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Abstract

This work explores a Beyond the Standard Model realisation in which the
Yukawa couplings arise as the background values of some new fields, gen-
erically dubbed flavons. The general scalar potential for these flavons is
constructed abiding by the Minimal Flavour Violation hypothesis. The ana-
lysis of its minima reveals whether the mass hierarchies and mixings observed
in the quark sector can be given a dynamical origin within this setup, and to
which degree of naturalness. Several scenarios are reviewed, differing in the
flavour symmetry group to be considered and the particular set of flavons
to be added to the specific realisation. Special consideration is given to the
Data Driven Flavour Model, a bottom-up approach to the flavour sector,
whose scalar potential is derived and minimised in this work. Remarkably,
the results of its analysis show it is possible to dynamically generate the fla-
vour structure characterising the hadronic sector. The fine-tunings required
are stronger than those present in the description of the flavour sector in the
Standard Model. Nevertheless, this result constitutes a substantial improve-
ment over generic realisations of MFV.
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1

Introduction

Modern theoretical physics is built upon the pillars of general relativity and
the Standard Model (SM). Both highly successful theories capable of describ-
ing reality up to an extraordinary degree of precision, but neither exempt of
its own share of problems. Gravitation has yet to overcome the challenges of
quantisation, whereas from a SM point of view, problems can be labelled as
either experimental or “naturalness” issues.

The first correspond to experimental results (with high significance) which
are in disagreement with the predictions coming from the SM Lagrangian.
Notably, neutrinos have been shown to be massive through oscillation experi-
ments [1], leaving open the search for leptonic charge conjugation-parity (CP)
violation, family transitions in the charged lepton sector and the fundamental
question of whether their nature is that of Dirac or Majorana fermions. Fur-
thermore, the visible Universe seems to be composed by much larger amounts
of matter than antimatter, but how exactly did this asymmetry came to be
in the first place? While the SM provides a source for this so called ba-
ryon asymmetry, it is not enough to explain the ratio observed today. On
top of this, an increasing amount of cosmological and astrophysical evidence
points to large quantities of non-baryonic matter, inferred only by its gravit-
ational effects, the so called dark matter. Many viable candidates have been
suggested, but we have yet to find conclusive evidence regarding its nature.

Naturalness problems are subtler and perhaps more theoretically and even
aesthetically oriented issues. They correspond to phenomena whose explan-
ation within the SM relies on certain parameters set to very specific values.
The precision to which these parameters must be fixed makes them appear
“unnatural” or fine-tuned, and leads us to believe that we are ultimately
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missing something, a deeper explanation in the form of new physics. One
such complication is the so called Higgs hierarchy problem. We know the SM
cannot be a complete theory (it is missing gravity after all), and thus, we
can regard it as an effective theory valid up to a yet undetermined scale (not
necessarily the Planck scale). Due to the scalar nature of the Higgs particle,
its mass, not protected by any symmetry, picks radiative corrections of the
order of the new physics scale. Fine-tuning on the bare mass in the Lag-
rangian is then needed to bring the Higgs mass down to its known value
(mh ∼ 125GeV [1]), how severe depending on how far the new scale is. The
commonly referred to as strong CP problem is another instance of a natural-
ness issue. No CP violation has ever been observed in the QCD sector, even
though its Lagrangian naturally includes a CP violating term. In order for
the SM to comply with this observation, this term must be fine tuned out of
our experimental reach. Yet another naturalness problem is that of the dark
energy. The expansion of our Universe is accelerating, which, according to
our current understanding of cosmology, requires the presence of a vacuum
energy, whose negative pressure would be the responsible force behind this
acceleration. Naive estimations of this vacuum energy within the SM lay as
far as 120 orders of magnitude from the value required to fit the observed rate
of expansion, evidencing our lack of understanding of the physics at play.

To complete this brief (and non-exhaustive) summary of the open chal-
lenges in the SM, we shall introduce the flavour problem, which will be the
main focus of this work. The flavour sector of the SM has long been regarded
as problematic. On the one hand, we face a naturalness issue commonly re-
ferred to as the flavour puzzle: there is no explanation for the heterogeneity
of fermion masses and mixings, which in the SM, is merely displayed para-
metrically. On the other, attempts at enriching the flavour sector of the
SM are often met by phenomenologically dangerous predictions of flavour
violating processes.

The data driven flavour model to be explored throughout this work is
a bottom-up approach tackling both of these issues, providing a dynamical
origin to the Yukawa couplings sourcing fermion masses and mixings in the
SM, while simultaneously avoiding phenomenologically dangerous behaviour.
This is achieved by identifying the largest flavour symmetry group arising in
the limit of vanishing Yukawa couplings, excluding that of the top quark,
which the data suggests to be already a natural parameter of the theory.
This symmetry is assumed to be exactly realised at some energy scale, and
the Yukawa terms are made invariant in the high energy theory by the in-
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Introduction

sertion of some new scalar fields with flavour transformation properties, the
flavons. Below this scale, the flavour symmetry is spontaneously broken by
the background values of the flavons, dynamically generating the Yukawa
couplings, which can be now identified with the latter. The key to the good
phenomenological behaviour of the model is that the symmetry constrains
the appearance of flavour violating processes through higher order operators.
It is also remarkable that the most stringent lower bounds on the new fla-
vour physics scale, provided by current experimental constraints on flavour
changing neutral currents, can be as low as a few TeV s, rendering the model
a testable scenario in the not so distant future. Nevertheless, it remains to
be seen whether the vacuum of the model can possibly account for the full
structure of the Yukawa couplings in the SM. To answer this question is pre-
cisely the goal of this work. Through the study of the most general scalar
potential involving the flavons, we will be ultimately seeking for a dynamical
explanation to the origin of quark masses and mixings.

But before delving any deeper into the technicalities of the model, let us
begin by briefly reviewing the status of the flavour sector within the SM along
the main features of the latter, which shall be instructive before dealing with
any of its proposed extensions. In what follows, we will mostly restrain our
attention to the hadronic sector of the SM, for the leptonic sector is far less
well understood, and the yet undetermined nature of neutrinos adds com-
plexity to the discussion, although we shall briefly comment on its situation
within the proposed flavour models.

1.1 The Standard Model

1.1.1 Interactions and boson fields

Symmetry and the gauge principle can be singled out as the main drivers of
success in building our understanding of high energy particle physics. Their
implementation within the framework of quantum field theory allows for the
prediction of experimentally observable magnitudes such as cross sections or
decay rates, among many others. The SM embodies these principles, being,
at its core, a quantum field theory based on the gauge symmetry group

G = SU(3)C × SU(2)L × U(1)Y . (1.1)
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1.1. The Standard Model

This gauge group encodes the behaviour of the strong and electroweak (EW)
interactions, along with the description of the spin 1 bosons which form
part of the elementary SM particle content and are said to mediate them.
The strong interactions manifest between those particles which transform
under the gauge symmetry group SU(3)C (C stands for colour), and are
thus charged under it. On the other hand, the EW interaction SU(2)L ×
U(1)Y , comprises the weak isospin symmetry group SU(2)L and the weak
hypercharge group U(1)Y . Given the group and the coupling constants of
each subgroup, hereby defined as gs for SU(3)C , g for SU(2)L and g′ for
U(1)Y at a certain energy scale µ, this part of the theory is completely
determined. A number of spin 1 bosons arise as a consequence, one for each
of the generators belonging to each subgroup, that are said to mediate the
interaction. Hence, we have eight gluons for the strong interaction, three W
bosons as the mediators of the weak isospin interaction, and the B boson
mediating the hypercharge interaction.

We can now write the Lagrangian density for the gauge sector of the SM

−Lg =
1

2
Tr (GµνGµν) +

1

2
Tr (W µνWµν) +

1

4
BµνBµν , (1.2)

where µ and ν are contracted Lorentz indexes following Einstein’s sum-
mation convention, and Gµν , Wµν and Bµν are defined as the field strengths
of SU(3)C , SU(2)L and U(1)Y respectively in the following way

Gµν = ∂µGν − ∂νGµ + igs [Gµ,Gν ] ,

Wµν = ∂µW ν − ∂νW µ + ig [W µ,W ν ] ,

Bµν = ∂µBν − ∂νBµ,

(1.3)

with Gµ and W µ subsequently defined as

Gµ ≡ λi
2
Gi
µ, W µ ≡ σi

2
W i
µ. (1.4)

Gi
µ denote the eight gluon vector-boson fields, W i

µ, the three weak isospin
mediators, andBµ, the hypercharge boson, whereas λi, the Gell-Mann matrices,
are the generators of SU(3), and σi, the Pauli matrices, the equivalent of
SU(2). The above Lagrangian describes the propagation and self-interaction
of these fields. We shall introduce as well for later convenience the covariant
derivative, which will allow for their interaction with the rest of the particle
content of the SM, defined as follows

4



Introduction

Dµ ≡ ∂µ + igsGµ + igW µ + ig′QYBµ, (1.5)

where QY will be the hypercharge of the field the covariant derivative is
acting upon, while Gµ and W µ will only be present if the latter belongs to
the fundamental representation of the corresponding gauge subgroup.

But the description of the SM interactions relies yet on another key ele-
ment. Canonical bare mass terms cannot be added directly to the Lag-
rangian, as they are not invariant under G. The SM circumvents this issue
through the celebrated Brout-Englert-Higgs mechanism, which requires the
addition of a SU(2)L doublet spinless boson (scalar under Lorentz trans-
formations) with two complex components, denoted H, with the following
transformation properties under G

H ∈ (1, 2, 1/2)G . (1.6)

Its implementation within the SM Lagrangian requires of the addition
two new parameters

L H = (DµH)†DµH − λ
(
H†H − v2

2

)2

, (1.7)

one with dimensions of energy, v, which implicitly defines the EW scale
v ' 246GeV , and the dimensionless self-Higgs-coupling constant, λ ' 0.13
(both parameters are experimentally determined by the measurement of the
Fermi constant and Higgs boson mass [1], m2

h/2 = λv2). The second term
above, the Higgs potential, is minimized for

〈
H†H

〉
= v2/2, consequently

inducing a non-zero vacuum expectation value (vev) for the Higgs field.
When expanding around this vacuum, its interaction with the rest of the
fields will give rise to the mass terms needed to properly accommodate the
physical particle spectrum. This interaction is in turn determined by the
Higgs charges (or equivalently, transformation properties) under G, which
were shown in Eq.(1.6).

The Higgs non-zero vev induces the spontaneous symmetry breaking of
three out of the four generators (often referred to as “directions”) of the gauge
group SU(2)L×U(1)Y of the EW interactions. Three out of the four degrees
of freedom in the Higgs field would then ordinarily resolve as Goldstone
bosons under the Goldstone theorem. However, since they are coupled to the
EW gauge fields (through the covariant derivatives of the above Lagrangian)
they end mixing with an specific combination of the W and B bosons, the
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1.1. The Standard Model

W+, W− and Z bosons we are familiar with, which are made massive by
their inclusion, so that only the single remaining degree of freedom becomes
a new scalar particle, the Higgs boson.

The combination of generators of SU(2)L×U(1)Y that still preserves the
vacuum, and thus, defines the gauge group that remains unbroken after EW
symmetry breaking, is the one corresponding to the electromagnetic charge
group, U(1)em. The combination of gauge fields pointing in this direction
stays massless, and amounts to the physical photon, γ.

All in all, after the rotation from the weak interaction eigenstates to the
mass eigenstates, we are left with the following physical gauge boson fields(

W+
µ

W−
µ

)
=

1√
2

(
1 −i
1 +i

)(
W 1
µ

W 2
µ

)
,(

γµ
Zµ

)
=

(
cos θW sin θW
− sin θW cos θW

)(
Bµ

W 3
µ

)
,

(1.8)

where it has been introduced the weak mixing angle, θW , which can be
expressed in terms of the EW coupling constants g and g′.

1.1.2 Fermion fields

Next in order, completing the sequence of intrinsic angular momentum between
the spin 1 vector and spin 0 scalar bosons, come the spin 1/2 fermions. They
can be classified according to their transformation properties under G, which
in turn determine the way they interact with the rest of the fields of the SM.
We can draw the first distinction on whether they are able or not to interact
strongly under the gauge group SU(3)C . Those who can, are referred to as
quarks, those who cannot, we call leptons. We can split them even further
according to the way they behave under the weak isospin group SU(2)L.
Among the quarks, we can distinguish between the doublets, QL, and the
singlets, UR, and DR; whereas leptons divide into doublets, `L, and sing-
lets, ER. Lastly, each of these is charged differently under the hypercharge
U(1)Y group. The transformation properties of the fermions in the SM are
summarized in Table 1.1.

The representations of the non-abelian groups (SU(3)C and SU(2)L) form
a discrete set, e.g. the fundamental representation, the adjoint representa-
tion, etc. Every fermion in the SM either transforms in the simplest non-
trivial of them, the fundamental, denoted in the above table as N for SU(N),
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SU(3)C SU(2)L U(1)Y

QL 3 2 1/6
UR 3 1 2/3
DR 3 1 -1/3
`L 1 2 -1/2
ER 1 1 -1

Table 1.1: Fermion transformation properties under G.

or does not transform at all, acting as a singlet, denoted by 1 in the first two
columns (we already used this notation for the Higgs field on Eq.(1.6)). As
for the abelian gauge group U(1)Y , the seemingly random choice of repres-
entations (charges) for the different fermions comes as a predictive success of
the gauge principle (modulo a normalization factor). The cancellation of an-
omalies, or equivalently, the conservation of the symmetry at a quantum loop
level, imposes hard constraints on the assignment of hypercharges. The sub-
scripts L and R have been used to denote the left and right handed chirality
components of fermions.

The interaction between fermions and gauge fields is implemented in the
Lagriangian through the covariant derivative in the kinetic terms

L kin = i
∑

Ψ

Ψ��DΨ, (1.9)

where ��D ≡ γµDµ, γµ being the Dirac matrices, and the sum over Ψ
contains all the fermion fields.

But there is yet another layer to the fermion structure of the SM, namely,
the flavour. Three copies of the fermion fields described in Table 1.1 are
observed in nature, with the exact same charges but disorderly masses. They
are commonly known as families or generations, and can be arranged in the
following way

Qi
L =

((
uL
dL

)
,

(
cL
sL

)
,

(
tL
bL

))
`iL =

((
νeL
eL

)
,

(
νµL
µL

)
,

(
ντL
τL

)) U i
R = (uR, cR, tR)

Di
R = (dR, sR, bR)

Ei
R = (eR, µR, τR)

, (1.10)

where we have used i as the index running in flavour space, denoting
the up, down, charm, strange, top and bottom quarks as u, d, c, s, t and b
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1.1. The Standard Model

respectively; and in the lepton sector, the electron, the muon, the tau and
their corresponding neutrinos as e, µ, τ and ν; finally displaying the whole
fermion spectrum of the SM.

In the simplest realization of the SM, neutrinos are massless, and the mass
terms for the rest of the fermions arise through Yukawa’s interaction between
these and the Higgs field, once the latter takes on the vev 〈H〉 ≡

(
0, v/
√

2
)T

.
The piece of the SM Lagrangian containing this mass generating terms reads
as follows

−L Y uk = QLH̃YUUR +QLHYDDR + `LHYEER + h.c. , (1.11)

where H̃ ≡ iσ2H
∗, with the second Pauli matrix, σ2, acting on the weak

isospin space; and YU , YD and YE denote 3×3 matrices acting on the flavour
space, which we will refer to as Yukawa matrices. The Yukawa matrices
encode the flavour structure of the SM, from masses to mixings, and will be
one of the main objects of our study throughout this work.

1.1.3 Flavour symmetry

Given the success and predictive features granted by symmetries in their
description of the SM, it is only natural to try and extend them to the
flavour sector. The hadronic part of the SM Lagrangian exhibits, in the limit
of vanishing quark Yukawa couplings, a flavour symmetry given by the group
[2, 3]

Gf = SU(3)QL
× SU(3)UR

× SU(3)DR
, (1.12)

plus three extra U(1) factors corresponding to the baryon number, the
already reviewed hypercharge and the Peccei-Quinn symmetry [4], which are
nonessential to the present discussion. On the contrary, the non-abelian
subgroup Gf controls the flavour structure of the Yukawa matrices. The
transformation properties of the quark fields under this group are shown
below

QL ∈ (3, 1, 1)Gf , UR ∈ (1, 3, 1)Gf , DR ∈ (1, 1, 3)Gf . (1.13)

A SU(3) factor arises for each field in different representations of the
gauge group, as showcased by the adopted notation. This is easily under-
stood, in the absence of the Yukawa interactions, the Lagrangian in Eq.(1.9)

8



Introduction

is invariant when Ψ is transformed under unitary 3 × 3 matrices acting on
flavour space, resulting in a U(3) factor for each of the fields in the sum. The
whole group then decomposes to Gf and the three U(1) factors previously
discussed.

The Yukawa terms however do not vanish, and it is in their breaking of
the flavour symmetry that structure is generated between the three families.
Without loss of generality, the Yukawa matrices appearing on Eq.(1.11) can
be written as the product of a unitary matrix, a diagonal matrix of eigenval-
ues, and a different unitary matrix on the right end; explicitly

YU = UUL yUUUR , YD = UDL yDUDR , (1.14)

where UU,DL.R are the unitary matrices and yU,D the diagonal matrices com-
posed by the eigenvalues of the original Yukawa matrices. The following
redefinition of the quark fields in flavour space

QL → UULQL, UR → UU†R UR, DR → UD†R DR, (1.15)

simplifies, while leaving the rest of the Lagrangian invariant, the Yukawa
matrices in Eq.(1.11) to the form

YU = yU , YD = UU†L U
D
L yD. (1.16)

These look familiar once we switch to the most commonly used notation

VCKM ≡ UU†L U
D
L ,

{
yU ≡ Diag (yu, yc, yt) ,

yD ≡ Diag (yd, ys, yb) ,
(1.17)

where VCKM , the unitary Cabibbo-Kobayashi-Maskawa quark mixing mat-
rix, describes the mismatch between the weak interaction eigenstates and the
mass eigenstates, those which propagate freely. It encodes three angles and
one CP-odd phase. But let us show first the connection between the Yukawa
eigenvalues and quark masses.

After the Higgs field takes on the vev 〈H〉 =
(
0, v/
√

2
)T

and EW sym-
metry breaking ensues, the independent rotation of the lower component of
the quark isospin doublet: DL → VCKMDL, brings us to the mass basis,
rendering the Yukawa terms diagonal in flavour space

−L q
Y uk = yi

v + h√
2
U
i

LU
i
R + yj

v + h√
2
D
j

LD
j
R + h.c. , (1.18)

9



1.1. The Standard Model

where h is the physical Higgs boson. Quark masses are then read straight-
forwardly as

mq = yq
v√
2
' yq 174GeV. (1.19)

The values of the Yukawa couplings which reproduce the experimentally
observed masses [1] turn out to be

(yu, yc, yt) '
(
1.2× 10−5, 7.3× 10−3, 0.99

)
,

(yd, ys, yb) '
(
2.7× 10−5, 5.3× 10−4, 2.4× 10−2

)
.

(1.20)

This rotation to the mass basis goes unnoticed in all but one of the rest
of the terms in the Lagrangian, the one coupling the two components of the
quark doublet through the EW interaction, which now reads

L CC = i
g√
2
ULVCKM��W

+DL + h.c. (1.21)

The end result is that the flavour violating source has been effectively
shifted from the mass terms to the coupling of the quarks to the W± gauge
bosons. It is important to note why this mixing matrix emerges in the
SM. We cannot diagonalise both Yukawa matrices at the same time because
the two terms involving the up and down quarks contain the same weak
isospin doublet QL, causing the appearance of an irreducible mixing matrix.
Moreover, this mixing matrix only has an effect in the first place because
UL and DL interact weakly, since its unitarity makes it drop form the rest
of the terms in the Lagrangian. Both mass terms and SU(2)L interactions
are needed in conjunction for flavour violation phenomena to manifest in the
SM. The role of the unitary matrix entering the Yukawa couplings has been
made apparent now, the mixing matrix parametrises the change of basis from
the interaction to the mass basis.

The CKM matrix is close to the identity, with deviations given at first
order by the λ parameter in the Wolfenstein parametrisation (λ = sin θ12,
where θ12 is the mixing angle between the first two families in the commonly
used standard parametrisation)

VCKM =

 1− λ2/2 λ Aλ3 (ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3 (1− ρ− iη) −Aλ2 1

+O
(
λ4
)
. (1.22)
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The four parameters of the Wolfenstein parametrisation (adopted here
because it will result convenient for the later sections) are experimentally
measured to be [1]

λ ' 0.225, A ' 0.8, ρ ' 0.15, η ' 0.35. (1.23)

The CP violating phase is then determined by the combination ρ− iη.
We are finally in position to come back and review the flavour problem

in the SM. Following ’t Hooft’s naturalness criteria [5, 6], any dimensionless
parameter in the theory is expected to be generally of order one, and all di-
mensionful ones should be of the order of the scale(s) of the theory. Stronger
than O(10%) adjustments (typical Clebsch-Gordan values in any theory) are
usually considered to be fine-tuned, and will be regarded undesirable. While
the free parameters in the gauge sector, gs, g, g′ and λ, are smaller but of
O(1) at the typical scale of the theory (namely, the EW symmetry breaking
scale v ' 246GeV ), the Yukawa parameters of the quark sector span, as
displayed by Eq.1.20, over five orders of magnitude, and can generally be re-
garded as fine-tuned parameters within the theory. Moreover, while the down
quark of the first generation happens to be heavier than its up counterpart
(a fact which is crucial for the stability of the proton), the opposite holds
true for the other two families. On the other hand, the mixing pattern of the
CKM matrix stands as a mystery of its own, with no known explanation for
its particular shape. For comparison, in the gauge sector, hypercharges turn
out to be heavily constrained by the consistency of the theory. Furthermore,
gauge invariance forces particles into representations of the group, so that the
dimension of the representation dictates the number of particles, e.g. there
are up and down quarks in each generation to fit the fundamental represent-
ation of SU(2)L. It is this degree of fine-tuning and apparent arbitrariness
characterising the parameters in the flavour sector, what causes us to refer
to their enigmatic origin within the theory as the flavour puzzle.

New theories seeking for a deeper explanation to the flavour sector of the
SM must also abide by vast amounts of experimental evidence, which the SM
is in excellent agreement with. One such piece of evidence is the smallness
of the rates of flavour changing neutral currents (FCNC), whose explanation
within the SM owes to the well known Glashow-Iliopoulos-Maiani (GIM)
mechanism [7]. FCNC processes occur in the SM at the loop level and end
constrained by unitarity relations to be proportional to mass differences and
mixing parameters, which results in a significant suppression of the predicted
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1.1. The Standard Model

rates. That this behaviour is not spoiled by any extension of the SM is of
paramount importance, and places, as we shall see, stringent constraints on
any new model of flavour.
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2

Flavour Beyond the Standard Model

The main idea behind this work is the use of symmetry in the quest for an
explanation to the flavour puzzle. Many attempts have gone in this direction
inspired by its success in the other sectors of the SM. The first can be dated
to the late seventies, when Froggatt and Nielsen proposed the addition to
the SM of a global abelian U(1) factor [8]. The flavon, a new scalar field
behaving as a singlet of the gauge group but charged under this symmetry,
is also added to the Yukawa terms, whose invariance is then achieved by
giving charges to the fermions of the SM. The Yukawa terms, rendered non-
renormalisable operators by the addition of the flavon, include now a cut-off
scale, Λf , representing the mass scale of the underlying dynamics responsible
for their appearance at lower energies. The flavon, endowed with a potential,
develops a non-zero vev, breaking spontaneously the flavour symmetry and
giving rise to the observed fermion masses and mixings (this approach is
applicable to both, quark and lepton sectors). The major drawback of this
model lies on its lack of predictive power, undermined by the large amount
of free parameters entering the Yukawa matrices.

Attempts were also made towards discrete non-abelian symmetries [9],
specially motivated by the relatively large mixing patterns observed in the
lepton sector with the data from neutrino oscillation experiments. However,
their most common prediction of a vanishing or extremely small reactor angle
was confronted with reality when a relatively large value was discovered for
the latter in 2011 [10, 11, 12].

Non-abelian continuous symmetries have, on the other hand, managed
to keep their status as viable candidates. Their main advantage being a
typically more predictive framework than Froggatt-Nielsen models, but also

13



2.1. Minimal flavour violation

a relatively higher degree of restriction towards the number and type of
representations the fields may transform under, when compared to discrete
flavour models. The hypothesis of minimal flavour violation (MFV) [3] stands
as a highly successful instance of this approach, being remarkably economical
on its premises but also strikingly predictive. The data driven flavour model
to be proposed and studied during this work abides by its main idea, which
we shall introduce next.

2.1 Minimal flavour violation

The SM can be regarded as a successful effective theory valid up to a yet to
be determined cut-off energy scale, Λ. The search of physics beyond the SM
strives to find effects which are present in the theory for a finite value of Λ,
but vanish in the limit Λ→∞. The predictions of the SM, when contrasted
to the available experimental evidence, provide lower bounds on Λ. As we
have discussed, the flavour symmetry of the SM is already broken by the
Yukawa couplings. Accordingly, it does not seem very plausible to demand
that the new interactions respect flavour, a symmetry not even realized in
the SM, which shall be recovered as the low energy limit of the new theory.
However, generic flavour violating interactions at Λ ' TeV must be avoided
if we wish to conserve the good phenomenological behaviour of the SM.

The proposed solution to this apparent dilemma, is to impose that the
effective theory respects the MFV hypothesis [2], defined succinctly as the
requirement that all flavour and CP violating interactions must be sourced
by the known structure of the Yukawa couplings.

The Yukawa interactions break Gf as defined in Eq.(1.12). Flavour invari-
ance can however be formally recovered, by promoting the Yukawa couplings
YU and YD to dimensionless auxiliary (spurion) fields[3], transforming as

YU ∈ (3, 3̄, 1)Gf , YD ∈ (3, 1, 3̄)Gf , (2.1)

allowing the appearance of Yukawa interactions consistent with the fla-
vour symmetry

−L q
Y uk = QLYUURH̃ +QLYDDRH + h.c. (2.2)

Notice the above Lagrangian describes the most general coupling of the
Y fields to renormalisable SM operators, couplings of Y with the kinetic
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terms of quarks can be eliminated by a redefinition of the latter and Yukawa
interactions with more Y insertions can be reabsorbed within the existing
ones via redefinition of the Y fields.

The background values of the auxiliary Y fields can be brought, through
suitable redefinition of the quark fields, to the following form

YU = yU , YD = VCKMyD, (2.3)

in trivial generalisation of the procedure followed for the Yukawa matrices
that culminated in Eq.1.16.

An effective theory is said to satisfy the criterion of MFV if all higher-
dimensional operators constructed from SM and Y fields are invariant under
CP and (formally) under the flavour group Gf 1. This definition of MFV
leads to a realistic description of the minimal effects in flavour physics almost
necessarily present in any extension of the SM with non-trivial dynamics at
the scale Λ.

It is important to note MFV is not a model of flavour, and it does not
determine the value of the new dynamical flavour energy scale, Λf , at which
new flavour phenomena is expected to manifest. It is nonetheless capable of
predicting precise relations between different flavour transitions, to be tested
once the new physics scale becomes experimentally accessible. This is owed to
the fixed flavour structure the coefficients of all SM gauge invariant operators
within the MFV framework are forced into, dictated by the specific insertion
of Y fields required so as to make the operator invariant under Gf .

It is this last feature that ultimately shapes the phenomenological beha-
viour of MFV, making it such an interesting proposal. All new non-negligible
flavour-violating effects must happen through the only relevant non-diagonal
structure that can be constructed out of the contraction of Y spurion fields,
i.e. the one involving two top Yukawa couplings, as any other combination
results in significant amounts of suppression. The analysis of the d = 6 effect-
ive operators containing this structure leads to the most stringent bounds on
their coefficients 1/Λ2, allowing to find lower bounds on the scale of new phys-
ics Λ. Remarkably, this scale can be as low as a few TeV s under the MFV
hypothesis, while still adhering to the experimental constraints on FCNC,

1The original MFV hypothesis [3] extends to the lepton sector, including an enlarged
flavour symmetry group. However, its application within the hadronic sector only requires
of the reduced symmetry group defined in this work (Gf ), which shall be enough for our
purposes.
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leaving the door open for many exciting theoretical possibilities to become
experimentally testable in the years to come. This is in stark contrast to
the predictions resulting when the analysis of the SM effective operators is
carried without any further assumption. When compared with experimental
constraints on FCNC, the latter place lower bounds of the order Λ > 100TeV
on the scale of the new physics, residing thus out of any foreseeable experi-
mental capacity in the near future.

2.2 Dynamical Yukawa couplings

The MFV scheme demonstrated the usefulness of assigning spurious trans-
formation properties to the Yukawa couplings and imposing formal flavour
conservation at the phenomenological level. In what seems to be the next
natural step, we will assume the flavour symmetry to be exact at some high
energy scale Λf , and the Yukawa couplings to arise as the vevs of fields that
had real transformation properties under this symmetry. In other words, we
will promote the spurions to real fields, usually called flavons, which after
the spontaneous breaking of the flavour symmetry will give rise to the known
structure of the Yukawa couplings in the SM. This idea is not new, and in-
deed, was already present in the first formulation of MFV by Chivukula and
Georgi [2], where the Yukawa couplings were the result of a fermion condens-
ate. An extensive review on this topic can be found in ref. [13], which has
been extremely helpful in the writing of this work.

To avoid the Goldstone bosons that would result from the spontaneous
symmetry breaking of a continuous global flavour symmetry, it has been
proposed, for instance, to gauge the symmetry. This in turn tends to induce,
in practical realizations, phenomenologically dangerous FCNC mediated by
the new gauge bosons. Several ways to circumvent this issue have been
explored in the literature [14, 15, 16, 17, 18].

A comprehensive analysis on the flavon scalar potential of MFV specific-
ally geared towards the dynamical generation of the Yukawa couplings in the
hadronic sector was carried in ref. [19], from which a lot of results will be
borrowed in the writing of this section.

After the insertion of the flavons, the Yukawa terms in the Lagrangian
may be regarded as effective operators of dimension larger than four, weighted
down by powers of the flavour scale Λf , which we will refer to as Yukawa
operators. This setup could arise for instance by taking Λf to be the mass of
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heavy flavour mediators, integrated out in the low energy limit of the theory
to give d > 4 operators involving the flavons and the SM fields. Provided
the vevs to be taken by the flavon fields are smaller than Λf , a hierarchical
analysis ordered by inverse powers of this scale is a sensible approach.

It should be noted this basic framework allows for a considerable amount
of freedom model-building wise. On the one hand, the flavour symmetry
to be realised at the new flavour energy scale does not necessarily need to
be the full Gf group, although we shall review this scenario first. On the
other, the precise dimension d of the Yukawa operators is not determined,
and will depend on the specific set of flavons chosen to give rise to the Yukawa
couplings.

In what follows we will consider the full flavour symmetry group of the
hadronic sector Gf (as defined in Eq.(1.12)) to be exactly realized at the
new scale Λf , for being, at least a priori, the most straightforward approach.
Then, the simplest case is that of d = 5 Yukawa operators

−L q
Y uk = QL

YU
Λf

URH̃ +QL

YD
Λf

DRH + h.c. , (2.4)

where the scalar flavons YU and YD transform in the bi-fundamental
representation of Gf ; explicitly

YU ∈ (3, 3̄, 1)Gf , YD ∈ (3, 1, 3̄)Gf , (2.5)

so that the Yukawa operators are now invariant under Gf . The Yukawa
couplings are then generated as

YU =
〈YU〉
Λf

, YD =
〈YD〉
Λf

. (2.6)

Another possible realization to be explored below, is to consider d = 6
Yukawa operators involving two scalar flavons each

−L q
Y uk = QL

yLUy
R†
U

Λ2
f

URH̃ +QL

yLDy
R†
D

Λ2
f

DRH + h.c. (2.7)

Interestingly, the flavons can be taken now as vectors in flavour space,
belonging to the fundamental representation of Gf , just like quarks,

yLU,D ∈ (3, 1, 1)Gf , yR†U ∈ (1, 3, 1)Gf , yR†D ∈ (1, 1, 3)Gf , (2.8)
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resulting in the following relations between Yukawa couplings and vevs

YU =

〈
yLU
〉 〈

yR†U

〉
Λ2
f

, YD =

〈
yLD
〉 〈

yR†D

〉
Λ2
f

. (2.9)

Only a scalar field (or an aggregate of fields in scalar configuration) can
get a vev, which should correspond to the minimum of a potential. In what
follows, we will turn our attention to the determination of the most general
scalar potential, compatible with the flavour symmetry Gf , that can be built
for the aforementioned flavon fields. The relevant question will be whether
it is possible, if at all, to accommodate the full structure of the Yukawa
couplings in the SM within the minima of the scalar potential. We will
derive the latter at the renormalisable level, study its vacua and discuss the
degree of naturalness of the resulting solutions. When feasible, the effects of
the addition of non-renormalisable terms to the Lagrangian will be explored.
A thorough analysis on this subject was carried for the lepton sector in ref.
[20].

It should be noted the analysis of the flavon scalar potential to be per-
formed below may also apply to the dynamical origin of the Yukawa coup-
lings in the lepton sector. However, the implementation of MFV in the latter
[21, 22] requires of supplementary assumptions if neutrinos are assumed to be
Majorana fermions, as their masses then require the extension of the SM with
a new scale, that of lepton flavour violation, on top of the already introduced
flavour scale. Not only that, but the starting flavour symmetry group is no
longer a straightforward extension of the one in the quark sector, as right
handed neutrinos are endowed with a mass not arising from interactions, but
already present in the free Hamiltonian, and are thus subject to a reduced
symmetry group. It is for this nuances in its analysis that the lepton sector
has been left out of the scope of this work.

2.2.1 Two-family case

We shall start the discussion on the general scalar potential by studying first
the two-family case, which, despite being simpler, will allow us to introduce
the conventions and ideas we will be dealing with for the rest of this work.
Notice we can regard this as a not too far-fetched scenario, corresponding
to the limit in which the third family has decoupled, and justified by the
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hierarchy between quark masses and the smallness of the CKM mixing angles
associated to the third family (θ23, θ13 in the standard parametrisation).

When considering only two generations, the flavour symmetry group Gf
is trivially reduced to

Gf = SU(2)QL
× SU(2)UR

× SU(2)DR
, (2.10)

with the quark fields transforming now as

QL ∈ (2, 1, 1)Gf , UR ∈ (1, 2, 1)Gf , DR ∈ (1, 1, 2)Gf . (2.11)

The flavour invariance of the Lagrangian is achieved, within the MFV
scheme, through the promotion of the Yukawa couplings into spurions trans-
forming as

YU ∈ (2, 2̄, 1)Gf , YD ∈ (2, 1, 2̄)Gf , (2.12)

adopting now the following background values

YU =

(
yu 0
0 yc

)
, YD = VC

(
yd 0
0 ys

)
. (2.13)

Where the mixing matrix to be reproduced:

VC =

(
cos θ sin θ
− sin θ cos θ

)
, (2.14)

is just the usual rotation among the first two families involving the Cab-
bibo angle θ.

2.2.1.1 Flavons in the bi-fundamental

The simplest approach promotes each Yukawa coupling into a single flavour
field, generating the effective d = 5 Lagrangian shown in Eq.(2.4). The
introduced flavons YU and YD are singlets under the SM gauge group, so
that the gauge invariance of the Yukawa terms is not spoiled, but transform
non-trivially under Gf :

YU ∈ (2, 2̄, 1)Gf → ΩQL
YUΩ†UR

, YD ∈ (2, 1, 2̄)Gf → ΩQL
YDΩ†DR

, (2.15)
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where ΩX has been used to denote the transformation under the SU(2)X
component of Gf . The goal is then to find the scalar potential to give rise,
through its minimisation, to the vev pattern displayed by Eqs. (2.6) and
(2.13), spontaneously breaking the flavour symmetry and generating quark
masses and mixings. The effective field theory obtained in this way at the
EW scale fulfills the MFV criteria (for the two-family case).

It should be noted the model has been built in a minimalistic fashion.
Both flavons develop their vevs at the same scale, and there are two of them,
the minimum number required to ensure the flavour invariance of the Yukawa
interactions. One could consider natural the addition of a third flavon, trans-
forming as YR ∈ (1, 2, 2̄)Gf to complete the basis in Eq.(2.15). Notice however
this new flavon cannot contribute to the Yukawa terms at the renormalis-
able level, but it does introduce new operators to the MFV effective theory,
mediating FCNC processes with fully right-handed quarks, which could be
phenomenologically dangerous. The possibilities of adding new scales and/or
this new field do not ultimately affect the flavour structure of the Yukawa
couplings, and are thus not explored any further. The addition of new rep-
licas of the bi-fundamental representations could, a priori, be helpful as a
source of new scales and possible mixings, but in the end, it only trades the
flavour puzzle for the flavon puzzle.

We shall thus restrict our attention to the two flavons already introduced,
YU and YD. The most general scalar potential for the new theory can be split
in the sum of two pieces: the first corresponding to the already present in
the SM Lagrangian Higgs potential (see Eq.(1.7)), responsible for the EW
symmetry breaking; while the second, shall include the new terms involving
the flavons, but also their interaction with the Higgs field:

V = −λ
(
H†H − v2

2

)2

+
∞∑
i=4

V(i) [H,YU,D] . (2.16)

The i index has been used to denote the dimension of the scalar potential
operators entering the effective field theory approach, V(4) being an exception
including all the renormalisable couplings involving H and YU,D of d = 4 and
below. We will consider the flavour symmetry breaking scale to be above
that of the EW symmetry breaking, for there is no reason to demand they
both meet. It is however possible for the Higgs-flavon interactions to shift the
values and location of the EW and flavour minima, but the flavour structure
of each term is linked only to its flavon composition. After the breaking of the
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flavour symmetry, the terms comprised just by flavon fields in V(i) contribute
as constants to the scalar potential, whereas the ones coupling the Higgs to
them can be redefined into λ or v. It is for this reason the rest of the analysis
will only consider the flavon part of the scalar potential: V(i) [YU,D].

We can find the most general independent flavour invariants that enter
the scalar potential by taking into account the transformation properties of
the flavons shown in Eq.(2.15). At the renormalisable level, a complete set
can be built out of five of them [23]

AU = Tr
(
YUY†U

)
,

AD = Tr
(
YDY†D

)
,

AUD = Tr
(
YUY†UYDY

†
D

)
,

BU = det (YU) ,

BD = det (YD) ,
(2.17)

meaning any other invariant operator can be constructed as a combination
of the ones shown above, e.g.

Tr
(
YXY†XYXY

†
X

)
= Tr

(
YXY†X

)2

− 2 det (YX)2 . (2.18)

The vev to be taken by these invariants can be expressed in terms of the
SM parameters we are trying to replicate, that is, the Yukawa couplings and
the Cabbibo angle. To do so, we can extract the required vev configuration
for the flavons from Eqs. (2.6) and (2.13)

〈YU〉 = Λf

(
yu 0
0 yc

)
, 〈YD〉 = ΛfVC

(
yd 0
0 ys

)
, (2.19)

leading to the following results

〈AU〉 = Λ2
f

(
y2
u + y2

c

)
, 〈BU〉 = Λ2

fyuyc,

〈AD〉 = Λ2
f

(
y2
d + y2

s

)
, 〈BD〉 = Λ2

fydys,

〈AUD〉 = Λ4
f/2

[(
y2
c − y2

u

) (
y2
s − y2

d

)
cos 2θ +

(
y2
c + y2

u

) (
y2
s + y2

d

)]
.

(2.20)

It is important to note the mixing angle only appears in the vev of AUD,
which was to be expected, as it is the only invariant to mix the up and down
flavon sectors. Using the whole set of invariants allows for the building of the
most general scalar scalar potential compatible with the flavour symmetry
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V(4) =
∑
I=U,D

(
−µ2

IAI − µ̃2
IBI + λIA

2
I + λ̃IB

2
I

)
+ gUDAUAD

+ g̃UDBUBD +
∑

I,J=U,D

g′IJAIBJ + λUDAUD, (2.21)

Where the dimensionless couplings λ, λ̃, g, g′, g̃ would be of order one and
the dimensionful parameters µ, µ̃ smaller or equal than Λf (but around the
same order of magnitude) were we imposing strict naturalness criteria. Notice
the d = 2 terms above have been introduced with negative sign, whereas the
dimensionless parameters can be, a priori, positive or negative. The ultimate
goal being to construct a mexican hat-like potential for each component of
the fields we wish to fix at a certain value. Consistency requires the potential
to be bounded from below, hence imposing further constraints on the sign of
the quartic terms (we know at least some of them will have to be positive).

We will note from the beginning, that a strict implementation of the nat-
uralness criteria could lead at best to a strong hierarchy between the quarks,
with some of them massless, and the others with masses around the same
scale. Establishing a hierarchy between the relative sizes of some of the
µ parameters in the potential will be needed if the observed granularity of
quark mass splittings is to be reproduced, at least when limiting the analysis
to the renormalisable level. The fine-tunings required (if any) to accommod-
ate this hierarchy in the potential, will serve to gauge whether the situation
has improved (or not) with respect to the flavour puzzle.

Moving on with the analysis of the potential, the relations in Eq.(2.20)
allow to determine the position of the minima in terms of the physical observ-
ables, we will comment here on the most relevant physical results. Dealing
first with the angular part of the potential, we can derive V(4) with respect
to the Cabibbo angle θ

∂V(4)

∂θ

∣∣∣∣
min

= λUD
∂ 〈AUD〉
∂θ

∝ λUD sin 2θ
(
y2
c − y2

u

) (
y2
s − y2

d

)
= 0. (2.22)

It can be seen the existence of the minimum requires at least one of the
following conditions to be satisfied: i) λUD = 0, ii) sin θ = 0, iii) cos θ = 0
or iv) two Yukawas in the same sector are degenerate. Condition i) removes
the dependence on the angle from the potential, leaving θ undetermined. It

22



Flavour Beyond the Standard Model

is also not natural, in the sense that no symmetry protects this term from
reappearing at the quantum level. Condition ii), on the other hand, can be
interpreted as a first order solution, since the Cabibbo angle is indeed small.
Higher order operators in the Λf expansion could potentially provide the cor-
rections needed for a better fit to its real value, possibility that we explore
below. The last two conditions lie further from reality, and higher order cor-
rections would have to take on the task of significantly reducing the Cabibbo
angle or splitting the Yukawa degeneracy respectively, rendering them unap-
pealing. The conclusion is somewhat disappointing, given the mass splittings
observed phenomenologically, the scalar potential for bi-fundamental flavons
does not allow for mixing between the first two generations at the renormal-
isable level.

The derivatives of the potential with respect to yu,c,d,s shall also vanish
at the minima, and provide four additional independent conditions on the
parameters. Without going into explicit detail, a large, unnatural hierarchy
must be imposed between the terms of the potential if a non vanishing mixing
angle and distinctive Yukawas are to be obtained, otherwise a generically
degenerate mass spectrum results.

The sum of these observations is that, with a natural choice for the para-
meters in the renormalisable scalar potential V(4), minimisation leads to a
vanishing or undetermined mixing angle, accompanied by a degenerate spec-
trum.

We wish to know whether the situation is improved by the addition of
non-renormalisable operators to the scalar potential. Higher order traces
and determinants involving the flavons can be expressed in terms of the five
independent invariants already introduced in Eq.(2.17), through relations
similar to that shown in Eq.(2.18); meaning the new terms will be just a
composite of them. It is then easy to see the lowest higher dimensional
contributions to the scalar potential have dimension six. At this order, the
only terms including the mixing angle are

V(6) ⊃ 1

Λ2
f

∑
I=U,D

(gUDIAUDAI + g′UDIAUDBI) . (2.23)

It is however clear they will share the same dependence on the Cabibbo
angle previously found in Eq.(2.22) (the one coming from AUD), and can be
consequently absorbed into a redefinition of the low order parameter λUD.
The trend for no mixing extends this way to the non-renormalisable level.
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To find new angular structure we will need a term involving more than one
copy of the AUD invariant, the first of which appears at dimension eight:

V(8) ⊃ 1

Λ4
f

λUDUDA
2
UD, (2.24)

replacing Eq.(2.22) by

∂V
∂θ

∣∣∣∣
min

∝ sin 2θ
(
y2
c − y2

u

) (
y2
s − y2

d

) (
λUD − 2y2

cy
2
sλUDUD sin2 θ + ...

)
= 0,

(2.25)
where further suppressed terms have been neglected, and adding thus

another possible solution

sin2θ ' λUD
2y2

cy
2
sλUDUD

. (2.26)

A sizable value for sin θ within this solution would however require, when
taking into account the experimental values of the Yukawa terms yc and ys , a
completely unnatural hierarchy between the dimensionless coefficients of the
d = 4 and d = 8 terms, which would have to be fine-tuned to λUD/λUDUD ∼
10−10.

The remaining four equations, corresponding to the derivatives of the
potential with respect to yu,c,d,s, show no improvement neither. The Yukawa
couplings always result from a general combination of the parameters in the
scalar potential, meaning the hierarchy between them must be fine-tuned
into the latter.

We can summarize these results by stating that the inclusion of higher
order operators can potentially account for a non-vanishing mixing angle,
coming however at the expense of naturalness. Severe fine-tunings must be
enforced within the scalar potential in order to accommodate the parameters
characterizing the flavour puzzle. We are thus forced to conclude, that the
addition of scalar flavons transforming in the bi-fundamental representation
does not lead to a satisfactory explanation for the dynamical origin of flavour.

To offer a quantifiable example, we close this section by explicitly showing
a fine-tuned scalar potential allowing for hierarchical Yukawa couplings and
a non-vanishing mixing angle. Two new dimension eight invariants need to
be introduced:
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AUDUD = Tr
(
YUY†UYDY

†
DYUY

†
UYDY

†
D

)
, AUUDD = Tr

(
YUY†UYUY

†
UYDY

†
DYDY

†
D

)
,

(2.27)
so that the new potential reads

V =
∑
I=U,D

(
−µ2

IAI + λIA
2
I + λ̃IB

2
I

)
+
λUDUD

Λ4
f

(AUDUD − 2AUUDD)

− εU µ̃2
UBU − εDµ̃2

DBD + εθλUDAUD, (2.28)

where εU,D,θ parametrise the required fine-tunings. Omitting any ana-
lytical detail, the minimisation of the above potential leads to the following
Yukawa eigenvalues and Cabibbo angle

yu '
εU√

2

√
λU µ̃

2
U

λ̃UµUΛf

, yd '
εD√

2

√
λDµ̃

2
D

λ̃DµDΛf

,

yc '
µU√

2λUΛf

, ys '
µD√

2λDΛf

,

sin2 θ ' εθ
λUD

λUDUDy2
cy

2
s

.

(2.29)

When the suppression parameters take on the values εU ∼ 10−3, εD ∼
5 × 10−2 and εθ ∼ 10−10; and the following fractions are suitably chosen as
µ/
(√

λΛf

)
∼ µ̃/

(√
λ̃Λf

)
∼ 10−3, the right Cabibbo angle and hierarchy

among the quark masses can be recovered.
Notice this example has been exclusively shown for illustrative purposes,

the potential in Eq.(2.28) considers two dimension 8 operators, while sim-
ultaneously ignoring many other consistent with the flavour symmetry Gf ,
whose appearance should be weighted in the first place against similarly
ordered quantum corrections. Even further fine-tunings were ultimately re-
quired to fully recreate the flavour structure of the two-family case, including
highly unnatural O (10−10) values, which evidences the lack of attractiveness
of the present solution.

2.2.1.2 Flavons in the fundamental

Seeking for an alternative set of flavons to more faithfully reproduce the
structure of the Yukawa couplings, we consider next the possibility that they
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arise from an aggregate of fields, specifically two of them, thus increasing
the dimension of the Yukawa operators to d = 6. The simplest case involves
two scalar flavons transforming in the fundamental representation of Gf as
a replacement for the Yukawa couplings. The particular realization to be
explored will be the one already shown in Eqs. (2.7) and (2.9).

Notice a minimalistic approach would just require the existence of three
flavons, one for each component of the flavour symmetry, transforming as
(2, 1, 1), (1, 2, 1) and (1, 1, 2) under Gf . Such a setup leads however to no
mixing between the first two families at the renormalisable level, as will be
shown below. It is for this reason, that an additional field in the (2, 1, 1)
representation will be considered, so that the up and down sector Yukawa
terms do no longer have to share the same flavon, explicitly

yLU,D ∈ (2, 1, 1)Gf , yRU ∈ (1, 2, 1)Gf , yRD ∈ (1, 1, 2)Gf . (2.30)

These fields are vectors under the flavour symmetry. The only physical
invariants that can be constructed out of a set of vectors are their norms and
the relative angles between them. Any matrix built out of the multiplication
of two vectors has only one non-vanishing eigenvalue, a result that is inde-
pendent on the number of the dimensions of the space considered. Out of
this fact alone we can already conclude that the Yukawa couplings resulting
from a construction such as the one shown in Eq.(2.7), only provide mass to
one quark at a time. Since there are two Yukawa couplings, one associated to
the “up” sector and the other, associated to the “down” sector, two massive
quarks result, an up- and a down-type quark, while the others will display
vanishing masses. This is an encouraging first step, as hierarchy arises natur-
ally within this model between quarks with the same electric charge. It also
means the 2× 2 Yukawa matrices generated after the breaking of the flavour
symmetry contain many unphysical parameters, unphysical in the sense that
they can be redefined away by a suitable choice of fields, as we show next.
Without losing generality, we can parametrise the vevs to be taken by the
flavons as

〈
yXI
〉
≡
∣∣yXI ∣∣V X

I

(
0
1

)
, (2.31)

where X and I stand for L,R and U,D respectively, V X
I are 2×2 unitary

matrices, and
∣∣yXI ∣∣ ≡ ∣∣〈yXI 〉∣∣ is consequently defined as the norm of the vev
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to be taken by the flavon. After the breaking of the flavour symmetry, it is
possible to redefine the quark fields as

QL → V L
U QL, UR → V R

U UR, DR → V R
DDR, (2.32)

bringing Eq.(2.7), back to the usual appearance of the Yukawa Lagrangian
in the SM

−L Y uk = QLYUURH̃ +QLYDDRH + h.c. , (2.33)

only that now, the Yukawa matrices are given by

YU =

∣∣yLU ∣∣ ∣∣yRU ∣∣
Λ2
f

(
0 0
0 1

)
, YD =

∣∣yLD∣∣ ∣∣yRD∣∣
Λ2
f

V L†
U V L

D

(
0 0
0 1

)
. (2.34)

It should be noted again that different flavons could potentially be as-
signed different scales. Instead, we will assume for simplicity that the scales
of the four flavons are relatively close, regarding Λf as a first order approx-
imation to all of them. Eq.(2.34) illustrates explicitly the two points made
above. A hierarchy naturally arises between the two families here considered,
without imposing any constraint on the parameters of the scalar potential.
On the other hand, it is now easy to see why we demanded the addition
of a second flavon to transform in the (2, 1, 1) representation. The product
V U†
L V D

L is a non-trivial unitary matrix characterizing the structure of the
mixing between the two generations, i.e. the Cabibbo angle (an additional
complex phase can be easily absorbed into the fields in the two-family case
under consideration). But the only reason it appeared in the first place,
is because we could not redefine away the unitary matrix of two flavons at
the same time with that of the single left field QL. Had we just considered
one flavon that would not have been the case. This leaves us with a very
clear geometrical interpretation: the misalignment between the vevs of the
yL flavons in SU(2)QL

space is ultimately responsible for the appearance of
mixing between the two families, parametrised by the Cabibbo angle. The
mixing matrix for the two-family case in Eq.(2.14), to appear in the weak
interaction terms (see Eq.(1.21)), can be then identified as

VC = V L†
U V L

D . (2.35)

The general scalar potential once the new flavons are introduced will be
analogous to that already shown for the bi-fundamental in Eq.(2.16)
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2.2. Dynamical Yukawa couplings

V = −λ
(
H†H − v2

2

)2

+
∞∑
i=4

V(i)
[
H,yL,RU,D

]
., (2.36)

and just as before terms mixing Higgs and flavons will not be expli-
citly discussed, as previous considerations regarding the scale separation
between EW and flavour symmetry breaking still hold. We will thus refer to
V(i)

[
yL,RU,D

]
going forward, as the piece of the potential containing the terms

exclusively involving flavons.
As previously argued, the list of flavour invariants that can be built out

of the set of fundamental flavons is restricted to their norms and the relat-
ive angle between the two sharing the same vector space, i.e. yLU and yLD,
explicitly

yL†U yLU , yR†U yRU , yL†D yLD, yR†D yRD, yL†U yLD. (2.37)

Any other flavour invariant operator can be constructed out of these five
independent building blocks. On the other hand, the combination of Eqs.
(2.13) and (2.34) leads to the following relations between the vevs to be taken
by the flavons and the physical parameters to be reproduced∣∣yLU ∣∣ ∣∣yRU ∣∣ = Λ2

fyc,
∣∣yLD∣∣ ∣∣yRD∣∣ = Λ2

fys, (2.38)

whereas further comparison with Eq.(2.31) allows to write〈
yL†U yLD

〉
= cos θ

∣∣yLU ∣∣ ∣∣yLD∣∣ . (2.39)

As can be seen, the scalar potential depends only on three out of the
five physical parameters within this setup, the two Yukawa couplings corres-
ponding to the heavier second generation quarks, given by the product of
the up or down sector flavon moduli, and the Cabibbo angle. The appear-
ance of the latter in the above equation confirms our geometrical intuition,
the mixing angle is simply the angle defined in flavour space by the left up
and down vectors. The relevant question is the same it was before, can the
flavour invariant potential accommodate the minimum required for the fla-
vour structure of the SM to be reproduced? and if so, to what degree of
naturalness?

We thus turn our attention to the building of the scalar potential. To
this end, it will prove useful to arrange the flavour invariants in Eq.(2.37) as
a vector, denoting it by y2, and by 〈y2〉, its vev
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y2 ≡
(
yL†U yLU ,y

R†
U yRU ,y

L†
D yLD,y

R†
D yRD,y

L†
U yLD

)T
, (2.40)〈

y2
〉
≡
(∣∣yLU ∣∣2 , ∣∣yRU ∣∣2 , ∣∣yLD∣∣2 , ∣∣yRD∣∣2 ,〈yL†U yLD

〉)T
. (2.41)

This condensed notation allows to write the most general scalar potential
at the renormalisable level as

V(4) = −1

2

∑
I

(
µ2
Iy

2
I + h.c.

)
+
∑
I,J

λIJ
(
y2
I

)∗
y2
J = −1

2

(
µ2y2 + h.c.

)
+
(
y2
)†
λy2,

(2.42)
where the indices I, J run over the five entries of the above defined vectors,

UL, UR, DL, DR, UD; and the parameters of the potential have been
arranged into the vector µ2 and the 5 × 5 hermitian matrix λ. We will
additionally demand the latter to be positive definite in order to ensure the
potential is bounded from below. The most general renormalisable potential
is thus comprised by a total of 20 invariant operators. Being positive definite,
λ is also invertible, so the addition of a constant term to the potential allows
us to bring the above expression to the following form

V(4) =

(
y2 − 1

2
λ−1µ2

)†
λ

(
y2 − 1

2
λ−1µ2

)
. (2.43)

The minimum, and thus the vev configuration of the flavons, is now
straightforwardly extracted as〈

y2
〉

=
1

2
λ−1µ2. (2.44)

The Yukawa couplings and the Cabibbo angle can be then expressed in
terms of the parameters of the potential by comparison of the above equation
to Eqs. (2.38) and (2.39), yielding

y2
c =

1

4Λ4
f

(
λ−1µ2

)
UL

(
λ−1µ2

)
UR

, y2
s =

1

4Λ4
f

(
λ−1µ2

)
DL

(
λ−1µ2

)
DR

,

cos θ =
(λ−1µ2)UD√

(λ−1µ2)UL (λ−1µ2)DL
.

(2.45)
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2.2. Dynamical Yukawa couplings

Remarkably, cos θ ∼ O(1), and a sizable mixing angle can be naturally
attained even at the renormalisable level. On the other hand, Yukawa eigen-
values result O

(
µ2/λΛ2

f

)
, and are fixed to their observed values, Eq.(1.20),

by imposing 
√

(λ−1µ2)UL (λ−1µ2)UR ∼ 10−2Λ2
f for yc,

√
(λ−1µ2)DL (λ−1µ2)DR ∼ 10−4Λ2

f for ys.
(2.46)

The situation is thus quantitatively improved with respect to the bi-
fundamental approach, as the hierarchy between the first two families and
non-negligible mixing are naturally explained within this model without the
need of strong fine-tunings.

Notice however, that the first generation has remained massless through-
out the analysis of the potential at the renormalisable level. An interest-
ing question is whether it is possible for non-renormalisable corrections to
induce small masses for the lightest quarks. These corrections could poten-
tially manifest in two ways: in the form of new, higher order operators in the
potential modifying its minima, and/or as higher order contributions to the
Yukawa operators.

The first cannot possibly give masses to the first generation, as the discus-
sion from Eqs. (2.31) to (2.34) still holds, being purely based on mathemat-
ical arguments, regardless of the vevs to be taken by the flavons. Their only
effect is to modify the moduli and unitary matrices appearing in Eq.(2.31),
thus redefining the mixing angle θ and second family Yukawas yc and ys,
without changing the rank of the Yukawa matrices.

As for the second, the transformation properties of the fundamental
flavons imply that higher order contribution to the Yukawa operators can
only be constructed by further insertions of y†y into the renormalisable op-
erators. Such insertions do not however modify the flavour structure of the
Yukawa matrices, but simply shift the values of the combinations appearing
to the left in Eq.(2.38), merely redefining the two heavier Yukawa couplings
yc and ys.

To summarise, non-renormalisable interactions cannot induce Yukawa
couplings for the quarks of the first generation, which remain massless even
after their consideration.

Lastly, we shall briefly explore the phenomenological consequences result-
ing from the addition of the fundamental flavons presently under discussion,
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to be compared with those expected from the adoption of the bi-fundamental
flavons introduced in the previous section. For the latter, the list of effective
operators matches that of the original MFV proposal [3], whereas the fun-
damental flavons allow for the construction of higher-dimension invariants
yet exhibiting lower dimension than those that can be built out of the bi-
fundamental. Consider for instance the following two basic bilinear FCNC
structures {

DRY†DYUY
†
UQL d = 6,

DRy
R
Dy

L†
U QL d = 5,

(2.47)

where the mass dimension of the flavour invariant has been made expli-
cit. Effective operators mediating FCNC processes, constructed out of the
above invariants, exhibit thus different degrees of suppression. In this sense,
the identification of the Yukawa couplings with an aggregate of two flavons
departs from the simplest realisation of MFV, featuring potentially different
phenomenology and consequently, providing a way to discriminate between
fundamental and bi-fundamental origin.

2.2.2 Three-family case

The analysis of the three-family case for both bi-fundamental and funda-
mental representations will be, for the most part, a straightforward extension
on the one performed for the first two families in the previous section, but
two major differences warrant our attention.

In the two-family case, the smallness of the largest Yukawa coupling yc,
allowed to safely neglect next to leading order contributions in the Yukawa
perturbative expansion, but this is no longer the case once the top Yukawa yt
of order O(1) is introduced. The latter forces, a priori, to consider all orders
in the expansion. Thankfully, there is a way to circumvent this apparent
predicament: the Cayley-Hamilton identity [24], which states a general 3× 3
matrix X must satisfy the following relation

X3 − Tr (X)X2 +
1

2
X
(
Tr2 (X)− Tr

(
X2
))
− det (X) = 0. (2.48)

The use of the latter allows to express any power Xn, with n > 2, in
terms of the identity, X, and X2, with coefficients involving the traces of X
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and X2 and the determinant of X. The flavour invariant products Y†Y or
yy† will be the target of its application when considering bi-fundamental or
fundamental flavons respectively.

The second difficulty involves the appearance of a physical complex phase
in the CKM quark mixing matrix, together with three other mixing angles2.
Whether or not this CP-violating phase can be accommodated within the
potential will be explored below.

2.2.2.1 Flavons in the bi-fundamental

We consider now the original flavour symmetry group Gf as shown in Eq.(1.12),
under which the new bi-fundamental flavons will transform as

YU ∈ (3, 3̄, 1)Gf → ΩQL
YUΩ†UR

, YD ∈ (3, 1, 3̄)Gf → ΩQL
YDΩ†DR

, (2.49)

where the ΩX matrices refer now to the triplet transformation under
the SU(3)X component of the flavour group. The Yukawa Lagrangian will
be that already shown in Eq.(2.4), and consequently, the same is true for
the relations between the Yukawa couplings and the flavon vevs, laid out
in Eq.(2.6). After the spontaneous breaking of the flavour symmetry, the
vevs induced shall be those that reproduce the observed quark masses and
CKM mixing matrix, embedded in the Yukawa matrices as displayed by Eqs.
(1.16) and (1.17). Just as before, we could potentially complete the set of
flavons by the addition of a third RH field YR ∈ (1, 3, 3̄)Gf , departing from
the minimal setup. This possibility is however not considered as it is not
relevant to the flavour structure of the Yukawa couplings, to which it cannot
contribute neither at O(1/Λf ) nor at O(1/Λ2

f ) order, or equivalently, through
d = 5 or d = 6 Yukawa operators respectively.

We will restrict the explicit analysis to the part of the renormalisable
scalar potential constructed purely out of flavon fields, omitting the terms
involving the SM Higgs, as previous arguments still hold. A complete and
independent basis of flavour invariants is given now by the following seven
operators

2This section will follow the PDG conventions [1] for the CKM matrix parametrisation,
involving the three standard mixing angles θ12, θ23, θ13, and a complex phase δ.

32



Flavour Beyond the Standard Model

AU = Tr
(
YUY†U

)
, AD = Tr

(
YDY†D

)
,

BU = det (YU) , BD = det (YD) ,

AUU = Tr
(
YUY†UYUY

†
U

)
, ADD = Tr

(
YDY†DYDY

†
D

)
,

AUD = Tr
(
YUY†UYDY

†
D

)
,

(2.50)

whose vevs can be expressed in terms of the physical parameters to be
reproduced through Eq.(2.6):

〈AU〉 = Λ2
f

(
y2
u + y2

c + y2
t

)
, 〈AD〉 = Λ2

f

(
y2
d + y2

s + y2
b

)
,

〈BU〉 = Λ3
fyuycyt, 〈BD〉 = Λ3

fydysyb,

〈AUU〉 = Λ4
f

(
y4
u + y4

c + y4
t

)
, 〈ADD〉 = Λ4

f

(
y4
d + y4

s + y4
b

)
,

(2.51)

with all the angular dependence encoded within the invariant

〈AUD〉 /Λ4
f =−

∑
i<j

(
y2
ui
− y2

uj

)(
y2
di
− y2

dj

)
sin2 θij+

+
∑
i<j,k

(
y2
di
− y2

dk

) (
y2
uj
− y2

uk

)
sin2 θik sin2 θjk+

−
(
y2
d − y2

s

) (
y2
c − y2

t

)
sin2 θ12 sin2 θ13 sin2 θ23+

+
1

2

(
y2
d − y2

s

) (
y2
c − y2

t

)
cos δ sin 2θ12 sin 2θ23 sin θ13,

(2.52)

where i, j, k = 1, 2, 3. The first term above generalises that of the two-
family case in Eq.(2.20), grouping all the terms with single angular depend-
ence.

The most general scalar potential at the renormalisable level is built out
of the new invariants

V(4) =
∑
I=U,D

(
−µ2

IAI + µ̃IBI + λIA
2
I + λ′IAII

)
+ gUDAUAD + λUDAUD.

(2.53)
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It is worth noting that the BU,D invariants have mass dimension three
now, instead of two, as they had for the two-generation case, forbidding the
appearance of B2

X or BXAY terms at the renormalisable level.
The minimisation of the potential is involved and will not be explicitly

shown, but we shall comment some features characterising its solutions,
which are relatively similar to that of the two-family case. The equations
resulting from the derivatives of the potential with respect to the mixing
angles favor no mixing, i.e. sin θ12 = sin θ23 = sin θ13 = 0, and while there
are solutions with non-vanishing angle configurations due to the last term of
Eq.(2.52), constituting a novel possibility not present in the two-family case,
they are not representative of reality, involving large mixing angles for the
third family. The situation is not improved neither for the Yukawa eigenval-
ues, which tend to be degenerate in most of the parameter space. There is
however a region in the latter allowing for a non vanishing Yukawa coupling
per up and down sector, for non strictly zero but constrained µ̃. But manually
imposing the hierarchy between the top and bottom masses is still required,
which further demands gUD < y2

b/y
2
t . so that the fine-tunings enforced are

in the end comparable to those of the two-family case. Furthermore, the
similarities extend beyond this point, as initially vanishing sin θ at the renor-
malisable level do not receive higher order corrections from the addition of
non-renormalisable terms to the potential. Nevertheless, they do help in the
scenario involving the fine-tuned choice of the parameters gUD and µ̃, by
enabling the introduction of lighter Yukawas, although no hierarchy among
the first two generations can be naturally enforced.

The above results can be summarised by stating that the sole consider-
ation of the two bi-fundamental scalars presently under discussion cannot
possibly account for the flavour structure of masses and mixings in the SM,
when giving a dynamical origin to the Yukawa couplings under naturalness
criteria.

2.2.2.2 Flavons in the fundamental

We now contemplate the scenario involving flavons transforming in the fun-
damental representation of Gf for the three-family case. Non-trivial mixing
requires the adoption of at least four vectors, a left and a right pair of up
and down flavons

yLU,D ∈ (3, 1, 1)Gf , yRU ∈ (1, 3, 1)Gf , yRD ∈ (1, 1, 3)Gf . (2.54)
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Once they develop vevs, the flavour symmetry is spontaneously broken,
and the Yukawa couplings arise as in Eq.(2.9). As was previously discussed
for the two-family case, it is possible, without the loss of generality, to para-
metrise the flavon vevs as

〈
yXI
〉
≡
∣∣yXI ∣∣V X

I

0
0
1

 , (2.55)

where X and I stand for L,R and U,D respectively, and V X
I are now

3 × 3 unitary matrices. Proceeding in analogous fashion to the way we did
for the two-family case, we can redefine the quark fields to bring the Yukawa
matrices to the following form

YU =

∣∣yLU ∣∣ ∣∣yRU ∣∣
Λ2
f

0 0 0
0 0 0
0 0 1

 , YD =

∣∣yLD∣∣ ∣∣yRD∣∣
Λ2
f

V L†
U V L

D

0 0 0
0 0 0
0 0 1

 . (2.56)

Remember that their origin as the product of two vectors is ultimately
the reason the Yukawa matrices cannot possibly have more than one non-
vanishing eigenvalue. A result independent on the parametrisation adopted
for the flavon vevs, which in this case has been chosen just so this fact is
openly displayed. Notice as well, that the non-vanishing eigenvalue in both
the up and down sectors has been chosen to be that of the third generation,
as it involves the heaviest quarks.

From the structure of the above Yukawa matrices, it follows that the
flavon vevs have not completely broken the flavour symmetry, leaving a re-
sidual SU(2)QL

×SU(2)UR
×SU(2)DR

among the first two generations, which
remain massless and thus indistinguishable. As a consequence, any rotation
in the 12 sector has no observable physical effect. Additionally, it should
be noted that only one physical mixing angle can possibly be accounted for
within this setup, as it can only be sourced from the misalignment between
the two vevs of the flavons sharing the SU(3)QL

component of Gf , yLU and yLD.
It follows that the most logical choice for the latter, is to be identified with
the θ23 CKM mixing angle, as it is only second in size to θ12 (the hierarchy
goes as θ12 > θ23 > θ13), so that the quark mixing matrix resulting from this
scenario reads
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V L†
U V L

D =

1 0 0
0 cos θ23 sin θ23

0 − sin θ23 cos θ23

 . (2.57)

The analysis of the scalar potential is an exact copy of that shown for
the two-family case, thus reaching identical solution (see Eq.(2.45)), with the
trivial replacement of yc, ys for yt, yb and θ23 substituting the Cabibbo angle.
Both, the largest hierarchy among generations and a cos θ23 of order O(1),
are in this way naturally explained without the need of any fine-tunings,
the main drawbacks being it is impossible to generate lighter fermion masses
even after the inclusion of non-renormalisable terms and of course, the lack
of the full mixing pattern (including the complex phase).

On the other hand, the partial breaking of the flavour symmetry group
displayed by Eq.(2.56) can open interesting possibilities from a model build-
ing perspective, suggesting it could be a good idea to consider a multi-step
approach, where different components of the flavour group Gf are broken at
different scales. Such scenario would however require a significantly enlarged
flavon spectrum and involve a far less generic potential, losing attractive as
a possible solution.

Another sensible approach, specially from an effective Lagrangian point
of view, could be to consider the combination of bi-fundamental and funda-
mental flavons, working at O(1/Λ2

f ), and thus simultaneously including the
contribution from d = 5 and d = 6 Yukawa operators. This possibility shares
however the same pitfalls of the last one, as the analysis of the potential
would be likely involved, and the direct connection between the minima of
the latter and the flavour structure of the Yukawa couplings is lost.
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Data driven flavour model

The disappointing conclusion that can be extracted from the last few sec-
tions is that the simplest promotion of MFV from a low-energy description to
a well-defined high-energy theory does not lead to a satisfying explanation,
in the form of a dynamical origin for the Yukawa couplings, for the flavour
structure of the SM. The spontaneous breaking of the full flavour symmetry
group Gf , exhibited by the latter in the limit of vanishing mass terms, is
caused, in this realization, by the vevs of the simplest sets of scalar flavons
consistent with the flavour symmetry, i.e. bi-fundamental and fundamental
flavons. The first, when considering the minimal amount of flavons required
(that is, two), lead naturally to a degenerate quark mass spectrum, with
vanishing or undetermined mixing angles. Whereas the second, when con-
sidered in the amount of four, to source the appearance of a non-vanishing
mixing angle, are able to provide a strong mass hierarchy between quarks
of the same charge, resulting in a distinctly heavier quark in each sector,
but ultimately fall short in generating the Yukawa couplings for the lighter
quarks and accounting for the full mixing pattern. A departure from the at
least a priori, most straightforward approaches, seems to be warranted if we
wish to accommodate the full flavour spectrum within this setup.

The data driven flavour model [25] is an agnostic, bottom-up approach,
built solely on the available experimental data regarding the flavour sector.
Avoiding any fine-tuning on the Yukawa couplings, the quark mass hierarchy
suggests that only the top Yukawa term should arise at the renormalisable
level, as it involves the only O(1) parameter satisfying naturalness criteria
(see Eq.(1.20)). The starting assumption will be that this term is already
invariant under the considered flavour symmetry without any flavon inser-
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tion, which are however still needed for the rest of the quarks. The model
distinguishes in this way the third family from the two lighter ones from the
very beginning, naturally describing a top Yukawa of order 1, and thus avoid-
ing any technical difficulty regarding its eventual perturbative expansion in
terms of the flavour scale Λf .

The effective operators of the model are forced into fixed flavour struc-
tures, dictated by the specific insertion of flavon fields required so as to make
the operator invariant under the new flavour symmetry. As a consequence,
the analysis of the d = 6 effective operators reveals the most stringent lower
bound on the new flavour physics scale Λf to be of the order of a few TeV s,
coming from the requirement of complying with experimental FCNC con-
straints. In this sense, the phenomenology of the model is very similar to
that of the MFV framework, providing an exciting opportunity to find new
physics in the near future.

The goal of this section is to explicitly show the construction of the data
driven flavour model, eventually turning to the analysis of its flavon potential.
Is it possible for the latter to harbor the minimum required for the origin of
flavour as we know it? And if so, to what degree of naturalness? These are
the questions we would like to answer in this work.

Let us introduce first the flavour symmetry that will characterise the
model. Consider the following Yukawa Lagrangian for the quark sector

−L q
Y uk = ytQ

3

LH̃tR + ∆L q
Y uk + h.c. , (3.1)

whereQ3
L denotes the third generation left-handed SU(2)L doublet, tR the

SU(2)L singlet right-handed top quark (see Eq.(1.10)), and ∆L q
Y uk contains

the Yukawa couplings responsible for the rest of quark masses and mixing.
The new flavour symmetry Gq is then formally defined as the largest non-
Abelian quark flavour symmetry group consistent with the whole Lagrangian
in the absence of ∆L q

Y uk, that is

Gq = SU(2)QL
× SU(2)UR

× SU(3)DR
. (3.2)

The transformation properties of the quark content in the SM under this
group are as follows: the fields Q3

L and tR are now singlets under Gq; the left-
handed quarks of the first two families, arranged as the flavour vector Q1,2

L ,
transform as a doublet under SU(2)QL

; the right-handed quarks of the up
sector, analogously bundled into U1,2

R , transform as a doublet under SU(2)UR
;
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SU(2)QL
SU(2)UR

SU(3)DR

Q1,2
L 2 1 1
Q3
L 1 1 1

U1,2
R 1 2 1
tR 1 1 1
DR 1 1 3

∆YU 2 2 1
∆YD 2 1 3
yD 1 1 3

Table 3.1: Quark and flavon transformation properties under Gq.

and lastly, the three right-handed down quarks, grouped into DR, transform
as a triplet of SU(3)DR

.
The Yukawa terms in ∆L q

Y uk are rendered invariant by the insertion of
three new flavons, transforming as follows under Gq

∆YU ∈ (2, 2, 1)Gq , ∆YD ∈ (2, 1, 3)Gq , yD ∈ (1, 1, 3)Gq . (3.3)

The complete list of quark and flavon transformation properties under Gq
has been summarised in Table 3.1 for easier reading.

The resulting Lagrangian involves the following d = 5 Yukawa operators

∆L q
Y uk = Q

1,2

L H̃
∆YU
Λf

U1,2
R +Q

1,2

L H
∆YD
Λf

DR +Q
3

LH
yD
Λf

DR. (3.4)

Notice each Yukawa coupling arises from the vev of a single flavon. In
this sense, the model has been kept as minimal as possible. The Yukawa
matrices generated in this fashion, once the spontaneous breaking of the
flavour symmetry takes place, can be read from the above Lagrangian to be

YU =

(
〈∆YU〉 0

0 yt

)
, YD =

(
〈∆YD〉
〈yD〉

)
. (3.5)

The vevs to be adopted by the flavons in order to reproduce the mixings
and masses of the quark sector (except that, of course, of the top), can be
now extracted by simple comparison with the Yukawa matrices of the SM
(see Eqs. (1.16) and (1.17)):
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〈∆YU〉 = Λf

(
yu 0
0 yc

)
,

〈∆YD〉 = ΛfV
2×3
CKM

yd 0 0
0 ys 0
0 0 yb

 ,

〈yD〉 = ΛfV
1×3
CKM

yd 0 0
0 ys 0
0 0 yb

 ,

(3.6)

where V 2×3
CKM and V 1×3

CKM denote the 2× 3 matrix and 1× 3 vector corres-
ponding to the first two and third rows of the CKM matrix respectively.

3.1 The scalar potential

We wish to know whether the above vevs can be naturally accommodated for
the flavons within the model, so we turn now our attention to the building of
the most general scalar potential compatible with the flavour symmetry Gq.
At the renormalisable level, a complete and independent basis for the latter
is given by the following seven invariant operators

AU = Tr
(

∆YU∆Y†

U

)
, AD = Tr

(
∆YD∆Y†

D

)
,

AUU = Tr
(

∆YU∆Y†

U∆YU∆Y†

U

)
, ADD = Tr

(
∆YD∆Y†

D∆YD∆Y†

D

)
,

AUD = Tr
(

∆YU∆Y†

U∆YD∆Y†

D

)
,

BD = yDy
†

D, BDD = yD∆Y†

D∆YDy
†

D,
(3.7)

meaning any other flavour invariant can be constructed by combination
of the above. For example, det (∆YU) while also a d < 4 invariant, can be
written in terms of AU and AUU by virtue of the following relation

det (∆YU) =
1

2

(
Tr
(

∆YU∆Y†

U

)2

− Tr
(

∆YU∆Y†

U∆YU∆Y†

U

))
, (3.8)

so that, if it were to be present in the Lagrangian, in addition to the
aforementioned invariants, it could just be absorbed into a redefinition of
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the coefficients accompanying A2
U and AUU . Once the flavons acquire vevs

as in Eq.(3.6), these invariants can be expressed in terms of the physical
observables to be reproduced:

〈AU〉 =Λ2
f

(
y2
u + y2

c

)
,

〈AD〉 =Λ2
f

(
y2
d + y2

s + y2
b − y2

d |V31|2 − y2
s |V32|2 − y2

b |V33|2
)
,

〈AUU〉 =Λ4
f

(
y4
u + y4

c

)
,

〈ADD〉 =Λ4
f

((
y2
d |V11|2 + y2

s |V12|2 + y2
b |V13|2

)2
+

+
(
y2
d |V21|2 + y2

s |V22|2 + y2
b |V23|2

)2
+

+2
(
y4
d |V11|2 |V21|2 + y4

s |V12|2 |V22|2 + y4
b |V13|2 |V23|2

) )
,

〈AUD〉 =Λ4
f

(
y2
u

(
y2
d |V11|2 + y2

s |V12|2 + y2
b |V13|2

)
+

+y2
c

(
y2
d |V21|2 + y2

s |V22|2 + y2
b |V23|2

))
,

〈BD〉 =Λ2
f

(
y2
d |V31|2 + y2

s |V32|2 + y2
b |V33|2

)
,

〈BDD〉 =Λ4
f

(
y4
d |V31|2

(
1− |V31|2

)
+

+y4
s |V32|2

(
1− |V32|2

)
+ y4

b |V33|2
(
1− |V33|2

))
,

(3.9)
where Vij denote the entries of the CKM matrix, whose unitarity rela-

tions have been used to simplify some of the expressions above. Notice the
dependence on the complex phases of the entries in the CKM matrix is lost at
the level of the potential, as only their moduli appears within the invariants.

Previous considerations regarding the separation between the EW and
flavour symmetry breaking energy scale and the role of the Higgs-flavon in-
teraction terms in the scalar potential still hold. Consequently, any Higgs-
involving term will be disregarded in the forthcoming analysis. Having found
the basis of flavour invariants in Eq.(3.7), we are now in position to write
the most general scalar potential allowed by the flavour symmetry at the
renormalisable level:

V(4) =
∑
I=U,D

(
−µ2

IAI + λIA
2
I + λIIAII + g′IDAIBD

)
− µ̃2

DBD + λ̃DB
2
D+

+ λUDAUD + λ′DDBDD + gUDAUAD. (3.10)
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As a quick reminder, strict naturalness criteria would require all dimen-
sionless couplings – λ, g, and variations – to be O(1) parameters of the
theory, whereas the dimensionful couplings – µ – are naturally expected to
be smaller or equal than the flavour scale Λf , while sharing the same order
of magnitude.

3.2 Minimisation of the potential

We now turn our attention to the minimisation of the scalar potential in
Eq.(3.10). The use of the relations introduced in Eq.(3.9), allows to determine
the position of the potential minima in terms of the physical observables.
We then face a purely mathematical exercise: given V(4) as a function of
the variables to result in the five lightest Yukawa eigenvalues and the three
mixing angles and complex phase describing the CKM matrix, is there any
combination of the parameters in the potential – λ, g, µ, and variations, that
allows for a minimum to exist at the precise point of the nine-dimensional
variable space corresponding to their exact values in the SM? To answer this
question is the goal of this section, and ultimately, of this work. Special
consideration will be given to the degree of naturalness exhibited by the
resulting solutions.

The first step is to derive V(4) with respect to each of the physical vari-
ables, from which we obtain nine conditions that must be met by the minima
of the potential. It is at this point that we are met with the first difficulty
of the analysis, the potential in Eq.(3.10) is comprised by thirteen terms
involving intricate dependencies on the physical variables, making impractic-
able what should be, a priori, a straightforward analytical procedure. Note,
however, that the values of the physical parameters in the SM span several
orders of magnitude (see Eqs. (1.20) and (1.22)). Hinted by this fact and
inspired by the helpfulness of the Wolfenstein parametrisation, we recognize
an expansion in terms of powers of a shared suppression parameter, to be
a sensible approach. For convenience, this parameter is chosen to be that
already appearing in Wolfenstein’s parametrisation, λ (see Eq.(1.23)). The
idea is to reparametrise the dependence on the physical variables, switching
to a new set where the order of magnitude of the corresponding observable
has been factorised in powers of λ, so that the masses and mixing pattern
of the SM arise when each of these new variables take O(1) values. For the
sake of simplicity and in order to obtain a manageable expansion in powers
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of λ, we consider the following parametrisation as a good first approximation
to the CKM matrix in the SM (see Eq.1.22)

VCKM '

 1 θcλ θbλ
3

−θcλ 1 θaλ
2

θbλ
3 −θaλ2 1

 , (3.11)

where θa,b,c are the variables chosen to introduce the dependence on the
physical mixing observables to the potential. Notice only three variables
have been adopted to describe the four physical parameters in the CKM
matrix, which could be potentially concerning, as we are implicitly imposing
an additional condition to the analysis. In practice, the effect of this choice
is negligible, as the V31 entry of the CKM matrix appears always suppressed
by yd in the potential, as can be seen from the expressions involving the vevs
of the flavons in Eq.(3.9).

As for the Yukawa eigenvalues, we simply factorise their relative “sizes”
in terms of integer powers of λ:

yu = y′uλ
8, yc = y′cλ

3, yd = y′dλ
7, ys = y′sλ

5, yb = y′bλ
3. (3.12)

The new variables y′u,c,d,s,b will be O(1) valued when the right masses are
generated for the corresponding quarks.

Once the above substitutions are performed on the flavon vevs in Eq.(3.9),
the equations for the minima of the scalar potential V(4) can be obtained by
deriving the latter with respect to the newly introduced variables. The well
defined hierarchy of the eight resulting equations in terms of powers of λ, will
allow now to treat and solve them perturbatively. Notice we are implicitly
assuming strict naturalness criteria for the parameters of the potential, i.e. λ,
g, µ/Λf ∼ O(1), in this first approach to the analysis. The power expansion
in terms of λ would otherwise crumble, as we have not extracted any power of
the latter from the parameters, and we are relying on it as our gauging tool for
the relative size of the terms in the potential. Staying within analytical reach,
the conditions for the existence of the minima with the new parametrisation
read
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1

Λ4
f

∂V(4)

∂θa
= −2

µ2
D

Λ2
f

y′2b θaλ
10 +O(λ14),

1

Λ4
f

∂V(4)

∂θb
= −2

µ2
D

Λ2
f

y′2b θbλ
12 +O(λ18),

1

Λ4
f

∂V(4)

∂θc
= −2

µ2
D

Λ2
f

y′2s θcλ
12 +O(λ16),

1

Λ4
f

∂V(4)

∂y′u
= −2

µ2
U

Λ2
f

y′uλ
16 +O(λ22),

1

Λ4
f

∂V(4)

∂y′d
= −2

µ2
D

Λ2
f

y′dλ
14 +O(λ20),

1

Λ4
f

∂V(4)

∂y′s
= −2

µ2
D

Λ2
f

y′sλ
10
(
1 + θ2

cλ
2
)

+O(λ16),

1

Λ4
f

∂V(4)

∂y′c
= −2

µ2
U

Λ2
f

y′cλ
6 + 2g′UDy

′2
b y
′
cλ

12 + 4 (λU + λUU) y′3c λ
12 +O(λ16),

1

Λ4
f

∂V(4)

∂y′b
= −2

µ̃2
D

Λ2
f

y′bλ
6 − 2

µ2
D

Λ2
f

y′b
(
θ2
aλ

10 + θ2
bλ

12
)

+ 2g′UDy
′2
c y
′
bλ

12 + 4λ̃Dy
′3
b λ

12 +O(λ16).

(3.13)
We do not need to go any further in the expansion. Under strict nat-

uralness criteria, it is already clear that no minima can possibly exist for
O(1) valued y′u,c,d,s,b and θa,b,c, since no cancellation can be arranged among
the strongly hierarchical terms above. This is as intuitively expected, quad-
ratic terms dominate the potential, suppressed by fewer powers of Yukawa
eigenvalues and mixing entries than the quartic ones. The dimensionful para-
meters in the potential, µU , µD and µ̃D, accompanying the first, will certainly
need to be fine-tuned to some extent if the mixing pattern and quark masses
of the SM are to be accommodated.

To find desirable solutions for the new variables, we can try selectively
suppressing, with powers of λ, the parameters appearing in the troubling
terms of the minimum conditions, the objective being to bring enough of
them to the same order of λ, so that non-vanishing O(1) solutions become
possible for the variables. Note, however, that the conditions for the minima
often share the same parameters between them. It may very well be the
case that suitable solutions cannot simultaneously be achieved for all the
variables, this procedure is in no way guaranteed to succeed. Nevertheless,
it shall be instructive to show one such possibility.

Consider, for instance, that based on our previous observations, we decide
to impose the following hierarchy between the parameters of the potential
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µ̃D = δµ̃Dλ
3, µU = δµUλ

3, µD = δµDλ
2, (3.14)

so that the O(1) values correspond now to the fractions δµ/Λf . This ac-
complishes two things: first, it delays the appearance of structure in the equa-
tions concerning the three mixing parameters and the three lightest Yukawa
eigenvalues, which could not possibly lead to an appealing solution in the
lowest orders of the expansion; but also, it manages to bring the only two
non-vanishing derivatives appearing now below O(λ14), involving the charm
and bottom Yukawa couplings, to the following form

1

Λ4
f

∂V(4)

∂y′c

∣∣∣∣
min

=

(
−2

δµ2
U

Λ2
f

y′c + 2g′UDy
′2
b y
′
c + 4 (λU + λUU) y′3c

)
λ12 +O(λ16) = 0,

1

Λ4
f

∂V(4)

∂y′b

∣∣∣∣
min

=

(
−2

δµ̃2
D

Λ2
f

y′b + 2g′UDy
′2
c y
′
b + 4λ̃Dy

′3
b

)
λ12 +O(λ14) = 0.

(3.15)
The above equations allow now for the existence of an interesting min-

imum:

y′c '
1

Λf

√
g′UDδµ̃

2
D − λ̃Dδµ2

U

g′2UD − 4λ̃D (λU + λUU)
, y′b '

1

Λf

√
g′UDδµ

2
U − 2 (λU + λUU) δµ̃2

D

g′2UD − 4λ̃D (λU + λUU)
.

(3.16)
Remarkably, y′c,b take on O(1) values, and thus, the masses of the charm

and bottom quarks can be given a dynamical origin within the model. This
procedure could potentially be continued into higher orders of the expansion,
targeting the different parameters in the potential, aiming for solutions like
those in Eq.(3.16) for the remaining variables. It should be however noted,
that there is a lot of freedom in the 13-dimensional parameter space, and
even though general inferences can be made looking at the structure of the
potential, like the dimensionful parameters necessarily requiring some degree
of suppression, it cannot be reasonably expected to explore each and every
possibility in this fashion. Multitude of divergent paths can be taken right
from the first choice, given in the above example by Eq.(3.14). Neverthe-
less, many such possibilities have been explored in the making of this work.
It is relatively easy to give mass to the two heaviest quarks through O(1)
expressions alike to those shown in Eq.(3.16). Afterwards, this procedure
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generically tends to lead to one of the two following outcomes: either the
right mass is generated for the strange quark, resulting in the absence of
quark mixing and vanishing masses for the first generation; or non-vanishing
θa allows for mixing between the third and second generations, at the price of
massless up, down and strange quarks and undetermined and vanishing mix-
ing structure among the first and the second and third families respectively.
To summarise, the enforcing of mild fine-tunings among the parameters of
the scalar potential (such as those shown in Eq.(3.14)), is enough to account
for the dynamical origin of the bottom and charm (and even the strange)
masses, but the remaining quarks stay massless, and there is no way to ac-
commodate the full mixing pattern exhibited by the SM.

But before taking these conclusions any further, let us turn next to the
numerical study of the scalar potential. The analytical analysis was made
challenging by the sheer amount of terms in the potential, which thankfully,
will no longer be an issue. What will, however, still be troublesome, is the
large region of 13-dimensional parameter space that we should aim to explore
before giving a definite answer. Seeing as we were unsuccessful accommod-
ating the whole flavour structure of the SM, we are now interested in the
question of whether is it possible at all, and if it is, to which degree of detri-
ment in the naturalness displayed by the potential of the data driven model,
when compared to the above instances of MFV or the very flavour sector of
the SM.

The numerical approach allows to effortlessly reparametrise the flavon
vevs to the best of our experimental knowledge, without having to worry
about messy analytical expressions:

VCKM '

 1− θ2
cλ

2/2 θcλ θaθcAλ
3 ‖θbρ− iθdη‖

−θcλ 1− θ2
cλ

2/2 θaAλ
2

θaθcAλ
3 ‖1− θbρ− iθdη‖ −θaAλ2 1

 ,

yu = y′uλ
7.59, yc = y′cλ

3.30, yd = y′dλ
7.05, ys = y′sλ

5.05, yb = y′bλ
2.50,
(3.17)

where the whole set of Wolfenstein parameters in Eq.(1.23) has been
adopted. Notice this time we are avoiding any technical difficulty by intro-
ducing four variables – θa,b,c,d, offering now a complete description of the four
physical observables in the CKM matrix

As a result of the above parametrisation, the flavour structure of the SM
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is exactly reproduced not only when the variables y′u,c,d,s,b and θa,b,c,d take
O(1) values, but in fact, very close to 1, which will make future results easier
to interpret. Notice we have purposefully removed the complex phase from
the entries of the CKM matrix, as the position of the minima only depends
on their moduli (see Eq.(3.9)), and will be thus irrelevant for the present
analysis.

To comb through the vast parameter space, a Monte Carlo based ap-
proach will be employed, randomly sampling different sets of the parameters
appearing in the scalar potential. Each set will be judged on the proximity
of the nearest minimum to the point

(y′u, y
′
c, y
′
d, y
′
s, y
′
b, θa, θb, θc, θd) = (1, 1, 1, 1, 1, 1, 1, 1, 1) , (3.18)

which, after the new parametrisation, harbours the SM flavour structure.
The minimisation is carried by numerical means, with bias towards minima
with larger second derivatives, indicative of better stability. As previously
discussed, with the structure of the potential in Eq.(3.10), we are after the
generation of bounded-from-below, mexican-hat like, one-dimensional cuts
of the potential for each of the variables in play, whose minimum shall lie at
the point in Eq.(3.18).

There is an important point which should be remarked, available compu-
tational resources allow for the exploration of the parameter space only up
to a certain degree of precision. We will not be able to claim we have found
every possible solution, nor the best one, instead, we will just be answering
the question of whether a desirable solution can be achieved at all, and draw-
ing general conclusions regarding the extent of the fine-tunings required. In
this situation, the distribution from which the parameters are being randomly
sampled becomes a relevant matter, e.g. a flat distribution between 1 and
-1 would bias the sampling of the quartic parameters towards non fine-tuned
values. To better explore the parameter space, other distributions such as
exponentials have also been implemented in combination to the latter.

The results of the analysis are scarce, but once the Monte Carlo algorithm
provides a set of parameters with a minimum roughly neighbouring the point
in Eq.(3.18), it is possible to iteratively improve its proximity up to the
desired degree of accuracy. This can be done by selectively randomizing a
handful of parameters at a time, targeting the specific variables which have
been minimised further from 1, which ultimately reproduces their value in
the SM. The best result found in this fashion requires the enforcing of the
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following hierarchies among the parameters of the scalar potential

µ̃D = δµ̃Dλ
2, µU = δµUλ

3, µD = δµDλ
4,

λU = O (1) , λD = O (1) , λ̃D = O (1) ,

gUD = δgUDλ
3, g′UD = −δg′UDλ6, g′DD = δg′DDλ

5,

λUU = −δλUUλ10, λDD = δλDDλ
11, λUD = δλUDλ

12, λ′DD = δλ′DDλ
11,

(3.19)
where the suppression has been factorised in terms of λ so that O (1)

values correspond to the fractions δµ/Λf and the quartic parameters δλ and
δg. Remarkably, the scalar potential constructed out of the above parameters
is minimised by the nine-dimensional point in Eq.(3.18).

For the sake of illustrating this statement, one dimensional cuts of the
potential in which all but one variable have been fixed to their values at the
minimum – i.e. 1, are shown for the Yukawa eigenvalues and the mixing
observables in Figures 3.2 and 3.1 respectively. The good mexican-hat
like behaviour of the potential is showcased in both, being always minimised
when the corresponding variable takes very-close-to-1 values.

We conclude that it is indeed possible to dynamically generate the full
flavour structure of the hadronic sector, including quark masses and mixings,
within the data driven flavour model, albeit at the price of the fine-tunings
introduced in Eq.(3.19). Upon comparison with those necessary to accurately
describe the quark sector within the bare SM (see Eq.(3.17)), we cannot claim
the data driven model provides a more natural explanation to the origin of
flavour that the one already present in the latter. In fact, the situation has
worsened to some extent, with a larger quantity of parameters displaying
similar or greater degrees of fine-tuning.

Nevertheless, the data driven flavour model succeeds in the compar-
ison against the MFV scenarios previously reviewed in this work. When
bi-fundamental flavons where considered within the MFV framework, the
analysis led to vanishing or undetermined mixing angles and a single massive
quark in the up and down sectors at the renormalisable level. The situ-
ation improved ever so sightly after the consideration of non-renormalisable
operators, allowing masses for the lighter families. Nonetheless, the correct
pattern of masses and mixings could not be possibly accounted for. On the
other hand, when fundamental flavons were considered at the renormalisable
level, a strong mass hierarchy arose, singling two massive quarks in each sec-
tor, together with a non-vanishing mixing angle that could be identified with
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Figure 3.1: One dimensional plotting of the (rescaled) flavon scalar po-
tential – 1

Λ4
f
V(4) – at its minimum. The observed quark masses in the SM

are correctly reproduced when these variables minimise the potential near 1
values.

the rotation between the second and third families. However, not even non-
renormalisable operators could provide with masses for the lighter quarks or
fully account for the mixing pattern of the SM. In short, both of these scen-
arios cannot possibly account for the granularity of the flavour sector when
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Figure 3.2: One dimensional plotting of the (rescaled) flavon scalar po-
tential – 1

Λ4
f
V(4) – at its minimum. The fully fledged CKM mixing matrix

is accurately reproduced when these variables minimise the potential near 1
values.

sourcing the Yukawa couplings. This is in stark contrast to the solution
provided by the data driven flavour model, which, already at the renorm-
alisable level, can provide a dynamical origin for every physical observable
characterising flavour in the SM, as long as suitable fine-tunings are enforced.

A possible avenue for improvement potentially worth exploring in the fu-
ture, could be the adoption of different sets of flavons (compatible with the
flavour symmetry of the data driven model) other than the minimal result-
ing from the assignment of a single flavon per Yukawa coupling. In particu-
lar, fundamental flavons have shown their usefulness in the MFV framework
when inducing hierarchies and non-trivial mixing sourced by the misalign-
ment between those sharing the same vector space. Either a complete set of
fundamental or a mixture of fundamental and bi-fundamental flavons could
provide a more natural origin to the structure of the flavour sector. The
analysis on the resulting phenomenology of such scenarios would speak for
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their viability as possible alternatives.
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4

Conclusions

The main idea behind this work is the use of symmetry in the quest for an
explanation to the family structure exhibited by the quark sector within the
SM. The flavour symmetry here invoked, is the defining characteristic of the
scenarios under discussion.

In a rather model-independent way, the assumption that at low energies,
the Yukawa couplings constitute the only source of flavour and CP violation
in beyond the SM theories, ensues the well agreement of the latter with exper-
imental flavour data. This is the basis of the MFV hypothesis, implemented
through effective Lagrangian techniques.

Taking the next natural step, we assume the flavour symmetry to be
exactly realised at some energy scale Λf . As a consequence, the Yukawa
couplings can only arise in this scenario as the vevs of new dynamical fields,
the flavons, which have non-trivial transformations properties under the fla-
vour group. This is because the insertion of the latter is needed so as to make
the now d > 4 Yukawa operators invariant under the flavour symmetry. In
this way, the structure of the Yukawa couplings is generated after the flavons
develop a vev, spontaneously breaking the flavour symmetry. The relevant
question then becomes what may be the scalar potential responsible for the
non-zero vevs of the flavons, and even more so, may some of its minima nat-
urally correspond to the SM structure of quark masses and mixing angles?
In this work, we revisit the latter for MFV, ultimately addressing it for the
Data Driven Flavour Model.

The simplest realisation is to consider each Yukawa coupling is sourced
by a single scalar flavon field transforming in the bi-fundamental represent-
ation of the flavour group. From the point of view of effective Lagrangians,
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this possibility may correspond to the lowest order term in the inverse power
expansion on the flavour scale 1/Λf , involving a d = 5 effective Yukawa oper-
ator comprised by one flavon field and the usual SM field combination. The
construction and analysis of the general flavour invariant scalar potential for
these bi-fundamental flavons has been reviewed for both the two-family and
the three-family case. For the latter and at the classical and renormalisable
level, only vanishing or undetermined mixing angles are permitted. Certain
fine-tuned regions of the potential parameter space allow for solutions with
vanishing Yukawa couplings for all quarks except those in the heaviest fam-
ily, which otherwise tend to be generically degenerate, but even then, mixing
would still be absent. The addition of non-renormalisable higher order oper-
ators to the potential leads to the generation of masses for the lighter families,
but ultimately fails at providing a realistic pattern of masses and mixings.
These findings can be summarised by stating that the bi-fundamental flavons
here considered cannot possibly account for the dynamical origin of the full
flavour structure characterising the hadronic sector of the SM.

A second scenario has been reviewed in which each Yukawa coupling arises
instead from the combined vevs of two scalar flavons transforming in the fun-
damental representation of the flavour group, as quarks do. In the effective
Lagrangian language, a possible realisation could be that of the next-to lead-
ing order d = 6 Yukawa operators, now suppressed by two inverse powers of
the flavour scale 1/Λ2

f . Again, the construction and analysis of the general
scalar potential for these fundamental flavons has been reviewed for both,
the two- and the three-family case. Due to the vector nature of the funda-
mental flavons and their structure within the resulting Yukawa operators, a
strong mass hierarchy is unavoidable regardless of the consideration or not
of non-renormalisable operators: only two quarks, one in the up and one in
the down sector, get masses. In the three-family case, the natural choice
is for the masses to be assigned to the top and bottom quarks of the third
generation, being the heaviest. Non-vanishing mixing structure requires a
departure from minimality, in that two distinct flavons need to be assigned
to the up and down left-handed quarks, despite both belonging to the same
representation of the flavour group (which means only one of them would
be strictly needed to render the Yukawa interactions invariant). This is be-
cause mixing is sourced within this setup by the misalignment in flavour
space of the flavons associated to the left-handed quark SU(2)L doublet. As
a consequence, only one mixing angle can possibly be generated. To offer a
complete picture, for fundamental flavons, it follows that a strong mass hier-
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archy is induced in the quark spectrum, characterised by a single massive
quark in each sector; whereas only one non-vanishing mixing angle is gener-
ated, which can be realistically identified with the rotation in the 23 sector of
the CKM matrix. In the end, we are still missing the generation of masses for
the lighter quarks and a complete description of the full mixing pattern, and
in this sense, we must conclude again that this realisation cannot possibly
account for the granularity of the quark flavour structure in the SM.

If something can be extracted from the above scenarios is that a de-
parture from the most straightforward approaches seems to be warranted if
we wish to dynamically accommodate the full quark flavour spectrum. The
data driven flavour model is a bottom-up approach, built on the premise of
strictly following the available experimental data regarding the flavour sector.
Avoiding any fine-tuning on the Yukawa couplings, the quark mass hierarchy
suggests that only the top Yukawa term should arise at the renormalisable
level, as it involves the only O(1) parameter satisfying naturalness criteria
in the flavour sector. The idea is, as it was before, to identify the largest
flavour symmetry group arising in the limit of vanishing Yukawa couplings,
only that now the top coupling is excluded from the limit. This symmetry is
realised at some energy scale Λf and as a consequence of its new definition,
the top Yukawa interaction no longer requires the insertion of any flavons,
which are however still needed for the rest of the quarks. This is already a
step in the right direction, the model distinguishes the third family from the
two lighter ones from the very beginning, naturally describing a top Yukawa
of order 1. A one-to-one correspondence is established between the vevs of
the flavons and each of the Yukawa couplings. In this sense, the model has
been kept as minimal as possible.

The construction of the most general flavour invariant scalar potential
for the data driven model has been carried in this work. Unfortunately, its
complexity and intricate dependences on the physical flavour observables
make impractical any analytical attempt towards its analysis. Nonethe-
less, a simple lesson can be extracted from them: dynamically generating
masses and mixings in the quark sector necessarily requires of some degree of
fine-tuning among the parameters in the scalar potential. A numerical ana-
lysis was carried next, adopting a Monte Carlo based approach to randomly
sample the parameters in the potential. Drawing from several distributions
was required in order to ensure the relatively large 13-dimensional parameter
space was evenly explored. Each iteration was judged on the proximity of
the nearest minimum to the experimentally observed values for the physical
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observables in the flavour sector. In the end, the results of the analysis re-
markably lead to a solution reproducing the full pattern of quark masses and
mixings.

The fine-tunings required happen to be ultimately stronger than those
compulsory for the description of quark flavour in the bare SM. Neverthe-
less, when compared to the above realisations of MFV, the data driven model
leads to a substantial degree of improvement. While the first offer at best,
a single mass splitting, separating the third from the first two families; and
a single non-vanishing mixing angle; even after considering the addition of
non-renormalisable terms to the potential, the data driven flavour model can
provide a dynamical explanation for the full set of physical flavour observ-
ables, including the CP violating phase, already at the renormalisable level.

Despite the somewhat bittersweet ending, to what started as a quest
to give a natural origin to the flavour puzzle, one cannot help but think
about the exciting possibilities which remain to be explored within this field.
The data driven flavour model here presented and analysed, has been shown
to provide a significant improvement over generic instances of MFV, while
still maintaining its status as a potentially testable theory in the ∼ TeV
range. The departure from the minimal set of flavons here considered, could
potentially lead to even further improvements in naturalness, constituting an
alluring possibility to be explored in future works.
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