal eigensolutions of this modified Hamiltonian
seems to be doubled compared to those of the standard gravitational Hamiltonian of LQC.
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7 The quantum Hamiltonian

The next step in the quantisation programme of LQC is the quantum representation of
the gravitational Hamiltonian constraint (146) by an operator that acts on the kinematical
Hilbert space of the system. As we noted in Sec. 2, there exist several sources of ambiguity
in this process. In other words, there are nonequivalent ways of quantising the system which
are a priori equally valid. One of these sources is the choice of a quantisation prescription or
factor ordering prescription, which becomes relevant when one wishes to represent a classical
expression composed by pieces that do not commute quantum mechanically.

In this section, we will quantise the gravitational Hamiltonian constraint derived in the
previous sections (in particular, in Secs. 5 and 6) according to the MMO prescription. For
this reason, we will begin by summarising the core features of this prescription. Then, we will
perform the actual quantisation and compute the action of the gravitational Hamiltonian
operator on the basis provided by the eigenstates of the volume operator, {|v〉}. Furthermore,
we will analyse the superselection sectors defined by the action of this operator. We will
close this section with a discussion of its generalised eigenstates.

7.1 The MMO quantisation prescription

In the MMO prescription, one selects a specific symmetric prescription, thereby removing
the factor ordering ambiguity in the quantum representation of the gravitational Hamilto-
nian constraint. The origin of this prescription lies in an exhaustive analysis of the loop
quantisation of Bianchi I cosmologies [46, 47], which motivates the fact that Bianchi I cos-
mologies have been the starting point of this thesis (having been treated in Secs. 4.1, 5.1 and
6.1). In these anisotropic scenarios, the signs of the triad variables (which are the reflection
of the orientation of the triad) play a central role. Indeed, due to the fact that the three
spatial directions behave differently, the product of two signs of the triad variables is not
necessarily equal to one. Consequently, the sign structure becomes apparent in anisotropic
scenarios. In this respect, FLRW cosmologies are different: since all three spatial directions
are identified, the product of two signs is classically equal to the unit. For this reason, if
we wish to regard Bianchi I cosmologies as the immediate anisotropic generalisation of flat
FLRW spacetimes, this issue must be accounted for in the quantum representation of the
Hamiltonian constraint. The MMO prescription is inspired by this observation.

To summarise, this quantisation prescription is based on two main rules concerning the
factor ordering ambiguity:

i) The products of powers of |̂p| and 1̂/
√
|p| with holonomies and signs of the triad

variables are ordered via an algebraic symmetrisation in the |p|-operators. In other
words, the powers of |̂p| and 1̂/

√
|p| (which are nonnegative operators) are reordered

in a symmetric fashion to the left and to the right.
ii) The products of the sign of p with the holonomies sinnµ̄c are symmetrised as

sinnµ̄c sgn(p) −→ 1

2

{
ŝinnµ̄c ŝgn(p) + ŝgn(p) ŝinnµ̄c

}
, (149)

for any integer n.
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By adopting these rules, it is easy to see that

|p|sgn(p)sinnµ̄c
µ̄

=
1√
∆

[
1√
|p|

]−1

|p| sgn(p) sinnµ̄c

i)−→ 1√
∆

[
1̂√
|p|

]−1/2 √̂
|p|( ̂sgn(p) sinnµ̄c)

√̂
|p|

[
1̂√
|p|

]−1/2

ii)−→ 1

2
√
∆

[
1̂√
|p|

]−1/2 √̂
|p|
(
ŝinnµ̄c ŝgn(p) + ŝgn(p) ŝinnµ̄c

) √̂
|p|

[
1̂√
|p|

]−1/2

, (150)

where
ŝinnµ̄c =

1

2i
(êinµ̄c − ê−inµ̄c) =

1

2i

(
N̂2nµ̄ − N̂−2nµ̄

)
. (151)

We introduce the convenient notation

Ω̂nµ̄ =
1

4i
√
∆

[
1̂√
|p|

]−1/2 √̂
|p|
[
(N̂nµ̄ − N̂−nµ̄) , ŝgn(p)

]
+

√̂
|p|

[
1̂√
|p|

]−1/2

, (152)

for any label n ∈ Z. In the previous expression, [ · , · ]+ denotes the anticommutator, defined
by [A ,B]+ = AB + BA. Then, following the factor ordering rules that characterise the
MMO prescription, we arrive at

|p| sgn(p) sin µ̄c

µ̄
−→ Ω̂2µ̄. (153)

As an immediate result, we represent the Euclidean part of the gravitational scalar constraint
by the operator

ĤE =
3

8πG

[
1̂

V

]1/2
Ω̂2

2µ̄

[
1̂

V

]1/2
. (154)

Notice that the inverse volume operator is ordered via an algebraic symmetrisation because
it only contains powers of 1̂/

√
|p|. Indeed,

1̂

V
=

[
1̂√
|p|

]3
(155)

and
1̂√
|p|

=
3

4πGγ
√
∆

ŝgn(p)
√̂
|p|
(
N̂−µ̄

√̂
|p|N̂µ̄ − N̂µ̄

√̂
|p|N̂−µ̄

)
, (156)

which is known to be self-adjoint (and nonnegative, as we have already commented) and
where

√̂
|p| is defined from Eq. (105) in the sense of the spectral theorem [5, 87], i.e.,√̂

|p| |v〉 := (2πγl2p
√
∆)1/3|v|1/3 |v〉 . (157)

Before proceeding to describe the quantisation of the Lorentzian part, I want to briefly
discuss the origin of the definition in Eq. (156). As with the curvature tensor, 1̂/

√
|p| is
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defined using a classical Thiemann identity as the starting point. It is straightforward to
verify that the following relation holds classically for any µ̄ ∈ R:

1√
|p|

=
1

2πGγ

sgn(p)
µ̄

∑
i

tr
(
τ ihµ̄i

{
(hµ̄i )

−1,
√
|p|
})

. (158)

From this identity, Eq. (156) can be derived easily. To do this: i) replace the Poisson bracket
by −i times the commutator, ii) recall that 1/µ̄ =

√
|p|/

√
∆, and iii) use the fact that the

Pauli matrices are traceless. I will skip the detailed calculation for the sake of brevity.
After making this matter clear, we can go back to quantising the Hamiltonian constraint.

It is obvious from Eq. (146) that the Lorentzian and Euclidean parts have identical structures
and, in fact, they coincide (up to constant multiplicative factors) if µ̄ is replaced by 2µ̄. As
a result of this similarity, both pieces will be represented by symmetric operators with the
same structure.

Then, owing to the observation in the previous paragraph, it is immediate to see that we
can represent HL by the operator [76]

ĤL = − 3

8πG

1 + γ2

4γ2

[
1̂

V

]1/2
Ω̂2

4µ̄

[
1̂

V

]1/2
. (159)

In conclusion, in the MMO prescription, the full gravitational Hamiltonian constraint
operator is [76]

Ĥgr(N) =
3N

8πG

[
1̂

V

]1/2{
Ω̂2

2µ̄ −
1 + γ2

4γ2
Ω̂2

4µ̄

}[
1̂

V

]1/2
. (160)

7.2 Action on the volume eigenbasis
Notice that, in our factor ordering prescription, the Hamiltonian constraint operator has
powers of 1̂/

√
|p| both to the left and to the right21. Therefore, when the Hamiltonian

constraint acts on any given state, the operator 1̂/
√
|p| (or, rather, a power thereof) is the

first and the last to act on the state. Using the definitions in Eqs. (97), (156) and (157); let
us compute its action on a generic volume eigenstate |v〉:

1̂√
|p|

|v〉 = 3

4πGγ
√
∆

ŝgn(p)
√̂

|p|
(
N̂−µ̄

√̂
|p| |v + 1〉 − N̂µ̄

√̂
|p| |v − 1〉

)
=

3

2(2πGγ
√
∆)2/3

(
|v + 1|1/3 − |v − 1|1/3

)
ŝgn(p)

√̂
|p| |v〉

=
3

2(2πGγ
√
∆)1/3

|v|1/3
∣∣∣∣|v + 1|1/3 − |v − 1|1/3

∣∣∣∣ |v〉 , (161)

which follows from the fact that sgn(v) = sgn
(
|v + 1|1/3 − |v − 1|1/3

)
, as can be verified

easily.
From the action computed above, we realise that the operator (161) is diagonal in the

|v〉-basis and, therefore, it indeed commutes with v̂. Moreover, we see that the eigenstate

21Recall that the inverse volume operator is defined as the cube of 1̂/
√
|p|. See Eq. (155).
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of vanishing volume |v = 0〉 (that is, the quantum analogue of the classical singularity) is
annihilated, and that it provides the entire kernel of the introduced operator. Furthermore,
given that its action is diagonal, the orthogonal complement of |v = 0〉 (hereafter referred
to as H̃kin

grav) is left invariant. Together with the fact that the inverse volume operator is
at the left and right ends of Ĥgr, this means that we can restrict the quantum constraint
to H̃kin

grav in a well-defined manner. Notice that we can (and will) do so because we are
interested in finding nontrivial solutions of the Hamiltonian constraint. Therefore, as a
result of the factor ordering that characterises the MMO prescription, the quantum analogue
of the singular state decouples and we can search for nontrivial physical solutions in its
orthogonal complement22. It is in this sense that one often says that the classical singularity
is cured already at the kinematical level in the MMO prescription23. However, the singularity
resolution is something even stronger: the quantum dynamics of any semiclassical universe
is found to be nonsingular (in the sense that no physical observable diverges in the region
where the classical singularity is found). Although I will not perform the whole numerical
simulation owing to the lack of space (the numerical results in standard LQC can be found
in Refs. [35] and [36]), we will see how the singularity no longer occurs in the effective
dynamics approach in Sec. 8.

After the removal of the kernel of the inverse volume operator, we can define a densitised
version of the constraint, Ĥgr. The experience accumulated in the study of other cosmo-
logical settings tells us that the physical states are, in general, not renormalisable in the
kinematical Hilbert space (this is due to the fact that the vanishing eigenvalue of the con-
straint operator belongs to the continuous spectrum). Therefore, we consider a larger space
instead. There exists a choice that is natural in what concerns the gravitational part of the
system: the completion of the algebraic dual of C̃ylS [37]. The next step is finding a one-to-
one correspondence between any 〈φ| annihilated by the adjoint of Ĥgr and the corresponding
〈φ′| = 〈φ| [1̂/V ]1/2, which is annihilated by the adjoint of the densitised constraint

Ĥgr(N) =
3N

8πG

{
Ω̂2

2µ̄ −
1 + γ2

4γ2
Ω̂2

4µ̄

}
. (162)

Henceforth, when I say ‘Hamiltonian constraint’ or simply ‘Hamiltonian’, I will be referring
to this densitised operator in all cases. For this reason, I omit any additional specifications
in the following.

In the light of the expression of the Hamiltonian, the computation of its action on any
given state |v〉 is determined once we compute the action of the operators Ω̂2

nµ̄ for n = 2, 4
(which encode the functional form of the Euclidean and Lorentzian parts, respectively).
Some definitions facilitate enormously such computation:

g(v) =


0 if v = 0,∣∣∣∣ ∣∣∣∣1 + 1

v

∣∣∣∣1/3− ∣∣∣∣1− 1

v

∣∣∣∣1/3∣∣∣∣−1/2

if v 6= 0,
(163)

s
(n)
± (v) = sgn(v) + sgn(v ± n), (164)

f
(n)
± (v) =

πGγ

3
g(v)s

(n)
± (v)g(v ± n). (165)

22Note that H̃kin
grav is merely the completion of C̃ylS = span{|v〉 , v 6= 0} with respect to the discrete inner

product 〈v|v′〉 = δv,v′ .
23 We are assuming that the inclusion of a matter contribution to the constraint does not alter this

conclusion.
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We notice that f (n)
± (v ∓ n) = f

(n)
∓ (v).

Let us begin by obtaining the action of Ω̂nµ̄ on an arbitrary volume eigenstate. Using
Eq. (152) and the functions defined above yields

Ω̂nµ̄ |v〉 = −i
[
f
(n)
+ (v) |v + n〉 − f

(n)
− (v) |v − n〉

]
. (166)

The action of Ω̂2
nµ̄ follows trivially:

Ω̂2
nµ̄ |v〉 =− f

(n)
+ (v)f

(n)
+ (v + n) |v + 2n〉

+

{[
f
(n)
+ (v)

]2
+
[
f
(n)
− (v)

]2}
|v〉 − f

(n)
− (v)f

(n)
− (v − n) |v − 2n〉 . (167)

Considering that the volume eigenstates provide an orthonormal basis of the kinematical
Hilbert space H̃kin

grav, the action of the Hamiltonian constraint is completely characterised by
the equation above.

Particularising for n = 2, we obtain the action of the Euclidean part of the Hamiltonian
(up to constant multiplicative factors). We realise that it either preserves the label of the
state it acts upon or produces shifts of four units (towards either smaller or larger volumes).
A similar behaviour is displayed by the Lorentzian part (n = 4). However, instead of shifts
of four units, it gives rise to shifts of eight units. In conclusion, owing to the fact that
the volume representation is discrete, the action of the full Hamiltonian constraint on a
certain volume eigenstate |v〉 can be cast as an equation in finite differences that relates five
eigenstates: |v〉, |v ± 4〉 and |v ± 8〉.

Notice that this conclusion is in contrast with that found using the standard regularisation
procedure. Indeed, since only the Euclidean part intervenes in such a case, the action of the
Hamiltonian constraint results in an equation in finite differences that relates a total of three
volume eigenstates instead. This difference will have important consequences, as we will see
later on.

7.3 Superselection sectors
In standard LQC, we obtain that certain Hilbert subspaces are invariant under the action
of the Hamiltonian constraint (including the matter term) and of the relevant physical ob-
servables (see Refs. [34, 35, 36, 88, 89, 90]), which results in the existence of superselection
sectors. The details about these superselection sectors partially depend on the prescription
used to represent the Hamiltonian constraint. For instance, the superselection sectors found
with the prescription of Ref. [36] are the Hilbert spaces with support on (discrete) lattices
of step four. In the case of the MMO prescription, the superselection sectors turn out to
be simpler. The choice of factor ordering that characterises the prescription results in the
decoupling of the positive and negative semilattices [37]. In other words, no eigenstate be-
longing to the positive semilattice (that is, v > 0) will be sent to the negative one by the
action of the Hamiltonian constraint and vice versa. Therefore, the Hamiltonian superse-
lects dicrete semilattices of step four, as opposed to entire lattices. This feature is usually
regarded as one of the strengths of the prescription we are discussing in this thesis. This
subsection will be devoted to verifying whether this nice feature is still present when the
Hamiltonian is regularised according to the modified procedure.

At least, the superselection sectors are ensured not to be more complicated than the ones
appearing in standard isotropic LQC: discrete lattices of step four are left invariant under
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the action of Ĥgr. This is due to the fact that the Lorentzian term has the same structure
as the Euclidean one but it produces shifts twice as large, leading to eigenstates which still
belong to the same lattice (two points away instead of one, though).

In fact, we can see that simpler Hilbert spaces are superselected. This is a result of some
very special properties of the coefficients f (n)

± (v)f
(n)
± (v ± n). In the light of the definition in

Eq. (165), it can be shown that

f
(n)
+ (v)f

(n)
+ (v + n) = 0 ∀ v ∈ [−2n, 0),

f
(n)
− (v)f

(n)
− (v − n) = 0 ∀ v ∈ (0, 2n].

(168)

These identities hold because the combination f (n)
± (v)f

(n)
± (v ± n) is trivially proportional to

s
(n)
± (v)s

(n)
± (v ± n), which vanishes when v belongs to the intervals detailed above.

This result shows that the discrete lattices of step four actually split into two sepa-
rate semilattices under the action of Ĥgr. This implies that the decoupling of the positive
and negative semilattices takes place in this setting as well. Hence, the superselection sec-
tors are Hilbert spaces with support on the positive or negative discrete semilattices. In
a more precise fashion, the superselection sectors (to which we will refer as H±

ε ) are given
by the (Cauchy) completion with respect to the discrete inner product 〈v|v′〉 = δv,v′ of
Cyl±ε = span{|v〉 , v ∈ L±

ε }, L±
ε being semilattices of step four:

L±
ε = {v = ±(ε+ 4n), ε ∈ (0, 4], n ∈ N}. (169)

Note that we can write the nonseparable kinematical Hilbert space H̃kin
grav as the direct sum

of separable subspaces H̃kin
grav = ⊕ε(H+

ε ⊕H−
ε ).

The fact that the superselection sectors are Hilbert spaces supported on semilattices
is a direct consequence of the properties in Eq. (168). In turn, these identities hold (as
I have commented above) owing to the precise combination of signs of the triad variable,
which results from the special symmetrisation of the Hamiltonian constraint that is dictated
by the MMO prescription. Therefore, we conclude that the simplicity of the superselection
sectors H±

ε is originated from the specific way in which we have treated the orientation of the
triad: it is a key feature of the prescription, which is de facto robust under the modification
of the regularisation procedure that we have considered in this work.

7.4 Generalised eigenfunctions
In standard loop quantum FLRW cosmologies, the Hamiltonian constraint operator has been
shown to be essentially self-adjoint [89, 37] or, at least, to admit self-adjoint extensions.
Furthermore, its continuous spectrum is generally nonempty. In the case of modified LQC,
it has been shown very recently that the gravitational part of the modified Hamiltonian
constraint admits a family of self-adjoint extensions [69]. However, this has been shown
by restricting the analysis to the semilattice starting at ε = 4 and decoupling by hand
the eigenstate of vanishing eigenvolume24. The other semilattices lead to some technical
difficulties in the proof but the same result is expected to hold for them.

Bearing this caveat in mind, let us concentrate on the continuous part of the spectrum
of the Hamiltonian constraint and study the form of its generalised eigenstates. Let

|eελ〉 =
∑
v′∈L±

ε

eελ(v
′) |v′〉 ,

[
Ω̂2

2µ̄ −
1 + γ2

4γ2
Ω̂2

4µ̄

]
|eελ〉 = λ |eελ〉 , (170)

24This is needed because the authors use the prescription of Ref. [36], where the singular state does not
decouple naturally at the kinematical level.
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be a generalised eigenstate corresponding to the eigenvalue 3Nλ/8πG. It should be noted
that ε is fixed in the previous expression. Given that we can restrict our analysis to any
superselection sector without loss of generality, I choose the one with support on the positive
semilattice L+

ε (with ε fixed).
Taking the inner product of Ĥgr |eελ〉 with 〈v|, we can find an equation relating the

values of the generalised eigenfunction eελ at five points in the semilattice. Notably, when
the Hamiltonian constraint acts upon the volume eigenstate which is the closest to the origin
(that is, the one with eigenvolume v = ε), the relation that we are discussing does not involve
five values but only three —namely; eελ(ε), eελ(ε+4) and eελ(ε+8). This is a direct consequence
of the properties (168) examined above: the two other values that would in principle appear
in the relation —eελ(ε − 4) and eελ(ε − 8)— lie in the negative semilattice25 and, therefore,
they do not contribute (their respective coefficients vanish). As a conclusion, the value of
the eigenfunction at the third point of the semilattice is uniquely determined once we give
eελ(ε) and eελ(ε+4), as long as |eελ〉 is required to be a generalised eigenstate of the quantum
Hamiltonian.

The picture changes when we displace the action of the Hamiltonian to the next point
in our semilattice, that is, v = ε+4. This time, the relation will involve four values (indeed,
v − 4 = ε > 0 lies in the positive semilattice now). As a result, we will obtain a (linear)
relation between eελ(ε), eελ(ε + 4), eελ(ε + 8), and eελ(ε + 12). Recall that three of these are
already fixed (the first two specified by us and the third determined by the fact that |eελ〉 is
an eigenstate of Ĥgr). Therefore, the fourth is fixed as well by this relation. Notice that we
can extend this reasoning ad infinitum. This argument makes us conclude that the values
of the generalised eigenfunction eελ at all points in the semilattice are fixed once we give the
two first values. Therefore, only two pieces of data are undetermined, in principle.

It is important to emphasise that this result contrasts with the one found in standard
LQC with the MMO quantisation prescription. When the standard renormalisation proce-
dure is considered, the densitised Hamiltonian constraint only contains the operator Ω̂2

2µ̄,
which relates three values of the generalised eigenfunction. Then, when we particularise
for v = ε, ẽελ(ε − 4) does not appear in the relation and only the values at two points
are involved26. As a result, fixing one of them freely suffices to determine completely the
generalised eigenfunction (this can be seen following a reasoning entirely equivalent to the
one discussed in the previous paragraph). Therefore, instead of two, there is one piece of
data available in the construction, which can be absorbed up to a phase by appropriately
normalising the generalised eigenfunction [37].

In the light of this comparison between our results and the standard results in the poly-
meric quantisation of flat FLRW spacetimes, we are in the position of concluding what is
the dynamical effect of considering a modification of the Hamiltonian constraint: the num-
ber of formal solutions is increased. Owing to this key difference, we argue in Ref. [76]
that the inclusion of the Lorentzian term results in more than a simple modification of
the details of the solutions found using the standard approach: new formal eigensolutions
emerge from our modified regularisation procedure. This is the reflection of the appearance
of de Sitter branches of Planckian curvature in the Dapor-Liegener model, analysed in Refs.
[67, 73, 70, 71, 91], which alter the self-adjointness properties of the Hamiltonian operator
[69].

To close this analysis of the quantum Hamiltonian, I will derive a closed expression that
allows us to compute the eigenfunction at any point in the semilattice once its values at the

25Recall that ε ≤ 4 and |v = 0〉 /∈ H̃kin.
26By ẽελ(v) := 〈v|ẽελ〉 I refer to the eigenfunction associated with a generalised eigenstate of Ω̂2

2µ̄, |ẽελ〉.
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two first points are given. By reason of the size of such an expression, it is convenient to
define the following functions,

F 0
λ (v) =

4γ2

1 + γ2

λ−
{[
f
(2)
+ (v)

]2
+
[
f
(2)
− (v)

]2}
f
(4)
− (v + 8)f

(4)
− (v + 4)

+

[
f
(4)
+ (v)

]2
+
[
f
(4)
− (v)

]2
f
(4)
− (v + 8)f

(4)
− (v + 4)

, (171)

F±4(v) =
4γ2

1 + γ2
f
(2)
∓ (v ± 4)f

(2)
∓ (v ± 2)

f
(4)
− (v + 8)f

(4)
− (v + 4)

, (172)

F−8(v) = −f
(4)
+ (v − 8)f

(4)
+ (v − 4)

f
(4)
− (v + 8)f

(4)
− (v + 4)

. (173)

These definitions are not arbitrary. If we write down explicitly the generalised eigenvalue
equation of the densitised Hamiltonian constraint (leaving out the constant prefactors),
project it on |v〉, and divide the whole equation by the coefficient of eελ(v + 8); the result is

eελ(v + 8) = F+4(v)eελ(v + 4) + F 0
λ (v)e

ε
λ(v) + F−4(v)eελ(v − 4) + F−8(v)eελ(v − 8). (174)

In terms of the functions (171)-(173) that we just defined, we can write the value of a
generalised eigenfunction at any point of the semilattice L+

ε as27

eελ(ε+ 4n) =
∑
m=0,1

∑
O(m→n)

∏
{rm}

F+4[ε+ 4(rm − 1)]
∏
{s}

F 0
λ [ε+ 4s]

×
∏
{t}

F−4[ε+ 4(t+ 1)]
∏
{u}

F−8[ε+ 4(u+ 2)]

 eελ(ε+ 4m). (175)

In the above expression, O(p → q) is the set of paths connecting two points p and q on a
semilattice of step one that contain jumps of one, two, three, or four units. Such paths are
understood as sets of intermediate points between p and q. Let {r}, {s}, {t}, and {u} be the
subsets of these intermediate points such that, in a given path, they are followed by jumps
of one unit, two units, three units, and four units, respectively.

For clarity, let us write down explicitly a simple example. Consider the case where p = 0
and q = 3. There is a total of four possible paths if we allow jumps of one, two, three, and
four units: i) a jump of three units directly from 0 to 3; ii) a jump of two units from 0 to 2
and, then, a jump of one unit from 2 to 3; iii) a jump of one unit from 0 to 1 followed by a
jump of two units from 1 to 3; and iv) three consecutive jumps of one unit. Once we have
identified all the possible paths connecting p and q, we can write down the sets {r}, {s},
{t}, and {u} for each of them. Given that no jump of four units can be performed in the
example under consideration, {u} is the empty set for the four paths. The remaining sets
are detailed below.

i) {r} = ∅, {s} = ∅, and {t} = {0} (this path contains a single jump of three units
starting from the point 0).

ii) {r} = {2}, {s} = {0}, and {t} = ∅ (there is a jump of two units starting from 0 and,
then, a jump of one unit starting from the target of the previous jump, i.e., from the
point 2).

27A similar expression can be found for case of the superselection sectors with support on the negative
semilattices.
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iii) {r} = {0}, {s} = {1}, and {t} = ∅.
iv) {r} = {0, 1, 2}, {s} = ∅ and, {t} = ∅.

We note that there is an important difference in Eq. (175) as far as {r} is concerned.
Indeed, we must distinguish the case of the paths starting at 0 (i.e., {r0}) from the case of
the paths that start at 1 (i.e., {r1}). In fact, the point 0 cannot belong to {r0}, whereas
1 may reside in {r1}. The reason why is straightforward: if 0 did belong to {r0}, it would
imply that there exists a path connecting the integers 0 and 1. Then, substituting n = 1
in Eq. (175), we would obtain that the value of the eigenfunction at ε + 4 would directly
depend on the value at ε:

eελ(ε+ 4) = F+4(ε− 4)eελ(ε). (176)

This would mean that the number of pieces of data that are available to us is reduced back
to one. However, this conclusion is in contradiction with the argument above, which proves
that 0 /∈ {r0}.

Being mindful of this peculiarity, the closed expression (175) allows us to analytically
obtain the values of the generalised eigenfunction corresponding to any given eigenvalue at
an arbitrary (finite) point of the semilattice under consideration (depending on the superse-
lection sector to which we restrict our study). In practice, this can be achieved by identifying
all the possible paths that link the integers 0 and 1 with other integers. The fact that we
can compute the gravitational generalised eigenfunctions exactly is an especially attractive
feature of the MMO prescription: it can be done in standard LQC and we have shown that it
is still possible when the Hamiltonian is modified in the manner we have been discussing. In
this respect, our results are in sharp contrast with the options existing when other prescrip-
tions are chosen. In Ref. [36], where the other predominant prescription is employed, the
gravitational eigenfunctions were obtained in an iterative way and computed numerically28.

28Moreover, the authors of this work considered the standard regularisation procedure, which implies that
our results are more potent even when considering a more complicated gravitational Hamiltonian.
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8 Effective cosmological dynamics
In this final section, we will compare the different effective cosmological dynamics aris-
ing from classical GR, standard LQC, and modified LQC (mLQC). Although the effective
dynamics of these models has been discussed to some extent in several references, I will
essentially reproduce some of the results from Ref. [70]. To achieve this purpose, I will
compute the time evolution of certain physical quantities (the volume, the energy density,
and the Hubble parameter) using the effective Hamiltonian as the generator of the evolution.
In this context, by effective Hamiltonian I refer to the result of substituting each operator
by its classical counterpart (in terms of holonomies and densitised triads) in the quantum
Hamiltonian. Once the effective equations of motion are explicitly obtained for each case, I
will integrate them numerically with the help of Mathematica. This will hopefully provide
a clearer visualisation of how the physical cosmological picture is modified with respect to
the one in classical GR, in particular as far as the resolution of the Big Bang singularity is
concerned29.

I would like to begin by writing down explicitly the effective Euclidean and Lorentzian
parts of the Hamiltonian. For this purpose, it suffices to take the expressions of Eqs. (133)
and (145):

Heff
E =

3V

8πGλ2
sin2(λb), (177)

Heff
L = − 3V

8πGλ2
1 + γ2

4γ2
sin2(2λb), (178)

where b = c/|p|1/2 (recall as well that the physical volume of the Universe is given by
V = |p|3/2). We introduce here the notation λ :=

√
∆ for convenience. From the definition

of the variable b, we obtain

{b, V } =
8πGγ

3

∂b

∂c

dV

dp
=

8πGγ

3
|p|−1/2d|p|3/2

dp
= 4πGγ. (179)

Since they provide a pair of canonical variables, we will use b and V to describe the classical
phase space. With these ingredients we are ready to construct the effective gravitational
Hamiltonian, both in the standard and in the modified cases.

Nevertheless, this is not yet enough. Since an empty FLRW cosmology has trivial dy-
namics, we will consider an extra term in the Hamiltonian coming from the matter content.
For this purpose, we select the simplest matter content that yields a nontrivial evolution: a
massless scalar field, φ. The corresponding Hamiltonian is given by [70]

Hmatter =
π2
φ

2V
, (180)

where πφ is the canonical momentum associated with φ, and {φ, πφ} = 1. At this point, we
can write down the effective Hamiltonian Heff

gr +Hmatter for each case (GR, LQC, and mLQC)
and proceed to the computation of the effective equations of motion. It should be noted that
the only difference between each of the cases lies in the gravitational sector. For this reason,

29Notice that the relevance of this discussion rests on two assumptions. The first of them is the existence
of physical states with a suitable semiclassical behaviour at large volumes. The second one has to do with
the effective dynamics being a good approximation to the underlying fully quantum dynamics. The latter is
supported by extensive numerical simulations in the past decades (see, for instance, Refs. [35, 36]).
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the equations of motion of the matter sector are common to all of them. Computing the
time evolution following the method discussed in Sec. 2 results in

π̇φ = {πφ, Heff} = −∂H
eff

∂φ
= −∂Hmatter

∂φ
= 0 ⇒ πφ = π0

φ, (181)

φ̇ = {φ,Heff} =
∂Heff

∂πφ
=
∂Hmatter

∂πφ
=
π0
φ

V
, (182)

where π0
φ is a constant that labels different solutions and ẋ represents the derivative of a

dynamical variable x with respect to the cosmic time t.

8.1 Effective equations of motion in modified LQC
The effective Hamiltonian constraint (whose gravitational contribution has been regularised
according to the modified scheme) can be written as

Heff
mLQC =

3V

8πGλ2

[
sin2(λb)− 1 + γ2

4γ2
sin2(2λb)

]
+

(π0
φ)

2

2V
. (183)

The effective equations of motion can be obtained in a straightforward manner. Let us begin
by computing the time evolution of the physical volume:

V̇ = {V,Heff
mLQC} = −4πGγ

∂Heff
mLQC

∂b

= −4πGγ
3V

8πGλ2

[
λ sin(2λb)− 1 + γ2

γ2
λ sin(2λb) cos(2λb)

]
=

3V

2γλ
sin(2λb)

[
(1 + γ2) cos(2λb)− γ2

]
. (184)

The effective equation of motion associated with b is given by

ḃ = {b,Heff
mLQC} = 4πGγ

∂Heff
mLQC

∂V

= 4πGγ
3

8πGλ2

[
sin2(λb)− 1 + γ2

4γ2
sin2(2λb)

]
− 4πGγ

(π0
φ)

2

2V 2

=
3

2γλ2
sin2(λb)

[
γ2 − (1 + γ2) cos2(λb)

]
− 2πGγ

(
π0
φ

V

)2

=
3

2γλ2
sin2(λb)

[
γ2 sin2(λb)− cos2(λb)

]
− 2πGγ

(
π0
φ

V

)2

. (185)

Note that the last term comes from ∂Hmatter/∂V and, thus, it is the same for all the regu-
larisations of the gravitational Hamiltonian.

8.2 Effective equations of motion in standard LQC
The effective Hamiltonian in this case is the one whose gravitational contribution is purely
Euclidean. Therefore,

Heff
LQC = − 3V

8πGγ2λ2
sin2(λb) +

(π0
φ)

2

2V
. (186)
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In this model, the time evolution of the physical volume is given by

V̇ = {V,Heff
LQC} = −4πGγ

∂Heff
LQC

∂b

= 4πGγ
3V

8πGγ2λ2
λ sin(2λb)

=
3V

2γλ
sin(2λb). (187)

Similarly, the time evolution of the variable b is

ḃ = {b,Heff
mLQC} = 4πGγ

∂Heff
mLQC

∂V

= −4πGγ
3

8πGγ2λ2
sin2(λb)− 2πGγ

(
π0
φ

V

)2

= − 3

2γλ2
sin2(λb)− 2πGγ

(
π0
φ

V

)2

. (188)

8.3 Effective equations of motion in GR
As we have already done in Sec. 6.2, we can take the (classical) limit λ → 0 in order to
recover the results for symmetry reduced GR (that is, homogeneous and isotropic GR). Using
this strategy, we obtain the effective Hamiltonian

Heff
GR = − 3V b2

8πGγ2
+

(π0
φ)

2

2V
. (189)

Instead of going through the computation of the Poisson brackets once more, we can
directly take the classical limit of the effective equations of motion obtained in the two
previous subsections (the classical limit of both sets of equations coincide, naturally). The
result of this limit is presented below these lines:

V̇ =
3

γ
V b, (190)

ḃ = −3b2

2γ
− 2πGγ

(
π0
φ

V

)2

. (191)

It is also interesting to discuss the physical meaning of b in this scenario, where it becomes
transparent. Let a be the scale factor of the Universe (in my conventions, the scale factor
today, a0, is taken to be one). In terms of a, the volume of the Universe can be written as
V = V0a

3, where V0 is the physical volume of the Universe today. From the scale factor, one
usually defines the Hubble parameter H = ȧ/a, which measures the expansion rate of the
Universe. It is trivial to write H in terms of the physical volume instead. One finds

H =
V̇

3V
=
b

γ
, (192)

where the last equality follows from Eq. (190). Therefore, we can think of b as a variable that
measures the expansion rate of the Universe, and that coincides with the Hubble parameter
up to a factor of γ.

49



8 EFFECTIVE COSMOLOGICAL DYNAMICS

8.4 Numerical integration and plots
In the previous subsections, we have explicitly computed the effective equations of motion
governing the cosmological dynamics in GR, LQC and mLQC30. These provide three systems
of coupled ordinary differential equations. To solve them, we need to give an appropriate
number of initial conditions. Owing to the fact that they are first-order differential equations,
we only need to provide a value of V (ti) and b(ti) for a suitably chosen ti that will serve as
the initial time in our simulations.

Nonetheless notice that, once the constant π0
φ is given, Vi ≡ V (ti) and bi ≡ b(ti) cannot

be chosen independently: once one is fixed, the other is as well if the Hamiltonian constraint
is to be satisfied! In the following, we will choose Vi and fix bi in such a way that the
Hamiltonian constraint vanishes.

Let us consider the equations of modified LQC. The condition that the constraint is
satisfied at ti is given by

0 =
3Vi

8πGλ2

[
sin2(λbi)−

1 + γ2

4γ2
sin2(2λbi)

]
+

(π0
φ)

2

2Vi
,

0 = sin2(λbi)

[
1− 1 + γ2

γ2
cos2(λbi)

]
+

8πGλ2

3

(π0
φ)

2

2V 2
i

,

0 = sin2(λbi)
[
(1 + γ2) sin2(λbi)− 1

]
+

8πGγ2λ2

3
ρi,

0 = (1 + γ2) sin4(λbi)− sin2(λbi) +
8πGγ2λ2

3
ρi,

sin2(λb±i ) =
1±

√
1− ρi/ρ̃c

2(1 + γ2)
. (193)

Therefore, there are two branches of solutions, one corresponding to b+i and the other corre-
sponding to b−i . In Eq. (193), ρi and ρ̃c are defined as

ρi =
(π0

φ)
2

2V 2
i

, (194)

ρ̃c =
3

32πG∆γ2(1 + γ2)
, (195)

and have units of energy density. Indeed, it is immediate to see that the energy density can
be defined from the matter Hamiltonian as

ρ =
Hmatter

V
=

(π0
φ)

2

2V 2
. (196)

As a result, we realise that ρi is nothing but ρ(ti).
On the other hand, ρ̃c has the meaning of a critical density. Inserting γ = 0.2375 and

using the usual value of ∆, we obtain ρ̃c ≈ 0.10ρp (where ρp = G−2 is the Planck density). We
can interpret ρ̃c physically by computing the time derivative of ρ when ρ = ρ̃c = (π0

φ)
2/(2Ṽ 2

c ):

ρ̇
∣∣
ρ=ρ̃c

= −
(
π0
φ

Vc

)2
V̇

V
= −

(
π0
φ

V

)2
3

2γλ
sin
(
2λb̃c

)
[(1 + γ2) cos

(
2λb̃c

)
− γ2], (197)

30In practice, we are going to dispense with the equation of motion corresponding to φ. Hence, only the
ones associated with V and b will be integrated numerically.
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where b̃c is fixed by the requirement that Heff

∣∣
ρ=ρ̃c

= 0. From a relation similar to Eq. (193)
(derived from the fact that the Hamiltonian must vanish at all times), it follows that

sin2(λb̃c) =
1

2(1 + γ2)
, (198)

cos
(
2λb̃c

)
= cos2(λb̃c)− sin2(λb̃c) = 1− 2 sin2(λb̃c) = 1− 1

1 + γ2
=

γ2

1 + γ2
. (199)

Hence, (1 + γ2) cos
(
2λb̃c

)
− γ2 = 0 and ρ̇

∣∣
ρ=ρ̃c

= 0. In conclusion, ρ̃c is either a maximum
or a minimum of the energy density. It can be shown that, in the physical branch, ρ̃c is a
global maximum (this implies, in turn, that the volume is bounded below, as can be seen in
Eq. (197)). The ‘physical branch’ is defined as the branch (either the b+i -one or the b−i -one)
which describes an expanding universe for t = ti. Thus, we can determine which branch is
the physical one by requiring V̇ (ti) > 0. Using Eq. (184) at t = ti, we obtain

V̇ (ti) > 0 ⇒ 0 < (1 + γ2) cos
(
2λb±i

)
− γ2,

γ2

1 + γ2
< cos

(
2λb±i

)
= cos2(λb±i )− sin2(λb±i ) = 1− 2 sin2(λb±i ),

γ2

1 + γ2
< 1−

1±
√

1− ρi/ρ̃c
1 + γ2

= 1− 1

1 + γ2
∓
√

1− ρi/ρ̃c
1 + γ2

,

0 < ∓
√

1− ρi/ρ̃c
1 + γ2

. (200)

This result makes us conclude that only the lower sign yields an expanding universe at t = ti.
Therefore, the physical branch is the one corresponding to b−i .

At this point of the discussion, we are in a position to give a complete set of initial
conditions. Following the authors in Ref. [70], we will select π0

φ = 1, ti = 11.5 lp, and
ρi = 10−4ρp. The corresponding b−i is

b−i =
1

λ
sin−1

√
1−

√
1− ρi/ρ̃c

2(1 + γ2)
≈ 6.9 · 10−3. (201)

Notice that we can set π0
φ = 1 without loss of generality because all the dependence on

π0
φ of the equations of motion happens through π0

φ/V . Thus, π0
φ can be put to one by an

appropriate rescaling of the volume V → π0
φV .

In summary, we take (π0
φ, ρi, bi) = (1, 10−4, 6.9 · 10−3). We will use these initial condi-

tions for the three cases. This is possible because Heff
LQC and Heff

GR vanish to a very good
approximation (|Heff

LQC,GR| ∼ 10−6) when these initial conditions are employed. Indeed, I
have plotted the magnitude of the Hamiltonian constraint throughout the whole integration
region to make sure that the effective constraints are consistent under evolution.

Once we have verified that we can use these initial conditions, we proceed to the numerical
integration of the effective equations of motion. The result of this procedure is presented in
Figs. 2-4. Everything is expressed in Planck units for simplicity. I will conclude by briefly
commenting the differences in the physical pictures that result from each description.
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Figure 1: The absolute value of the effective Hamiltonian constraint is plotted as a function
of the cosmic time in standard LQC and GR. The fact that it remains small in the whole
time interval in which we have integrated numerically the equations of motion implies that
we can use consistently the initial conditions written above.

In the case of GR (which is represented by a black solid line), we see in Figs. 2-4 that
at around t ≈ 0 the Big Bang singularity takes place: the volume of the Universe shrinks to
zero, the energy density becomes infinite and the expansion rate diverges as well.

In the other two homogeneous and isotropic models, however, this does not occur.
Whereas the three descriptions coincide remarkably well for large volumes and small en-
ergy densities (in the region of validity of GR), they differ greatly as t approaches zero.
Instead of collapsing, the two universes described by a loop effective dynamics attain a min-
imum in physical volume and start expanding again (I am describing the plots in backwards
evolution). Hence, the classical Big Bang singularity is replaced by a quantum bounce
(the so-called Big Bounce) that joins a contracting prebounce branch and an expanding
postbounce branch. The appearance of this bounce is produced by an emergent ‘repulsive
behaviour’ of gravity due to the quantum nature of geometry at the Planck scale (as can be
seen in Fig. 3, the repulsive effects do not become dominant until the energy density reaches
a value of ∼ 0.01ρp). We observe that GR becomes an extremely good approximation just
a few Planck times after the bounce.

Even though the two loop quantum models exhibit a quantum bounce, the respective
bounces differ enormously. To begin with, the critical densities are obviously different. While
they are of the same order of magnitude, the one obtained in standard LQC is larger than
the one in modified LQC. Indeed, we found that ρ̃c ≈ 0.10ρp. We can also compute the
critical density in standard LQC. Although it can be calculated in several ways, the simplest
one is to compute the value of b for which V̇ = 0. Then, substituting this value in ρ, we
obtain

ρc =
3

8πGγ2∆
≈ 0.41ρp, (202)

which coincides with the value observed in Fig. 3. We see that ρ̃c is suppressed by a factor
of 1/[4(1 + γ2)] ≈ 0.24 with respect to ρc.
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Figure 2: The physical volume of the Universe is plotted as a function of the cosmic time in
GR, standard LQC, and modified LQC.

Finally, I want to mention another fundamental difference. The bounce found in standard
LQC is symmetric: it joins two similar classical universes, in the sense that they become large
and have a small spacetime curvature at late times. However, the bounce found in modified
LQC is asymmetric: whereas the postbounce branch remains classical, the prebounce branch
expands exponentially (i.e., in a straight line in a logarithmic scale; see Fig. 2) and its
Hubble parameter is of Planckian order [70]. Therefore, the standard bouncing mechanism
is modified not only quantitatively (the numerical value of the critical density is changed)
but also qualitatively: it is asymmetric and joins a prebounce de Sitter branch (a Planckian
cosmological constant emerges in the prebounce era) with a postbounce classical branch31.

There exist other differences between the two loop description that can be seen directly
from the Friedmann-Raychaudhuri equations. However, I will not cover them in this work.
For further details, I refer to the original article [70].

31It would also be possible that the two branches were ordered the other way around. However, such a
possibility could not describe our Universe: it is already ruled out by observation [70].
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Figure 3: The energy density of the Universe as a function of cosmic time in GR, standard
LQC, and modified LQC.

Figure 4: The Hubble parameter (up to a factor of γ) is plotted as a function of cosmic time
in GR, standard LQC, and modified LQC.
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9 Conclusions

After almost twenty years marked by a major development of LQC, a new line of research
has sparked the interest of the community recently: the examination of the foundations of
the LQC formalism and the discussion of the ambiguities that may affect its construction.
A prominent example of these ambiguities is the procedure to regularise the Hamiltonian
constraint. The analysis of these mathematical ambiguities not only is interesting by itself,
but also may lead to alternative formalisms that entail nontrivial modifications with respect
to the standard approach to LQC. More concretely, it is compelling to determine how these
modification alter the (potentially testable) physical predictions of the theory. Among the
physical predictions of LQC, one stands out: the resolution of the classical Big Bang sin-
gularity, which is replaced by a quantum bounce. Owing to the relevance of this result,
it seems natural to wonder whether it is robust under these ambiguities (i.e., whether it
remains present in alternative formalisms). This question is especially interesting when the
alternatives under consideration make use of techniques that are closer to LQG, in the sense
that they are inspired by those employed in the full theory and are adapted to the cosmo-
logical scenario without suffering any substantial modifications. I highlight the relevance of
these cases because the relation between LQG and LQC is not fully settled yet: it is not
known to which extent the physical cosmological dynamics (presumably computable within
the framework of LQG) is captured by LQC. This is the main motivation for exploring al-
ternative quantisations of cosmological spacetimes that follow more faithfully the precepts
of LQG.

Dapor and Liegener have recently put forward a modified formalism of this kind [65].
To do so, they obtained the gravitational Hamiltonian constraint within full LQG and com-
puted its expected value on certain coherent states representing homogeneous and isotropic
spacetimes. The effective Hamiltonian resulting from this procedure turned out to coincide
(at dominant order) with one already considered by Yang, Ding, and Ma [64]. In collabo-
ration with other authors, they showed [67] that such a Hamiltonian could also be obtained
within LQC as a result of regularising the Euclidean and Lorentzian parts of the Hamilto-
nian constraint independently. A considerable number of papers have been dedicated to the
study of this modified Hamiltonian and the extraction of its phenomenological consequences.
Concerning the effective cosmological dynamics resulting from this Hamiltonian, it has been
determined that, while the classical singularity is still replaced by a quantum bounce joining
deterministically two branches of the Universe (a prebounce one that contracts and a post-
bounce one that expands), the bounce picture is qualitatively different: whereas one of the
branches is a large classical universe (as in the standard case), the other branch is necessarily
replaced by a de Sitter universe with an emergent cosmological contant of Planckian order.

Nevertheless, the selection of a regularisation scheme is not the only origin of mathemat-
ical ambiguities in the construction of a loop quantum theory of cosmological spacetimes.
This process also involves a choice of quantisation prescription for the factor ordering of the
terms determined by the employed regularisation. Two predominant prescriptions exist in
the literature of standard LQC (see Refs. [36, 37]). The main original contribution that I
have wanted to cover in this Master’s Thesis is related to the implementation of the MMO
prescription in the alternative formalism of Dapor and Liegener [76]. In particular, my ob-
jective has been to determine whether the appealing features of this prescription in standard
LQC hold under this modification of the Hamiltonian constraint. To achieve this purpose, I
have aimed to answer the following questions: i) Does (the quantum analogue of) the clas-
sical singularity decouple already at the kinematical level? ii) Do the superselection sectors
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defined by the action of the quantum Hamiltonian remain simpler than those obtained using
other prescriptions? iii) Is it still possible to find a closed expression that allows us to explic-
itly construct the generalised eigenfunctions of the gravitational Hamiltonian constraint? iv)
If the answer to the previous question is in the affirmative, how many available pieces of data
appear in the construction of such eigenfunctions? It should be noted that the number of
these pieces of data for a fixed eigenvalue can be regarded as an indication of the degeneracy
of (the gravitational contribution of) the Hamiltonian constraint operator.

With these questions in mind, I have begun by introducing the Dirac formalism for the
quantisation of constrained systems (GR being an example thereof) and some preliminary
concepts on LQG. This was done in order to motivate the treatment of cosmological space-
times, which are the protagonists of this thesis. After this introduction, I have reviewed the
kinematical aspects of both flat FLRW and Bianchi I cosmologies, which are well-known in
the LQC community. Although the main concern of this work is the quantisation of flat
FLRW spacetimes, we consider Bianchi I cosmologies in parallel so that we may identify the
sign structure appearing in anisotropic scenarios. Indeed, this sign structure in Bianchi I
cosmologies inspired the proposal of the MMO prescription in the first place.

Once the kinematical Hilbert space has been constructed in both cases and the action of
the fundamental operators on an orthonormal basis has been computed, I have dealt with the
regularisation of the Hamiltonian constraint. In the first place, I have reviewed the standard
regularisation procedure in order to see how it departs from the more general one adopted in
LQG. To illustrate this process, I have explicitly regularised the Hamiltonian constraint in
Bianchi I cosmologies according to the standard method, i.e., only considering its Euclidean
part. After completing the computation and noting how the signs of the components of the
triad appear in the resulting expression, I have taken the isotropic limit (carefully conserving
the sign structure) to recover the standard Hamiltonian constraint in flat FLRW spacetimes.
Then, I have proceeded to regularise the Lorentzian part in a similar manner, first in Bianchi
I cosmologies and taking the isotropic limit afterwards. I have noticed that the sign structure
is in fact identical to the one arising in the Euclidean part, so that it can be factored out and
results in a global sign structure that suggests a natural symmetrisation upon quantisation.

Once the full (modified) Hamiltonian in FLRW cosmologies has been constructed, I have
represented it by a quantum operator according to the MMO prescription. When computing
its action on the volume eigenbasis, I have noticed that the quantum Hamiltonian annihilates
the state of vanishing eigenvolume and leaves invariant its orthogonal complement. This
fact allows us to restrict the Hamiltonian constraint to the orthogonal complement in a well-
defined manner: the ‘classically singular’ state is decoupled at the kinematical level. Besides,
after the removal of the singularity, we have densitised the constraint in (the algebraic dual of)
the Hilbert space with support on the orthogonal complement discussed above. Then, I have
obtained that the action of the densitised Hamiltonian results in a fourth-order difference
equation that relates five volume eigenstates. This is in contrast with the standard result
in LQC, where a second-order difference equation relating three eigenstates follows from
the same computation. The reason behind the relation between five eigenstates is that
the modified Hamiltonian produces shifts of four or eight units (if any) in the label of the
volume eigenstates, linking v with v± 4 and v± 8. From this observation, I have concluded
that the modified Hamiltonian constraint is ensured to leave invariant the Hilbert spaces
with support on lattices of step four: the superselection sectors will not be more involved
than those obtained in standard LQC with other prescriptions. However, by virtue of the
attributes of the MMO prescription, smaller spaces are left invariant by the action of the
constraint. As occurs in standard LQC, the lattices split into two owing to the special
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treatment of the signs of the triad variables: the positive and negative semilattices are
left invariant separately. Hence, I confirm that the superselection sectors are simpler than
the ones obtained using the prescription of Ref. [36], even when the Hamiltonian under
consideration has a more complicated functional form.

The crucial point about this splitting is that there exists in each superselection sector a
point with minimum (and nonvanishing) eigenvolume. This has direct consequences in the
study of the generalised eigenfunctions of the gravitational Hamiltonian. Indeed, this implies
that it is possible to write a relation between the values of the generalised eigenfunction at the
first three points of the semilattice. The other two points that would a priori be involved
in the relation do not contribute because they lie in the negative semilattice. Therefore,
once two of these values are given, the third is uniquely determined by the requirement
that the generalised eigenvalue equation be satisfied. Then, as we displace the action of
the Hamiltonian to points in the semilattice corresponding to eigenstates of increasing (in
absolute value) volume, we realise that every value of the eigenfunction is fixed by the first
two. This made us conclude that there are two pieces of data available in principle in the
construction of the generalised eigenfunction associated with a given eigenvalue. This is
again in contrast with the single piece of data available in standard LQC, and indicates
the existence of subtleties in the self-adjoint extensions of the quantum Hamiltonian if its
degeneracy is not doubled by the introduction of the Lorentzian part in the regularisation
procedure.

To close the analysis of the quantum Hamiltonian, I have derived a closed expression
that allows us to obtain the exact form of the generalised eigenfunctions of the gravitational
Hamiltonian constraint. This appears to be a defining feature of the prescription, since it
can also be done when the standard regularisation scheme is adopted instead. However,
using other prescriptions, one needs to retort to numerical tools in order to analyse the
generalised eigenfunctions of the Hamiltonian. The reason why is straightforward: the closed
expression relies on the fact that the first two values (at most) determine the rest, which is
only true when the splitting of the superselection sectors takes place. Recall that this is a
direct consequence of the special treatment of the sign functions (which defines the MMO
prescription in the first place) and no extra conditions are needed.

I have also reviewed the most basic aspects of the effective dynamics [70] arising from
the modified Hamiltonian constraint and compared the results with the ones obtained using
standard LQC and GR.

The results presented in this thesis lead to an univocal conclusion: the MMO prescription
presents attractive features that make it stand out from the other existing proposals, even
after including a modification in the Hamiltonian motivated by the construction of an LQC
formalism that lies closer to full LQG.
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